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Abstract
Full-body ego-pose estimation from head and hand

poses alone has become an active area of research to
power articulate avatar representation on headset-based
platforms. However, existing methods over-rely on the con-
fines of the motion-capture spaces in which datasets were
recorded, while simultaneously assuming continuous cap-
ture of joint motions and uniform body dimensions. In this
paper, we propose EgoPoser, which overcomes these limita-
tions by 1) rethinking the input representation for headset-
based ego-pose estimation and introducing a novel motion
decomposition method that predicts full-body pose indepen-
dent of global positions, 2) robustly modeling body pose
from intermittent hand position and orientation tracking
only when inside a headset’s field of view, and 3) general-
izing across various body sizes for different users. Our ex-
periments show that EgoPoser outperforms state-of-the-art
methods both qualitatively and quantitatively, while main-
taining a high inference speed of over 600 fps. EgoPoser es-
tablishes a robust baseline for future work, where full-body
pose estimation needs no longer rely on outside-in capture
and can scale to large-scene environments.

1. Introduction

Current Mixed Reality (MR) systems derive tracking
cues and user input mainly from cameras embedded inside
the headset, which observe the environment as well as the
user’s hand motions when inside the field of view [15, 16].
This enables them to track their own position inside the
world and at the same time derive input commands from
the user’s actions. Due to the constrained nature of the in-
put signals, which primarily rely on data from the user’s
head and hands, contemporary Mixed Reality (MR) systems
are limited in their ability to generate comprehensive virtual
representations, confining the avatar to encompass only the
upper body. Consequently, this restriction undermines the
sense of immersion and results in a reduction of the overall
experiential fidelity.

Because holistically embodying users as 3D avatars in
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Figure 1. Our proposed EgoPoser overcomes the reliance of previ-
ous pose-estimation methods on global position, outside-in track-
ing, and uninterrupted availability of tracking information, while
simultaneously adapting motions to the user’s body dimensions,

Mixed Reality is desirable for presence [17], immersion,
and thus user experience [31] in AR and VR alike, sev-
eral recent methods have attempted to estimate full-body
poses from the sparse tracking cues current systems pro-
vide [7, 9, 19, 35]. These efforts have all relied on large
motion-capture datasets to estimate realistic body poses and
animations, leveraging the robust, continuous, and high-
fidelity recordings across a large variety of environments.
However, as we demonstrate in this paper, previous methods
over-rely on the nature of their training data, specifically the
continuous motions recorded in outside-in tracking setups.
Their conditions are not representative of the intended use:
Not only are the user’s hand poses continuously available in
motion-capture datasets and, thus, during testing and evalu-
ation, the stationary setup of motion capture leads previous
methods to overfit to global coordinates.

Specifically, existing methods exhibit several limitations
in considering real-world applications. (1) Prior approaches
directly employ the global pose in world space as the net-
work input, causing the trained model to overfit to training
data that is typically concentrated near the origin. Our pa-
per reveals that using a global input representation results
in significantly worse predictions, even for slight meter-
scale offsets. (2) Current methods assume that hands will
always remain within the field of view. However, for more
portable inside-out tracking systems, hands might occasion-
ally move out of the field of view, resulting in intermittent
input signals. Although recent work proposed a random



masking strategy [7], it fails to accurately model the tem-
poral and spatial characteristics of the real scene. (3) Ex-
isting methods only account for a mean body shape, disre-
garding the natural variations in body size among different
subjects. This limitation prevents the model from adapting
to real-world inputs and accurately representing the body.
Consequently, motion artifacts such as floating and ground
penetration may arise.

To solve these problems, we propose EgoPoser, an ex-
clusively headset-centered estimation method for full-body
poses that robustly performs on the sparse and intermit-
tent tracking cues provided by today’s inside-out tracking
systems. As shown in Figure 1, EgoPoser comprises sev-
eral components that jointly enable its robust performance
on real-world data and live motions outside motion-capture
datasets: Our novel Global-in-Local motion decomposi-
tion retains the critical relative global information in a lo-
cal representation, making it robust to position changes by
encoding motion priors from sparse inputs. We sample
the original signals at different rates to capture longer mo-
tion time series as the input to the Transformer encoder,
while improving prediction accuracy without increasing the
computational burden. EgoPoser’s realistic field-of-view
modeling captures both spatial and temporal information to
smoothly estimate accurate full-body poses even when the
user’s hands leave the camera’s view frustum. To support
personalized use, we predict the body size to accurately an-
chor each user’s representation within the world.

To summarize, the main contributions of this paper are:

(1) We introduce EgoPoser, a novel systematic approach
for full-body pose estimation using sparse motion sensors.
To the best of our knowledge, We are the first to study the
HMD-based ego-body pose estimation in large scenes. Our
method remains robust even when hands are out of the field
of view, and generalizes well to various body sizes.

(2) We have identified a notable issue with existing
methods, wherein they tend to overfit to the training data
due to the global input representation of the neural net-
work. To address this concern, we emphasize the signifi-
cance of position-invariant prediction and present an effec-
tive Global-in-Local motion decomposition strategy.

(3) Unlike existing methods that assume a mean body
shape, EgoPoser stands out by effectively accommodating
different body sizes, showcasing remarkable input adapt-
ability, and delivering accurate output avatar representation.
Moreover, our proposed strategies significantly reduce mo-
tion artifacts such as floating and ground penetration.

(4) We showcase superior numerical and visual per-
formance compared to state-of-the-art methods on public
datasets AMASS and HPS. Our demo also shows that Ego-
Poser seamlessly integrates into real-world MR systems, af-
firming its practical viability and effectiveness.

2. Related Work

Pose Estimation from Sparse Sensors. Previous re-
search on full-body pose estimation from sparse inputs has
utilized up to six body-worn inertial sensors [18,30,36,37].
However, these sensors are distributed across the body,
making motion capture inflexible and unwieldy. As ego-
centric vision [13,39] has recently attracted more attention,
an increasing amount of research is focused on full-body
pose estimation using head-mounted devices. However,
early methods [7, 9, 35] assume the pose of the root is
available, which requires an additional tracker attached to
the pelvis in real usage. For the practical 3-Point tracking
problem, AvatarPoser [19] was the first method to train
a single model for various motion types. It combines
a Transformer-based method with IK optimization to
make the prediction realistic and match the observation.
QuestSim [33] combined a reinforcement learning-based
method with a physical simulator to make the prediction
physically plausible. Recently, diffusion model-based
methods AGRoL [10] and EgoEgo [21] were proposed,
which synthesized smooth predictions. However, they both
relied on future input signals to make current predictions,
and diffusion models inherently have a slow sampling
speed by design. These two factors pose significant
challenges for real-time applications.

Pose Estimation under Field-of-View Constraints. Es-
timating human pose when parts of the body are outside the
cameras’ field of view is a challenging problem [3,8,26,34].
To alleviate the visibility problem, many designs were tried
in terms of hardware such as mounting a camera et al. [22]
or IMUs [28] to the wrist, adding cameras to controllers [5],
mounting downward facing fisheye cameras to a specially
designed hat [6, 27, 32] or glasses [40]. But these designs
often come at an additional cost and are often not portable
or aesthetically pleasing. In terms of the algorithm solu-
tion, FLAG [7] retained the original constraints of headset-
only capture and augmented the training data by randomly
masking the hands with a certain probability instead. How-
ever, this strategy does not consider the actual spatial rel-
ative pose between the hand and headset—a hand can be
masked out even if it is actually inside the FOV. In this pa-
per, we model the FoV realistically by considering the spa-
tial relative pose and the temporal continuity.

Data Normalization in Deep Learning. Normalization
is a technique utilized in deep learning to adjust input data
such that all features have similar scales. This is particularly
beneficial when features in a dataset have varying scales.
Normalization can enhance the model’s generalization abil-
ity by making it more robust to variations in the input data.
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Figure 2. The architecture of our proposed EgoPoser for full-body pose estimation from a single HMD device. Our proposed Global-
In-Local (GiL) strategy enables us to decompose global motion from input tracking signals, making the model robust to different user
positions. We sample these signals at different rates, capturing both dense nearest information and sparse but longer information. The
resulting preprocessed signals are then fused by SlowFast Fusion module and fed into a Transformer Encoder. The Multi-Head Motion
Decoder outputs parameters for global localization, local body pose, and body size prediction. Given N=80 frames as input, we generate
the last frame to function as the full-body representation for each timestamp, facilitating real-time applications.

However, it can also cause a loss of information in the orig-
inal data if the original scale of the input features is impor-
tant. In our work on HMD-based human pose estimation,
we have found that prior approaches [10, 19] which use the
global pose as input do not generalize well to different posi-
tions. Although common normalization techniques, such as
subtracting the head pose from the global pose [4, 7, 9, 35],
are translation-invariant, they result in information loss and
reduced performance.

3. Method
In this section, we describe our method EgoPoser for the

real-time estimation of the global full-body pose based on
the tracked hand and head poses of an HMD.

3.1. Overview

While various MR systems may diverge in the tracking
technology they depend upon, The global positions p and
orientations Θ of the headset, along with those of the two
hands, are typically accessible. Given this 3-point pose in-
formation as input, the goal of full-body pose estimation is
to estimate a mapping from the input and the position of J
full-body joints:

{pjt}j=1:J = f({pjt ,Θ
j
t}j=1:3) (1)

This is a challenging under-determined problem because the
same input may correspond to multiple possible outputs. To
make the predicted results conform to the human skeleton,
most existing work used first 22 joints defined in the kine-
matic tree of the SMPL-H [23, 24] skeleton models for the
output full-body representation, ignoring the pose of fin-
gers. Besides, SMPL-H models provide 16 shape param-
eters β to control the overall shape of a 3D human mesh.

Existing methods suffer from limitations in problem for-
mulation, impacting their performance in practical scenar-
ios. First, these methods feed global poses directly into the
network, causing overfitting to specific data recording en-
vironments. Second, they assume hands are consistently
visible in the headset’s field of view, relying on uninter-
rupted signals. Third, they assume a standard body shape
and disregarding natural body size variations. Addressing
these limitations is vital for enhancing the applicability and
accuracy of proposed approaches.

We show an overview of our approach in Figure 2. The
core components of our approach include our proposed
Global-in-Local (GiL) representation, our temporal Slow-
Fast feature fusion module, a Transformer Encoder as well
as a human motion decoder that forwards its output consist-
ing of the root orientation, the local joint rotations and the
shape parameters β together with the decomposed global
head position to the differentiable SMPL body model for
the estimation of the global joint positions.

3.2. Global-in-Local Motion Decomposition

MR tracking systems usually directly provide the global
pose of the headset and hands/controllers. Based on that,
AvatarPoser [19] and AGRoL [10] directly take the global
poses in world space as input to its network. However,
most existing datasets like AMASS are recorded in a lim-
ited physical space near the origin, so it remains unclear
whether it can generalize well to a different location. Data
augmentation could be a remedy, yet it makes the training
process less efficient, and it is impossible to traverse the
whole infinity 3D space. In addition, the global position
could leak training data-specific scene information into the
learning process. For example, a sit-down motion might be
more likely within locations where a chair was placed dur-



ing the data capture, and the action of throwing a basketball
is likely to happen close to the basketball hoop affixed in
the capture studio.

Another common strategy is to decompose the global
motion into a rigid body motion in global world space and
the local motion relative to a root capturing the current
body pose. This is also the default representation of many
body motion capture representations like SMPL [24] and
has been used in previous works on self-body pose estima-
tion [4, 7, 35]. This is an intuitive design choice when root
information, which provides a rich global pose, is available.
Besides, since models trained with local representations do
not utilize global position, it can generalize well to differ-
ent locations. However, in 3-point tracking problem, simply
converting the reference frame to head is easy to make the
prediction sensitive to the head rotation. Besides, removing
the global information can lead to information loss, making
the ill-posed problem even more challenging.

To combine the advantages of both representations, we
introduce a motion Global-in-Local motion decomposition
strategy (GiL). GiL is designed to be position-invariant,
thereby enhancing its resilience in pose estimation across
expansive scenes. GiL also extracts crucial relative global
information and leverages it to encode motion data effec-
tively. The GiL approach encompasses two key operations:
spatial and temporal normalization, detailed as follows.

(1) Spatial Normalization (SN): Instead of subtracting
the head’s 3D translation information from head and hand
positions to make the hand position relative to the head, we
only make the horizontal translation relative to the head. We
retain the global vertical translation as an important feature
to encode motion priors.

(2) Temporal Normalization (TN): we do temporal nor-
malization by subtracting the horizontal translation of all
the input joints at the first frame from the horizontal trans-
lation of the corresponding joints within a temporal window
so that we capture the relative global trajectory of each joint
within a temporal window.

The left of Figure 2 illustrates how GiL works. The Spa-
tial and temporal normalization of GiL convert the positions
of headset and hands from the world frame RWorld into a
new frame Rt

SN on the ground and Rt
TN , j on the i-th joint,

which are the input to our pose estimation network. The
positions given by SN and TN at time ti are written as:

pti,handSN,h = pti,handW,h − pti,headW,h

pti,jTN = pti,jW − pt0,jW

(2)

In addition to the orientation and decomposed position in-
formation, we calculate their corresponding linear and an-
gular velocity to enrich the input data. 6D representa-
tion [41] is adopted for rotation due to its continuity. Fi-
nally, a total of 59 input features are provided to the net-
work.

3.3. Realistic Field of View Modelling

We find that previous work does not adequately ad-
dress the inherent limitations of the inside-out hand track-
ing on today’s state-of-the-art headsets like Meta Quest 2
and HoloLens 2. They usually model tracking failures
through random frame drops uniformly sampled over the
complete tracked motion but fail to take into account that
whole regions outside the headset’s cameras field of view
exist where the hand tracking fails.

Based on the head pose, which determines the viewing
angle of the cameras mounted to the headset, and the rela-
tive position of the hands, we simulate the tracking of head-
sets with varying field of views (FoVs).

z

x

y

x

Horizontal FoV Vertical FoV

FoV lim
it

Figure 3. An illustration of HMD’s field-of-view. Left: A user is
moving the hand from inside FoV to outside FoV. Middle: A hand
is in the horizontal FoV. Right: A hand is in the vertical FoV.

For an HMD with a horizontal FOV of αh and a vertical
FOV of αv , a hand is visible if the following conditions are
satisified,

tan(
αh

2
) ≥

∣∣∣∣ zhandxhand

∣∣∣∣ ,
tan(

αv

2
) ≥

∣∣∣∣ yhandxhand

∣∣∣∣ ,
xhand > 0.

(3)

Here, xhand, yhand and zhand are x, y and z coordinate of
the hand position in a head-centered coordinate system with
the x-axis pointing through the eyes (see Figure 3).

We train our method to robustly handle inputs with con-
tinuous tracking gaps by setting the input features of joints
outside the field of view to 0. Since the hand pose serves as
a reference frame in the temporal normalization process of
GiL, we employed the predicted hand pose as the reference
frame when the real hands are positioned outside the FoV.

3.4. SlowFast Feature Fusion

Based on the information from a single frame, a mul-
titude of plausible body poses exist that would fit a given
set of head and hand poses. However, the problem con-
verges towards a more unique solution as we consider the
head and hand motions over a longer temporal context.
Yet, simply adding more frames to the input would signifi-
cantly increase computational overhead as for example, the



computational complexity of a Transformer’s self-attention
module scales quadratically with input sequence length.
Thus, inspired by SlowFast networks originally proposed
for video recognition [11], we propose a SlowFast feature
fusion module that increases the context of considered past
tracking frames in a more efficient manner. Given an input
window of τ past frames, the SlowFast module concatenates
the linear embeddings for the τ

2 last frames (FAST) with τ
2

frames sampled with a stride of 2 over the complete window
(SLOW). In this way, we reduce the length of the input se-
quence by a factor of 2 while keeping the temporal context
over the whole window. In addition, we still capture the
temporal information contained within the higher temporal
resolution of the FAST input frames.

3.5. Considerations of Different Body Sizes

One common limitation of existing methods [9,10,19] is
that only the mean shape skeleton is used, so that the dif-
ference of body sizes are ignored. This assumption can in-
troduce two main problems: First, since all the training and
testing data share the same body shape. It is unclear whether
a trained model can still work well to input data from users
with diverse body sizes in real-world usage. Second, the fi-
nal animated result can not reflect the real body size. Even
for perfect joint angle rotation, wrong body skeleton can
lead to ground penetration or floating artifacts.

To address these issues, we introduce an approach that
combines data augmentation with T-pose calibration. We
augment the training data by incorporating ground truth
shape parameters. During the testing phase, we measure
the body height and arm length, subsequently computing
the ratio between the measured dimensions and the corre-
sponding mean shape values. The average of these ratios is
then utilized as the scaling factor for the entire body. This
scale factor is subsequently applied to adjust the output rep-
resentation accordingly.

Nevertheless, this method requires an extra calibra-
tion step to accurately measure the body sizes, adding to
the overall effort involved. To this end, we introduce a
calibration-free method via estimating the size of the user
from the tracking input. However, simply predicting the
shape parameters is very challenging because different body
shapes can map to the same input pose. Besides, estimation
of fine-grained body shape such as if the body is fat or thin
is not important, and can be easily adjusted by post process-
ing. However, the body size plays an important role because
it can determine the scale of the input signals, and also af-
fect the output avatar representation, because wrong body
size can lead to ground penetration or foot floating artifacts.

Instead of directly supervising the shape parameters β
in the loss function, we implicitly optimize the estimated β
through the error in the joint positions that are the output of
the shape-aware differentiable SMPL body model that takes

β and the estimated joint rotations as input. In addition,
we perform L1 regularization on β to encourage sparsity
and the estimation of zero-valued mean shape parameters in
case they are not needed for the accurate estimation of the
joint positions. As our method estimates β for each frame,
we can apply the median predicted shape parameters after
some sequences to enforce consistency, although we did not
observe frequent or sudden deviations in β for a given input
sequence.

The loss function for body size estimation is written as:

LBS = λposLpos + λβ ∥β∥1 (4)

where the positional loss is calculated through forward
kinematics:

Lpos = ∥FK(θ, β)− FK(θGT , βGT )∥1 (5)

The final loss function is composed of an L1 local rotational
loss, an L1 global orientation loss, an L1 positional loss, and
a L1 regularization of β denoted by:

Ltotal = λoriLori + λrotLrot + λposLpos + λβ ∥β∥1 (6)

We set the weights λori, λrot, λfk, and λβ to 0.05, 1, 1, and
0.01 respectively.

3.6. Design Choices for Real-Time Application

Although AGRoL [10] can generate smooth motion and
be accelerated via sampling only 5 times, we find its benefit
can only be utilized in an offline fashion but still challenging
for real-time application because (1) the sampling speed of
diffusion models is very slow by design (2) future inputs
signals are used to generate the current pose.

The total delay td is calculated as:

td = tn + tq

= tn + (s− 1) · vplay
(7)

where tn is the inference time of the network for each pass,
tq is the queue time for the output frames to be played. The
queue time tq depends on the number of output frame s and
the play speed of the MR system.

In AGRoL, given the inference time of each pass as
35ms, if all the 196 output frames are used, the total de-
lay played at a 30Hz MR system will be td = 35 + 1000×
(196 − 1)/30 = 6535 ms, which is far from real-time ap-
plication. Therefore, for real-time application, only one
frame can be used. We follow the design choice of Avatar-
Poser [19] to use a lightweight Transformer backbone (tnet
= 1.6ms) and only generate one frame as output.

4. Experiments
4.1. Datasets and Training Details

Following prior work [19], we mainly utilized three sub-
sets of the AMASS [24] dataset, namely CMU [1], BML-



Table 1. Evaluation of different methods on AMASS dataset. A study to evaluate the robustness of various methods to offset from the
origin. The evaluation metrics are position error MPJPE [cm] and velocity error MPJVE [cm/s]. *: AGRoL was tested in an offline fashion
in its original paper because the future frames are used for current prediction. To ensure a fair comparison, we run the its public code
and set the step of sliding window as 1. Observations reveal that the AvatarPoser [19] and AGRoL [10], which use global pose as input,
experiences a substantial decrease in performance with increasing offset from the origin.

Offset = 0 m Offset = 1 m Offset = 2 m Offset = 5 m Offset = 10 m Offset = 50 m
Methods MPJPE MPJVE MPJPE MPJVE MPJPE MPJVE MPJPE MPJVE MPJPE MPJVE MPJPE MPJVE

Final IK 18.09 59.24 18.09 59.24 18.09 59.24 18.09 59.24 18.09 59.24 18.09 59.24
CoolMoves 7.83 100.54 7.83 100.54 7.83 100.54 7.83 100.54 7.83 100.54 7.83 100.54
AvatarPoser 4.18 29.40 4.78 29.77 5.49 30.81 11.39 41.88 18.40 66.19 31.67 68.79
AGRoL 3.86 50.94 4.89 61.83 6.73 85.02 11.90 161.08 20.74 252.54 53.45 1795.78
AGRoL-Offline* 3.71 18.59 4.76 21.86 6.58 26.33 11.77 45.50 20.94 138.00 63.64 2087.78
EgoPoser (Ours) 4.14 25.95 4.14 25.95 4.14 25.95 4.14 25.95 4.14 25.95 4.14 25.95

Table 2. Comparisons to state-of-the-art methods on HPS. HPS is a large-scene dataset captured in large scenes. The evaluation metrics
are position error MPJPE [cm] and velocity error MPJVE [cm/s].

BIB EG Tour MPI EG Working Standing UG Computers Go Around UG Long
Methods MPJPE MPJVE MPJPE MPJVE MPJPE MPJVE MPJPE MPJVE MPJPE MPJVE MPJPE MPJVE

AvatarPoser 22.53 60.25 16.54 36.39 19.08 52.95 23.24 40.65 19.50 59.54 16.65 43.59
AGRoL 28.95 166.34 19.41 55.52 17.67 53.97 20.90 109.12 14.16 98.34 12.81 74.13

EgoPoser (Ours) 9.55 49.39 11.05 35.60 8.70 46.49 10.34 37.63 6.90 45.10 8.95 38.30

rub [29], and HDM05 [25], for both training and testing. We
adopted the same data splitting which was generated by ran-
domly allocated 90% of the data to the training set and 10%
to the test set. To evaluate the performance in large-scale
scenarios, we also used HPS [14] for testing, using the pre-
trained model trained on the three subsets in AMASS. HPS
is a large-scene dataset captured in large scene. We uti-
lize the high-quality results from the joint optimization de-
scribed in [14], which integrates camera localization, IMU
pose estimates, and scene constraints, as our ground truth
data.

To optimize the parameters of EgoPoser, we adopted the
Adam solver [20] with a batch size of 256. We consider the
previous 80 frames as input (τ = 80), resulting in an input
window with 40 frames after SlowFast fusion. The learning
rate starts from 1×10−4 and decays by a factor of 0.5 every
2× 104 iterations. We trained our model using PyTorch on
a single NVIDIA GeForce GTX 3090 GPU.

4.2. Evaluation Metrics

We use Mean Per Joint Position Error (MPJPE) and
Mean Per Joint Velocity Error (MPJVE) as our main eval-
uation metrics to measure the estimation accuracy and
smoothness. Due to page limitations, we excluded the Mean
Per Joint Rotation Error (MPJRE), as the MPJPE stands as a
more representative metric for assessing pose accuracy, and
the trends in MPJRE and MPJPE across various methods
are fundamentally aligned. When evaluating the size-aware
pose estimation, we adopt the Mean Per Joint Position Er-
ror (MPJPE), Mean Vertex Error (MVE), mean errors of
predicted heights and bone lengths. Besides, we compute

the average distance to the ground for mesh vertices below
the ground to evaluate ground penetration [38]. To evaluate
foot floating artifacts, we calculate the mean distance be-
tween the ground and the lowest point on the mesh within a
given sample when it is above the ground.

To ensure a fair comparison with state-of-the-art meth-
ods and to provide a clear demonstration of each proposed
component, we assume the full hand visibility and use the
mean body shape following prior work when directly com-
paring the results with them (Table 1 and 2). We evaluate
the hand partial visibility problems and size-aware pose es-
timation independently in Table 3 and 4, respectively.

4.3. Evaluation Results

Pose Estimation in Large Scenes. To test the robustness
to different position in large scenes, we add an offset to the
position and use it as the input. We synthesize the offset
by setting it as constants in different scales, ranging from
0 to 50. To test the robustness of our approach to different
positions in real-world scenarios, we introduce an offset to
the position and use it as input. We synthesize the offset
by setting it as constants in various scales, ranging from 0
to 50. We compare our method with AvatarPoser [19] and
AGRoL [10], which use the global input representation, the
classical KNN-based method CoolMoves [4], and the tra-
ditional optimization-based FinalIK [2]. It’s worth noting
that the latter two methods use a local input representation.
Besides, AGRoL was tested in an offline fashion in its orig-
inal paper because the future frames are used for current
prediction, but this setting is not practical in real-world MR
scenarios, as we have discussed in Section 3.6. To ensure a



(a) AvatarPoser (b) AGRoL

(c) EgoPoser (Ours) (d) Ground Truth

Figure 4. Visual results on HPS dataset. The provided example depicts a user walking from an outdoor setting into a library and
subsequently walking within the library. As illustrated in the figure, the outcomes from AGRoL are notably incorrect, and AvatarPoser
maintains a static local pose. In contrast, our proposed EgoPoser generates natural and visually pleasing motions that closely resemble
the ground truth data. Despite being trained only on the AMASS dataset, EgoPoser demonstrates remarkable performance and robustness,
surpassing existing state-of-the-art methods.

Table 3. Evaluation of different strategies for outside the FoV
pose estimation on AMASS.

FoV = 180◦ FoV = 120◦ FoV = 90◦

Strategies MPJPE MPJVE MPJPE MPJVE MPJPE MPJVE

Full Visibility [19] 24.75 183.84 38.99 144.42 41.24 95.66
Random Masking [7, 10] 7.09 49.91 13.29 64.09 14.84 58.33
Ours 5.31 39.69 6.07 46.01 6.60 48.25

fair comparison, we run the its public code and set the step
of sliding window as 1. We report both its online and offline
results in Table 1 and a dropped performance of AGRoL can
be observed especially on MPJVE in online testing.

We show the position error and velocity error against dif-
ferent scales of offsets in Table 1. Our observations indicate
that AvatarPoser and AGRoL, which use global pose as in-
put, experiences a significant decrease in performance as the
offset from the origin increases, although AGRoL achieved
the best performance when the offset is zero. On the other
hand, methods with local representation remain stable in
performance.

We further compare our method with state-of-the-arts in
a real-world large-scene MoCap dataset HPS [14]. The nu-
merical and visual results can be found in Table 2 and Fig-
ure 4.
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Figure 5. Visual comparisons of different strategies for the sce-
nario where the hands can go out of FoV. The horizontal and
vertical FoVs are set as 120◦. Hands outside the FoV are ren-
dered in  . Default: model trained with full hand visibility: RM:
Random Masking strategy. Ours: Realistic FoV Modelling. GT:
Ground Truth. Our method achieves the best performance.

Outside-the-FoV Pose Estimation. We have evaluated
various strategies for scenarios where hands are tracked by a
headset and may go out of field of view (FoV). To simulate
real-world scenarios, we have considered different angles
of FoV, including 180◦(using fisheye cameras), 120◦(as in



Table 4. Evaluation on size-aware pose estimation. Best results
are highlighted in bold for each metric. Ground truth shape is
used when calculating the evaluation metrics. GP is for ground
penetration error and FF is for foot floating error. All metrics are
measured in centimeters [cm].
Strategies MPJPE Vertex Height Arm GP FF

Mean Shape [7, 9, 10, 19] 6.36 6.74 7.67 7.42 3.87 5.38
Ours 1 - DA + Calibration 5.26 4.69 1.36 1.24 2.06 1.67
Ours 2 - Size Prediction 4.79 4.08 1.78 1.66 2.31 1.64

Table 5. Ablation studies on global motion decomposition. Best
results are highlighted in bold for each metric.
Configurations MPJPE MPJVE

Mean Normalization (All Features) 6.25 42.69
Mean Normalization (Horizontal + Vertical Positions) 6.24 42.75
Mean Normalization (Horizontal Positions) 6.25 42.87
Spatial Normalization (Horizontal + Vertical Positions) 4.96 29.59
Spatial Normalization (Horizontal Positions) 4.45 27.56
Temporal Normalization 4.58 28.01
Ours - GiL (Temporal + Spatial Horizontal Norm.) 4.14 25.95

Table 6. Ablation studies on SlowFast design. Best results are
highlighted in bold for each metric.
Configurations MPJPE MPJVE MACs #Parameters

length 40 4.36 28.12 160.66M 4.12M
length 80 4.11 29.27 326.14M 4.12M
length 80 , stride 2 4.13 30.02 160.66M 4.12M
Ours 4.14 25.95 160.66M 4.12M

Oculus Quest 2), 90◦(as in Hololens 2). We have tested
the results on a model trained on hands with full visibil-
ity, denoted as ’Full visibility,’ as well as fine-tuned models
with random hand masking using a probability p = 0.2 as
proposed in FLAG [7] (denoted as ’Random Masking’ or
’RM’), and our realistic FoV modeling (denoted as ’Ours’).

Table 3 and Figure 5 present the numerical and visual
results of models trained with different strategies. When
testing the performance in various FoVs using the default
model that assumes hands are always visible during train-
ing, we observe two main trends. Firstly, as the FoV be-
comes smaller, the position error MPJPE increases. This
is intuitive since a smaller FoV means there are more
chances that hands are outside the FoV, making the prob-
lem more challenging. Secondly, with a smaller FoV, the
velocity error MPJVE initially increases and then decreases.
This trend can be explained by when FoV is 180◦or 120◦,
switching between going out and coming back into the FoV
can cause strong discontinuity in predictions. When FoV is
even smaller, the hands are always outside the field of view,
having a smoother but less accurate predictions.

While the random hand masking strategy can improve
results, our realistic FoV modelling strategy sets the visibil-
ity status based on the actual position of the hand relative
to the head, and captures the real temporal dependencies of

hand visibility. Consequently, it achieves the best perfor-
mance in terms of both position accuracy and smoothness.

Size-Aware Pose Estimation. We evaluate the perfor-
mance of size-aware pose estimation on the same test data
as Table 1 from AMASS dataset but with the true shape
parameters β. This test set includes over 175 subjects
with heights ranging from 145 to 207 cm. As indicated
in Table 4, the model trained using the mean body shape
achieved a mere 6.36cm in MPJPE. Moreover, the average
error pertaining to body dimensions, such as height and arm
length, exceeds 7cm. These discrepancies arise from an in-
accurate shape representation, consequently giving rise to
issues like ground penetration (GP) and foot floating (FF).

Conversely, as our first solution, data augmentation (DA)
with ground truth body shapes and subsequently re-scaling
the standardized model output by a body size factor ob-
tained via T-pose calibration reduced the MPJPE to 5.26
cm. It also led to considerably enhanced performance
across various metrics concerning body sizes and motion
artifacts. Furthermore, our calibration-free size prediction
approach yielded further improvements in both MPJPE and
mean vertex error, while delivering comparable outcomes
in metrics related to body sizes and motion artifacts. The
size prediction method performs better for MPJPE and ver-
tex error because our model can uncover the latent corre-
lation between human size and shape. Calibration works
slightly better for arm length and height as they are directly
measured. A visual comparisons to show the importance of
size-aware pose estimation can be found in Figure 6.

4.4. Ablation Studies

We make a through ablation studies to show the effec-
tiveness of each proposed component. It should be noted
that different strategies for FoV-aware pose estimation and
size-ware pose estimation have already been discussed Ta-
ble 3 and Table 4 in previous section.

Ablation studies for different strategies for global mo-
tion decomposition are presented in Table 5. Mean nor-
malization refers to the operation of removing the mean
value of each component of all features, or only horizon-
tal features, or horizontal and vertical positions, across the
window. Spatial Normalization (Horizontal + Vertical Po-
sitions) denotes the method of subtracting the 3D position
information of the head from all the inputs, while (Hori-
zontal Positions) denotes that this subtraction is only ap-
plied to horizontal translation. The results reveal that retain-
ing vertical information leads to significantly better predic-
tions. We also showed results of applying temporal normal-
ization only. Our GiL motion decomposition method com-
bines temporal normalization and spatial horizontal normal-
ization, resulting in the best performance.

Table 6 shows ablation studies for the SlowFast design,



which demonstrates that our design can improve the results
without increasing the model size or computational cost.

4.5. Test on Real HMD devices

To assess the robustness of our method on real-world
data, we executed our algorithm on streaming data from
Meta Quest 2. We use a custom framework based on
Velt [12] and Unity to interface with the VR system to han-
dle communication. As shown in Figure 6, EgoPoser have
better foot contact than AvatarPoser because of the accurate
output size representation. More results can be found in the
supplementary videos.

 User with Quest 2  AvatarPoser  EgoPoser (Ours)
Figure 6. A visual comparison between AvatarPoser and Ego-
Poser on a real VR system. EgoPoser have better foot contact
because of the accurate body size representation.

5. Conclusion

We have proposed EgoPoser, a novel systematic ap-
proach for 3D full-body pose estimation based alone on the
tracking information on contemporary Mixed Reality head-
mounted devices. We address the challenges existing ef-
forts face using such platforms, specifically scaling robust
estimations to arbitrary real-world settings, handling hands
even when they are outside the field of view , and robust-
ness to varying body dimensions. EgoPoser achieves new
state-of-the-art performance for accurate motion estima-
tion under these challenging circumstances by combining
our novel Global-in-Local motion decomposition method,
SlowFast fusion strategy, robust field-of-view modeling,
and size-aware pose estimation method. We believe that
our proposed strategies can significantly contribute to the
advancement of 3D full-body pose estimation and its inte-
gration into various VR/AR applications.
Acknowledgments: We sincerely thank Andreas Fender
for data recording and manuscript proofreading.
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[25] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger,
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