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ABSTRACT

Redirected Walking (RDW) is a common technique leveraged to
allow real walking for exploring large virtual environments in con-
strained physical tracking spaces. Effective RDW is challenging
due to its complexity and disturbance factors (e.g., spontaneous user
behavior). Existing techniques range from combinations of simple
motion scaling to more elaborate curvature injections and reactive,
predictive, or scripted steering concepts. However, many of these
approaches were evaluated in simulation only, and researchers ar-
gued that the findings would translate to real scenarios to motivate
the effectiveness of their algorithms. Using the Redirected Walking
Toolkit and its virtual path generator, a randomized waypoint-based
path generator has been common practice, although its built-in sim-
plifications assume sequential user behavior regarding translation
and rotation.

In this paper, we argue that pure simulation-based evaluations
employing such simplified path generators require critical reflection.
We demonstrate RDW simulations that show the chaotic process
fundamental to RDW, in which altering the initial user’s position
by mere millimeters can drastically change the resulting steering
behavior. This insight suggests that RDW is more sensitive to the un-
derlying data than previously assumed. Thus, we rigorously analyze
the influence of commonly used synthetically generated paths on
multiple state-of-the-art steering concepts and compare them against
previously recorded real paths.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality

1 INTRODUCTION

Real walking is considered the most natural and intuitive kind of
locomotion in virtual reality [34]. However, it still remains challeng-
ing to explore infinite virtual environments (VEs) in limited physical
spaces while allowing users to really walk.

Guiding physical walking through redirected walking (RDW),
introduced by Razzaque et al. [27, 28], mitigates the challenges by
exploiting human reliance on visual stimuli over others. Developing
a general solution, however, is subject to active research. RDW
induces certain, mostly visual, manipulations to lead a user to sub-
consciously adjust their real, physical motion to compensate for
potential visuo-vestibular mismatches. In ideal cases, users can
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be infinitely “redirected” onto a circle while they believe they are
walking a straight path.

RDW approaches fall into three categories: reactive [14, 28],
predictive [21, 40], and scripted [3, 37]. These categories describe
how the respective steering algorithm, also called RDW controller
in other literature, takes the VE into consideration. A steering
algorithm follows a predefined steering concept and determines how
the redirection is applied to the individual user in each frame. For
example in the case of a scripted RDW approach, these steering
algorithms can be optimized since the user’s path through the VE
is given, i.e. scripted. As long as the user strictly follows this
predefined path, the optimized steering algorithm safely guides the
user through the limited physical space. Reactive RDW approaches
do not evaluate the VE, but determine the redirection only from
the user’s current state (i.e., position and heading) in the physical
environment. In predictive RDW approaches, the user’s behavior and
virtual states are used to estimate a prediction of where the user might
travel to. This prediction (i.e., a predicted state or even a complete
path) is then overlaid to the physical space to adjust the redirection
to guarantee a safe, collision-free exploration. Whereas scripted
RDW approaches can be optimized for each virtual environment,
both reactive and predictive concepts are still subject to active and
fundamental development.

Novel steering concepts are being proposed in rapid succession,
but many of these have been evaluated solely in simulation. While
simulation was not initially intended to be representative of real
user performance, but rather in a comparative manner to efficiently
measure relative performances when using different steering con-
cepts, it has become one of the default validation procedure for
RDW techniques. However, evaluations on simulation performance
by default omit any kind of subjective perspective such as simu-
lator sickness [16], user exhaustion [12], age [15], or gender im-
plications [23]. Therefore, even when RDW protocols are closely
followed during evaluation (e.g., using imperceptible redirection
gains [29]), the steering concept that performs best in simulation
may still be rejected by real users in the worst case, which diminishes
the algorithms practical value.

The simulations used for evaluation in related efforts are often
derived from the Redirected Walking Toolkit (RDWT [4]) due to its
availability and versatility. The RDWT is a comprehensive simula-
tion environment for RDW with many built-in steering algorithms
and includes a simulated walker that follows specific exploration
patterns (e.g., building navigation) created by a virtual path gener-
ator. However, the implementation of this randomized waypoint-
based path generator simplifies human locomotion to sequential
translations and rotations. These simplifications, therefore, neglect
important human traits of navigating in new environments, resulting
in unnatural polygonal walking trajectories.

In this paper, we address the discrepancy between commonly used
simulation-based validation using synthetic paths and recorded paths
from real users. We first investigate the effect of just slight varia-



tions in starting position or heading on simulations and demonstrate
that these can result in seemingly random simulation outcomes of a
single path, even though all other conditions remained identical and
steering algorithm and gain restrictions remained unchanged. We
conclude that the behavior of such simulations qualifies as chaotic,
which describes dynamic systems with seemingly random states of
irregularities and disorder which are actually governed by under-
lying patterns, highly sensitive to initial conditions [6]. Based on
this insight, we quantify the difference in outcomes of simulated
performance between the synthetically generated paths and the paths
recorded in real user studies. We show the sometimes drastic differ-
ences between the synthetic paths and the paths recorded in real user
studies in terms of common RDW evaluation criteria such as meters
per reset (also called distance between resets in other literature).

Following these simulations, we lay out why simulation results
that purely rely on synthetic user paths should be interpreted with
caution. At the example of several kinds of user paths, synthetically
generated or previously recorded in user studies, we discuss the
impact of RDW steering algorithms and tracking space sizes on the
outcome. We further highlight the steering concepts that are partic-
ularly prone to misleading results in simulation when compared to
real user paths and conclude our findings with recommendations on
handling RDW evaluations in the future.

We note that the goal of our work in this paper is in no way to
question other contributions or approaches in the field. Our intention
is to add to the growing body of work and analysis of how delicate
and sensitive RDW is to effects that occur during real user tests.
Our second goal is to show that validation based on simulation
alone may result in a loss of real-world relevance to a certain extent.
Simulation-based validation has a clear importance and effectively
supports smooth development, rapid prototyping or the collection
of large-scale data. For these reasons, simulation will stay relevant
as the field of RDW matures, however deriving better and more
realistic locomotion models that grasp humans walking nature will
greatly enhance the weight such simulation are able to generate.
With our results, we hope to encourage researchers to extend their
evaluation of new steering concepts to user studies in order to gain a
more comprehensive understanding of an algorithm’s performance
in real conditions with real users.

2 RELATED WORK

Following Suma et al.’s taxonomy [31], manipulations applied in
RDW are broadly classified into discrete and continuous, overt
and subtle, and reorientation and repositioning. In most RDW ap-
proaches, these so-called redirection techniques are chosen from two
specific classes: continuous, subtle reorientation and -positioning in
normal situations, and continuous, overt reorientation for collision
avoidance. Here, a normal situation infers a safe physical environ-
ment for the user, meaning that there is no danger of collisions of any
kind. Accordingly, this first class of continuous, subtle reorientation
and -positioning is applied for the major part of the exploration of
a VE, usually consisting of curvature, rotational and translational
gains as base redirection techniques. Whereas rotational and trans-
lational gains scale the respective motion of a user, the curvature
gain induces a slight rotation around the user’s yaw while they are
walking, to nudge them towards a real-world curve while following a
straight path in the VE. More details on redirection techniques can be
found in the comprehensive reviews by Langbehn & Steinicke [17]
and by Nilsson et al. [24].

In case users walk too close to a boundary of the physical environ-
ment or are endangered of colliding with physical objects or other
users, collision avoidance is activated and users are instructed to
follow a reset procedure [5,20,25,32,35]. Resets stop a user’s contin-
uous motion by instructing them to follow certain motion patterns to
reorient or -position them in safe conditions in the real environment.
None of the three initially introduced approaches are in common use

nowadays due to their situational inflexibility, but the 2:1-reset (R21)
remains most notable. Instead of its original definition, researchers
now use simple implementations such as reset to center (R2C), reset
to gradient (R2G), or the more complex modified reset to center
or step forward reset to gradient [32], which also take non-convex
tracking spaces into consideration. Since we only simulated convex
tracking spaces, we limited our considerations to R21, R2C, and
R2G, which ask the users to stop and spin in place. When the reset is
triggered, the user’s real state is taken as an input and a reset vector
is determined. For R21, the reset vector is defined by the inverse of
the current heading direction. For R2C, the vector points towards the
center of the tracking space. For R2G, the vector used for the reset
is determined by the concept of artificial potential fields (APFs),
which is discussed more in detail later on. While the user follows
the spinning instructions, a rotational gain is applied reorienting the
user such that they spin 360◦ in the VE, but are aligned with the
reset vector in reality after the reset is completed.

Steering Algorithms

Scripted steering algorithms in RDW require a predefined virtual
path and are not applicable more generally [3]. For this reason, we
do not consider them in this work.

In contrast, reactive steering algorithms have become popular due
to their versatility and most recent capability of handling multiple
users in the same real tracking space [5]. The three approaches
initially introduced are steer to center (S2C), steer to orbit (S2O),
and steer to changing targets [27]. S2C, similar to R2C, always aims
at steering the user towards the center of the tracking space. S2C
comes with an unwelcome oscillation behavior of the steering algo-
rithm whenever a user faces straight towards the center but slightly
veers around the redirection vector (i.e. the vector connecting the
user to their redirection target) provoking a strong shift between the
gains. Additionally, passing straight through the center of the track-
ing space requires massive gains to readjust the user back towards a
heading direction aligned with the redirection vector. S2O mitigates
these issues and redirects the user on a circular orbit with the origin
in the center. Alternatively, steer to changing targets directs the user
to multiple different, strategically distributed targets in the physical
room. While both S2O and steer to changing targets address parts
of S2C’s issues, studies show that they could not outperform S2C
over longer time periods [14, 27]. As a result, S2C has become a
generally accepted reference for steering algorithm validation.

More recent reactive approaches follow the concept of APFs, such
as P2R [32] and APF RDW [5]. They represent the real tracking
space by a potential field, assigning dangerous areas a high potential
(e.g., close to a boundary), while free open space is considered safe
and thus holds a low potential. Since APFs cover the whole tracking
space, the user always moves within this representation. By design,
APFs are differentiable at all positions, such that regardless of the
user’s position, the gradient points to an area with a lower potential,
thus providing an easy-to-follow redirection vector. APFs bypass the
previously prevalent simplifications of convex tracking spaces and
single-user operation for RDW, scale to any tracking space shape,
and can also superimpose dynamic obstacles (e.g., a second user).
For consistency purposes, we refer to APF redirection using steer to
gradient (S2G) in the remainder of this paper.

Predictive steering algorithms are rarer in literature than reactive
steering algorithms due to the complexity of their implementation.
Early predictive approaches (e.g., RFED [26]) only relied on pre-
dicting the user’s future path based on a skeleton graph and their
walking direction. Later approaches have pursued more complex
core concepts. For example, FORCE uses constrained VEs and
follows a skeleton graph consisting of edges for straight paths and
nodes in crossings [40]. Each possible pathway is then considered
as a prediction candidate and a discrete set of redirection gains is
employed for distortion. For each node and edge, the set of gains
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Figure 1: The RDWT can generate different synthetic path types: (a)
Straight, (b) Small Exploration, (c) Large Exploration, and (d) Building
Navigation. Synthetic paths are built from way-points with straight
connections, and rotation-in-place at each way-point.

is applied resulting in a multitude of final states, which can be eval-
uated to identify a score. This score is determined by the distance
a user could continue to walk in a straight line without colliding
with any kind of physical boundary. Finally, the best score then
defines the redirection to be applied to the moving user. On the other
hand, MPCRed follows Bellman’s principle of optimality and recur-
sively evaluates the optimal redirection gain based on a cost function
consisting of reset, redirection and collision costs [21]. However,
MPCRed also relies on constricted VEs to simplify calculations.

So far, most predictive approaches have been restricted to single-
user experiences while exploring constrained, static VEs. Few ap-
proaches combined predictive RDW with multiple users in the same
tracking space. For example, Hirt et al.’s proposed concept builds on
predictive APFs and optimality [13]. Dong et al. presented dynamic
APFs that superimpose users’ assumed-to-be constant motion to
influence the redirection vector [8]. This approach creates predicted
safe zones in the tracking space, towards which users can be redi-
rected. Lastly, Lee et al. introduced steer-to-optimal-target [18] as
an algorithm comprising a simple steer-to-target steering algorithm
(i.e. similar to S2C) and a deep Q learning network. They integrated
real user paths to derive model parameters of their artificial neural
network, which they then applied to identify where a predicted user
target optimally lies. They later expanded on their findings and
presented multi-user-steer-to-optimal-target [19], applying again a
steer to target algorithm but enhanced with a D3QN artificial neural
network.

More recently, researchers have proposed other learning-based ap-
proaches (e.g., S2L [30]) or alignment concepts (e.g., [33,36]). Both
have not demonstrated a predictive nature yet, but show potential for
development towards this direction.

3 METHODOLOGY

We now outline the simulations that we investigate and compare
to empirical results. We first provide an overview of the RDWT
and the diversity of synthetically generated paths and then introduce
our modifications to enable simulating real user paths. Finally, we
discuss performance measures that are common in literature.

3.1 Redirected Walking Toolkit

Our simulation tool builds on Azmandian et al.’s RDWT [4], con-
taining template classes for redirectors and resetters that implement
steering algorithms and resets, respectively. Additionally, the toolkit
provides popular steering algorithms such as S2C and S2O that can
be used as baselines. Both steering algorithms (i.e. S2C and S2O)
are used without alteration to the initial implementation.

Figure 2: A selection of real walking trajectories from different user
studies shown at different scales. Users completed different tasks e.g.
traversing a maze, unguided search, exploration, and more.

During deployment, redirectors and resetters get access to the
current physical state in the tracking space and act as an abstraction
layer that converts physical coordinates into virtual coordinates.
During development, this physical location is usually not readily
available. Thus, the RDWT also provides a simulated walker acting
as a replacement of a real user.

The simulated walker follows a procedurally generated random
synthetic path that emulates different types of virtual walking trajec-
tories. These paths are generated at runtime and consist of a set of
virtual way-points connected by straight paths. The toolkit offers
multiple types of locomotion behavior as seen in Fig. 1. The four
path types—Straight, Small Exploration, Large Exploration, and
Building Navigation—consist of a section of straight path with a
constant velocity, followed by a rotation in place with a constant
angular velocity. The simulated walker’s heading is thus always
facing in the current walking direction and there is no explicit inter-
action between the simulated path and the redirector (except for an
automated rotation inserted when a reset procedure is in progress).
Depending on the type, the length of straight paths and each rotation
angle are differently randomized.

3.2 Simulating Real Trajectories: A Collected Dataset

Although the different synthetic path types offer some variety, all
greatly differ from the natural behavior of a real user walking in a VE.
Such differences include acceleration and deceleration, independent
heading and walking directions, perturbations of paths caused by the
natural veer of the center of gravity while walking, strafing behavior,
curved trajectories, and others. Instead of modelling these and other
nuances as part of the path generation process, we make use of
the vast amount of already available data in the form of real user
paths recorded in previous user studies. These paths are inherently
more realistic than fully synthetic paths and, thus, hold promise for
improving the accuracy of RDW simulations.

We collected walking trajectories from more than 20 different
user studies on RDW involving more than 800 participants. VEs and
tasks varied widely in these studies and subsequently the trajectories
represent a variety of path types, but the VEs in which the trajectories
were recorded in can still be roughly allocated to the four synthetic
path types previously introduced, thus ensuring comparability. Over-
all, our collected dataset contains more than 30 000 individual path
segments, where multiple segments can originate from the same user
in different parts of a study. To get meaningful redirection results,
we prune this raw dataset to only contain path segments of sufficient
duration and path length. In our case, we filtered for a minimum
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Figure 3: Redirection artefacts from subtle discrete redirection tech-
niques as shown in (a) are removed by linear interpolation in a small
region around the discontinuity (b).

Path Type Segment Length Rotation Angle

Small Exploration U(0.2m,1m) U(−π,π)
Large Exploration U(1m,3m) U(−π,π)
Building Navigation U(1m,3m) −π/2 or π/2

Table 1: Parameters used for synthetic path generation where U(a,b)
is the uniform distribution between a and b.

duration of 60 s and a minimum path length of 40 m, leaving more
than 32 km of real and unique walking trajectory segments. Each tra-
jectory segment is treated as an independent experiment without any
chaining of segments. This ensures that no additional path artefacts
emerge from stitching multiple path segments together. A selection
of different path segments is shown in Fig. 2.

We sourced virtual user paths instead of the physical paths where
possible. Thus, paths are not bound by the study’s physical tracking
space, but the raw paths also contain redirection artefacts, such as
resets and discontinuities from subtle discrete redirection techniques.
We addressed this through filtering and removed all resets and other
artefacts. Discontinuities in position and yaw are detected by a
threshold on the instantaneous linear and angular velocity. The dis-
joint path segments are then joined at the discontinuities by linearly
interpolating the tail and head of the two disjoint segments as shown
in Fig. 3. Resets are detected by finding full virtual rotations limited
to a small area. The removal procedure of these resets is the same as
for instantaneous discontinuities, but with a slightly larger region of
influence for the interpolation.

For each path segment in the collected dataset, we generate a set
of equivalent synthetic path segments. Equivalent path segments are
characterized by an equal duration and equal average walking veloc-
ity. These metrics are calculated on a per-path basis on the dataset of
real path segments.In essence, we generate for each synthetic path
type a total of 32 km of equivalent path segments. Other parameters
used during the path generation step are listed in Table 1.

3.3 Real Paths in the Redirected Walking Toolkit
In order to simulate RDW with real paths in our analysis, we replaced
RDWT’s runtime synthetic path generation with a more versatile
movement simulator. This simulator can input any prerecorded
path drawing from our collection above into the simulation. Our
approach therefore does not only allow simulating real trajectories
from previous studies, but also maintains the compatibility with the
synthetically generated path types as described above. It also allows
future research to compare observed trajectories with synthetic paths
in simulation.

3.4 Performance Measures
To be able to compare different steering algorithms, we define mea-
sures that reflect an algorithm’s performance. We model our mea-
sures based on the primary goals of RDW: ensuring user safety and
increasing user presence, as RDW’s purpose is supporting natural
locomotion for increased presence in a VE [27]. For presence, we
use the mean virtual distance between resets to quantify a steering

Tracking Space

6m

6m

Figure 4: Exemplary result: 100 simulations of the same path with
slightly different initial conditions. The starting position and orientation
in the center of the tracking space are randomly offset by just ±0.5cm
and ±0.5◦. The initial few meters of the diverging paths are shown in
red, crosses mark the final position after the simulating the full 180m
path, a single path is highlighted in black.

algorithm’s performance. For user safety, we use the mean distance
to the closest wall to quantify its performance, similar to Engel et
al. [9] in their gain identification. Using the mean distance between
resets over the number of resets has the benefit of normalizing over
the path length. Additionally, the mean distance between resets also
provides a more intuitive overview of the performance of steering
algorithms compared to mean time between resets, since it accounts
for the velocity of a user as well (e.g., when a user is standing still).

4 RESULTS & DISCUSSION

We run extensive simulations for an in-depth examination of RDW
behavior and performance comparison of individual steering algo-
rithms under diverse conditions.

4.1 Chaotic Behavior of Redirected Walking

In a pre-study simulation, we test the influence an initial state has on
the outcome of a simulation. Whereas we acknowledge the micro-
scale experiment conducted by Azmandian [3], in which he analyzed
the variance of end positions for different users with different unique
redirection techniques, we wish to delve deeper and highlight the
RDW’s high sensitivity to slight deviations while freezing all bound-
ary conditions except for the initial state. Accordingly, we take a real
180m path from our dataset, use a combination of S2G and R2G for
redirection and simulate in a 6m × 6m tracking space. We simulate
the path 100 times, where the only difference between simulations is
the initial position and orientation which were chosen uniformly at
random between ±0.5cm and ±0.5◦ from the center of the tracking
space, respectively. The start of all redirected paths is shown in the
center of Fig. 4 where we can observe that the paths start to diverge
from each other already in the first few meters. The final positions of
the simulations (marked by “×”) are spread over the entire tracking
space. One reason for this diversity in the final state are situations
where one path narrowly misses the reset boundary while another
path does not. Such a situation is highlighted in black in Fig. 4
where the black path requires to reset on the right wall, leading to a
completely independent course of redirection actions from that point
on-wards. Notably, these discrepancies between simulations occur



Steering Reset Tracking Path
Algorithms Techniques Spaces Types

NULL R21 4m×4m Real
S2C R2C 4m×6m Straight
S2O R2G 4m×8m Small Exploration
S2G 6m×6m Large Exploration

6m×8m Building Navigation
8m×8m
8m×10m
8m×12m
10m×10m

Table 2: Conditions used for the main simulation study. Each combi-
nation of these conditions is simulated. NULL denotes no redirection.

while redirection gains are always limited within the imperceptibility
thresholds as proposed by Steinicke et al. [29].

We repeated this simulation for multiple paths of similar lengths,
resulting in the same characteristics, therefore these results suggest
that RDW is a chaotic process which is very susceptible to even
slight changes in the input data. We do understand that such final
positions of paths are by no means pertinent performance criteria
for RDW, but we wish to emphasize how prone RDW is to such a
butterfly effect, resulting in vastly different paths based on simple
and small deviations of data. So far, we only showed how altering
initial conditions can influence the redirection’s behavior, but it
is not clear how entirely different path types might influence the
performance of different steering algorithms.

4.2 Simulation
Given these observations, we run an extensive simulation in which
we simulate different steering algorithms, with different real and
synthetic paths, in a selection of different tracking spaces. The full
list of simulation conditions is listed in Table 2.

Each unique combination of conditions is simulated on all 32 km
of every path type. Since we observed chaotic behavior in the
pre-study, we randomized the initial positions and simulated two
different starting points for every path. The randomization was care-
fully crafted with a fixed seed, such that each steering algorithm had
the exact same initial conditions for every path. To ensure the sub-
tlety of the redirection techniques, we again followed the gain values
proposed by Steinicke et al. [29]. In total, we performed approxi-
mately 200 000 individual simulations which equates to simulating
approximately 35 000 km of RDW.

Reset Performance To present the simulation results, we
jointly plot the mean distance between resets dreset against the mean
distance to the closest wall dwall , showing marginal distributions
of each variable as seen in Fig. 5 in which we visualize the perfor-
mance of reset techniques. In this plot, each individual simulation is
represented by a single dot. Isolines and the marginal distributions
help to distinguish the relative density of dots. Since a good RDW
algorithm is characterized by large distances between resets as well
as large distances to walls, the top right corner of this plot signifies
good performance. Thus, Fig. 5 shows that R21 performs worse than
R2C or R2G, which both seem to be equivalent. This is to be ex-
pected, since R2C and R2G ought to behave similarly in the case of
a square, convex tracking space. To verify these findings we perform
a pair-wise multivariate Wald-Wolfowitz test [11] which reveals that
R21 performs significantly different from both R2C (W =−11.214,
p < 0.05) and R2G (W =−10.592, p < 0.05), while R2C and R2G
appear to have a similar distribution (W = 0.701, p = 0.7585).

Tracking Space Performance As another verification of our
simulations, we plot the performance of S2G paired with R2G on
real paths for each tracking space in Fig. 6. In essence, this plot is

Reset Technique

R2G
R2C
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Figure 5: Performance comparison between reset techniques. Each
dot represents a single simulated path. Isolines and marginal distribu-
tions aid in showing the relative density of dots. The top right corner
of this plot represents good performance: a large distance between
resets and a large distance from walls. All simulations shown here
use S2G and were simulated with real paths in a 6m×6m tracking
space. While R2C and R2G are very similar in terms of performance,
R21 is noticeably worse.

equivalent to the top marginal distribution from the representation
in Fig. 5. As expected, dreset increases together with the size of
the tracking spaces. Additionally, the standard deviation of the
distribution grows with the size of the tracking space. This means
that the spread of dreset between individual simulations increases
with the tracking space size.

Steering Algorithm Performance Comparing the performance
of different steering algorithms on real paths in a 6m×6m tracking
space reveals that S2O only slightly improves dreset over no redirec-
tion (i.e. NULL) as seen in Fig. 7. Apparently, S2O achieves this by
sacrificing dwall which is somewhat reduced. S2C and S2G perform
similarly and both clearly outperform NULL in both performance
measures. A pair-wise multivariate Wald-Wolfowitz test confirms
these findings, showing that NULL and S2O are significantly differ-
ent from all other steering algorithms (all p < 0.05) while S2C and
S2G appear to have similar distributions (W =−1.252 , p= 0.1052).

Ideally, the performance distributions for each steering algorithm
on the different synthetic path types should closely match the result
from Fig. 7. If this were the case, we could safely use generated
paths to estimate a steering algorithm’s performance on real paths.

But if we plot the same data for each synthetic path type, as shown
in Fig. 8, we observe that these distributions are severely distorted
compared to Fig. 7. This means that not all steering algorithms
perform equally well on real or any of the synthetic paths. Please
note that these plots do not share axes, which needs to be considered
when interpreting the results.

Not only are there notable differences from real to synthetic, but
also large differences among the synthetic path types. Steering
algorithms seem to struggle with Straight paths, where dreset is
relatively small compared to real paths, while they perform much
better on Small Exploration paths. For example, dreset for S2G/R2G



Figure 6: Performance comparison between tracking spaces. As
the tracking spaces increases, so does the distance between resets.
Shown are results from the subset of simulations using S2G and R2G
on real paths.

nearly doubles when simulating Small Exploration paths compared
to real paths.

Real vs. Synthetic Paths To further investigate the influence
a given path type has on performance metrics, we take a closer look
at S2G in various tracking space sizes. In Fig. 9, we plot the perfor-
mance broken down to the different path types for multiple tracking
spaces using S2G and R2G. As expected, none of the synthetically
generated paths behaves similarly to the real paths. Even though the
differences between path types are less distinct for larger tracking
spaces, the distribution of performance measures of each group is
still clearly distinguishable. A multivariate Wald-Wolfowitz test
confirms that all pair-wise comparisons are significantly different
(all p < 0.05) in all tracking spaces shown. Interestingly, in most
cases, the steering seems to be more effective on synthetic paths.
Especially dreset is often much larger for synthetic paths. This might
be due to the fact that these synthetic paths contain a lot of rotations
in place which are practically completely missing in the real dataset.
During these rotations, S2G can apply rotation gains which are
more effective than curvature gains within the detection thresholds.
Although not shown here, these differences are not limited to this
specific reset technique and steering algorithm.

Real vs. Accumulated Synthetic Paths Following the tenden-
cies shown in Fig. 8 and Fig. 9, we further emphasize the discrepancy
between real and synthetically generated user paths by summarizing
all synthetic paths into one representation (see Fig. 10). Again, if
the two path types were similar enough to represent each other, the
resulting distributions should closely match. However, even though
some peaks may seem close, the overall distributions vary consider-
ably and the result thus yields a misleading performance comparison.
This observation is further confirmed by performing a pair-wise
multivariate Wald-Wolfowitz test that shows that the distributions
are significantly different (W =−27.635, p < 0.05).

Distance between Resets Fig. 11 further accentuates the
relative performance differences of steering algorithms on different
path types using dreset . The figure shows the mean and standard
deviation of the reset distance for every combination of steering
algorithm and path type, which confirms a strong influence of path
types on performance. The first two columns again underline the
main inconsistencies between real and synthetic user paths, divided
into the different synthetic path types towards the right. Without
redirection, dreset is fairly similar for all path types. But especially
for S2G and S2C, the performance varies considerably. As a result,
simulations on synthetic paths inflate S2C’s and S2G’s capabilities
severely.

Finally, we show a complete overview of our simulation results
in Fig. 12. It visualizes redirection performance of each steering
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Figure 7: Performance comparison between steering algorithms.
Each dot represents a single simulation. All simulations shown here
use R2G and were simulated with real paths in a 6m×6m tracking
space. The top marginal distribution indicates lower average distance
between resets for S2O and NULL compared to S2C and S2G. Simi-
larly, the average distance to the closest wall is lowest for S2O and
NULL, visible in the right marginal distribution. Overall, S2O only
slightly outperforms NULL while S2C and S2G manage to outperform
NULL and S2O in both metrics. S2C and S2G perform similarly.

algorithm, with every path type for every tracking space. Once
again, the synthetic paths are unable to accurately predict redirection
performance for real paths and leaves room for misjudgement and
misinterpretation.

5 CONCLUSION & FUTURE WORK

In this paper, we investigated simulation-based approaches in RDW
steering algorithm validation. In a pre-study simulation, we demon-
strated that RDW is a chaotic process and that just marginal alter-
ations to initial conditions can already have drastic effects on the
redirection and the resulting user path. Furthermore, we evaluated a
total of approximately 35,000 km paths in more than 200,000 indi-
vidual simulations to investigate multiple implicit assumptions that
have been part of related approaches.

Our simulations in this paper confirm established facts in the
RDW literature, which also validates our simulation environment.
Among others, we showed that the resetters R2C and R2G out-
perform R21, that increasing the tracking space size improves the
steering algorithms’ performance, and that S2C and S2G slightly
outperform S2O and NULL redirectors.

However, comparing the performance distribution of the steering
algorithms between real paths (Fig. 7) and synthetic paths (Fig. 8),
we revealed notable distinctions in the performance of the redirec-
tion. Pursuing these observations, we simulated the exemplary pair
of S2G/R2G in multiple tracking spaces on all five path types and
demonstrate that the different properties of the path types create a
larger discrepancy in the results than previously assumed ( Fig. 9).
The performance of the pair S2G/R2G should be consistent over the
real and synthetic paths to ensure comparability, however, none of
the synthetic paths manages to grasp the real path’s traits and thus



Steering Algorithm

S2G
S2C
S2O
Null

(a) Straight

Steering Algorithm

S2G
S2C
S2O
Null

(b) Small Exploration

Steering Algorithm

S2G
S2C
S2O
Null

(c) Large Exploration

Steering Algorithm

S2G
S2C
S2O
Null
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Figure 8: Performance of different steering algorithms on synthetic data broken down by path type. Shown are simulation results from all steering
algorithms using R2G in a 6m×6m tracking space. Please note the different axis scales between plots.
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(a) 4m×4m tracking space
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(b) 6m×6m tracking space
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(c) 8m×12m tracking space

Figure 9: Performance of different path types in three different tracking spaces. Shown are simulation results from the subset of simulations that
used S2G and R2G. In all tracking spaces, we can clearly see the performance difference between path types shown by the differences in the
distributions. In general, dreset is typically overestimated when simulating with synthetic paths. The same holds true for dwall . Especially for small
tracking spaces, Straight paths lead to a much higher average dwall . The low standard deviation from Straight path stems from the fact that all
simulated paths simulate the exact same path with the only difference being the initial configuration and the overall path length. Since the resulting
distributions for Small Exploration paths in the two larger tracking spaces are extremely flat, we cannot draw any meaningful isolines.

all result in significantly different performance distributions. Fur-
thermore, evaluating the steering algorithms solely on such synthetic
paths may potentially create misleading or even faulty results since
these fail to grasp the true nature of human locomotion. For exam-
ple, as emphasized in Fig. 11, S2G outperforms S2C significantly in
most synthetic settings, but performs similarly on real paths.

With the presented work, we confirmed the usefulness of testing
RDW approaches on real user data. While validations through such
studies have waned in recent years in favor of simulation through
powerful tools, our paper offers evidence that simulated paths are
not always fully representative of real human paths. Indeed, even
just small discrepancies may distort RDW results to a large extent.
Even if prerecorded user paths are used as input, simulation alone
may result in a loss of reality to a certain extent, because simulation
cannot conclusively model users’ reactions to RDW.

With our results, we hope to inspire future research on the sensi-
tivity of RDW to slightly altered data and the effect of differences
between synthetically generated paths and real user recordings. We
also highlight that human behavior specifically evoked by RDW
needs more investigation to enhance simulation environments. First
attempts in this direction exist. For example, Nguyen et al. stud-

ied gain compensation [22], which essentially describes humans
adjusting to redirection gains after some exposure time. Finally, we
note that previously recorded user paths may not sufficiently qualify
for pure simulation-based validation, because of the influence of
online RDW on a user’s perception and behavior. Since this potential
change in behavior may lead to different performance distributions
due to the sensitivity of RDW approaches, further research needs to
investigate the conditions under which real paths can be adopted for
simulation.

Alternatively, the set of commonly used synthetically generated
user paths should be extended and reorganized considering already
established human locomotion models and more realistic path seg-
ments should be added. For this goal, Fink et al. already derived
second-order differential equations describing human walking behav-
ior [10], while Arechavaleta et al. discussed potential approaches em-
ploying a system of differential equations with a cost function [1, 2].
Later, Cirio et al. [7] introduced Euler integration for continuous
positional updates, and Zank & Kunz [38, 39] created a set of ex-
pected virtual trajectories based on points of interests in the VE. But
eventually, the question remains, how well simulation-based results,
even with drastically improved input data (may it be synthetic or
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Figure 10: Performance comparison between path types. We show
the results over the exemplary subset of simulations with R2G in a
6m×6m tracking space using S2G for steering. Synthetic represents
all types of synthetically generated paths combined.

Figure 11: Mean distance between resets dreset broken down by steer-
ing algorithm and path type. The first two columns describe the direct
comparison between real and synthetic user paths, whereas synthetic
paths are further differentiated towards the right. We show the mean
over the subset of simulations with R2G or R2C resets in the 8m×8m
tracking space.

real), can be extrapolated to real users without rigorous testing.
Additionally, the effect of a reset procedure requires more in-

depth investigation in future work. In our simulations, we assumed
resets to be conducted perfectly and without veering, strafing or
other disturbances. In reality, however, we observed users’ tendency
to reset uncleanly in various studies. Some users even stumbled
slightly, which may cause another considerable source of influence
on the redirection. This raises further questions on how such unclean
behavior can be modeled more or less realistically in simulation, for
example by inducing random perturbations during resets.

Finally, we hope that through our analysis in this paper, we con-
vincingly demonstrated the importance of rigorous testing of newly

proposed steering algorithms since RDW is such a sensitive process.
Even though simulations may seem promising at first, inferring that
steering algorithms’ performances translate to real scenarios should
be considered critically and an empirical validation should always be
contained in the development pipeline for new steering algorithms.
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Figure 12: Simulation results for all steering algorithms, path types, and tracking spaces. Even though all synthetic types show the expected
characteristic of improved redirection performance with increasing tracking space, they still do not strictly adhere to the real user paths.
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