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Figure 1: We present PressurePick, a wearable device that unobtrusively records pressure on a guitar pick in order to estimate
muscle tension. a) First, the learner uses our PressurePick device while practicing a song. b) Based on the recorded pressure
time series of the guitar pick, we estimate the learner’s muscle tension. Our front end visualizes the estimated muscle tension
for the whole song and for each part. In the UI, the learner can click on a part for detailed inspection.

ABSTRACT
When learning to play an instrument, it is crucial for the learner’s
muscles to be in a relaxed state when practicing. Identifying, which
parts of a song lead to increased muscle tension requires self-
awareness during an already cognitively demanding task. In this
work, we investigate unobtrusive pressure sensing for estimating
muscle tension while practicing songs with the guitar. First, we
collected data from twelve guitarists. Our apparatus consisted of
three pressure sensors (one on each side of the guitar pick and one
on the guitar neck) to determine the sensor that is most suitable
for automatically estimating muscle tension. Second, we extracted
features from the pressure time series that are indicative of muscle
tension. Third, we present the hardware and software design of
our PressurePick prototype, which is directly informed by the data
collection and subsequent analysis.
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1 INTRODUCTION
The guitar has long been present in western music and culture at
large. Although musical genres not driven by the guitar have in-
creased in popularity, acoustic and electric guitars are still capturing
people’s interest. Especially during the Covid-19 pandemic, many
people started exploring new hobbies including guitar playing [8].
Apps and platforms can complement professional guitar lessons or
facilitate learning to play the guitar as a hobby without a teacher.
For instance, Yousician [33] can record the learner’s performance
and assess whether the correct notes were hit. However, besides
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the sound, there are additional important aspects when learning
an instrument–like the correct execution of specific playing tech-
niques. This is why many researchers explored using sensing tech-
nologies to automatically assess and report the learner’s execu-
tion while playing [34, 35, 45]. Importantly, a learner also needs
to maintain a relaxed state while practicing in order to increase
the learning outcome [29] and to prevent injuries [4, 12, 29, 46].
While a guitar teacher can observe the student directly in order
to remind them to relax and to possibly slow down, this type of
feedback is not available when practicing between lessons or when
self-teaching. Therefore, researchers have also investigated how
to measure muscle tension during instrument practice in order to
provide automatized biofeedback. Systems that use Electromyog-
raphy (EMG) [5, 6, 39, 54] are very common, as the biofeedback is
based on directly measuring the muscle activity. However, since
EMG can be cumbersome to set up and challenging to analyze,
researchers investigated other means of providing biofeedback by
using sensors, such as accelerometers and pressure sensors. Those
approaches are less obtrusive and often specialized for the instru-
ment [20, 23, 24, 26, 36, 43]. For these instrument-specific setups, it
is crucial to understand the patterns generated by the sensors and
how they are related to increased muscle tension.

In this paper, we present an approach for estimating a guitar
player’s muscle tension based on unobtrusive pressure sensing1.
In our data collection with twelve participants, we recorded the
pressure that participants exerted on the guitar neck as well as on
both sides of the guitar pick using Force Sensing Resistors (FSRs).
From the data, we identified the features that are most useful for
estimating subjective muscle tension. Based on this, we present
the PressurePick prototype that integrates pressure sensing in its
hardware (Figure 1 a). Our front end (Figure 1 b) allows learners
to practice a song and receive automatized feedback about their
muscle tension levels for each of the song’s parts2. The PressurePick
device as well as the muscle tension estimation method used in the
front end are directly informed by the results of the data collection.
Taken together, we contribute:
• A data collection containing various distinct electric guitar exer-
cises, from which we extracted a data set of pressure time series
together with subjective muscle tension ratings.

• An analysis of the data to identify the best features and models
for estimating perceived muscle tension.

• A wearable device called PressurePick and a front end to demon-
strate automatized muscle tension feedback for guitar learners.

2 RELATEDWORK
Using technology for learning instruments has been a topic within
different research communities. One focal point within HCI is to
make the instrument learning process more visual and engaging.
Example interfaces range from conventional screen-based UIs [55],
to tutorial systems based on Augmented Reality [10, 31, 32, 41, 48].
While those output-focused and visually rich interfaces have been
proven effective for learning and practicing without supervision as

1In this paper, we use ‘Force’ and ‘Pressure’ interchangeably even though they have
different meanings.
2We use excerpts from the guitar melody of Wake Me Up When September Ends by
Green Day (Warner Music) as examples for showcasing the front end

well as to internalize music theory, an often overlooked aspect in
such systems is the learner’s state of relaxation to avoid wrong mus-
cle memory or even negative health effects [4, 12, 29, 46]. Within
musical interface research, e.g., the New Interfaces for Musical Ex-
pression (NIME) community, many researchers have investigated
the use of pressure sensing or other implicit input to build models
that detect high levels of muscle tension. In this section, we discuss
works from both fields. We first focus our attention on previous
methods and systems for measuring the learner’s state of relaxation
and biofeedback (using EMG or alternative sensing methods). Then,
we discuss previous sensing systems that focus on augmenting the
performance of musicians.

2.1 EMG-based biofeedback
Measuring muscle tension has been a research interest for a long
time–also with use cases other than learning instruments [1]. As
early as 1969, Budzynski and Stoyva [5] built an analogue feedback
system to achieve deep muscle relaxation. Their system contin-
uously tracked the muscle action potential in subjects and gave
auditory feedback in the form of a tone which varied in pitch. The
results indicate a 50% mean decrease of muscle tension when using
biofeedback. Even though they did not focus specifically on musical
performance, the goals are closely related to ours and their results
indicate the effectiveness of biofeedback in general. Many works
that followed and focused on musical instrument learners also used
EMG as the primary means of implicit input [6, 54], as this is a
direct way of measuring muscle tension.

It is particularly common to use surface EMG (sEMG) as it only
requires electrodes attached to the skin without direct muscle con-
tact. For instance, Cattarello et al. [6] measured the muscle activity
of 17 violin players (in addition to force sensors on the instrument)
while playing specific notes. Morasky et al. [38] investigated muscle
tension in the left forearm extensors of string instrument players.
Subjects had EMG electrode sets placed on their forearms and per-
formed a series of musical exercises on their instruments, while
the system played a tone whenever EMG levels exceeded 90% of
pretest mean levels. The results indicated reduced muscle tension.
To test whether the positive effects generalize to no-feedback sce-
narios, Morasky et al. [39] compared EMG levels measured in the
forearm extensors of clarinet players performing exercises on their
instruments. They divided participants into two groups. The first
group used conventional practice and the second group utilized
biofeedback. Alterwards, all participants of both groups played the
instrument without biofeedback. Participants, who practiced with
biofeedback before (the second group) showed decreased muscle
tension (even when not receiving biofeedback anymore) compared
to participants who practiced conventionally. Similarly, the results
of Cutietta [9] showed that feedback training was sufficient to
reduce muscle tension during performance in many cases. They
further showed that lowered levels were maintained one week after
training. Karolus et al. [25] use a small number of electrodes with
a relatively simple setup to assist the guitar learning process by
adjusting the tempo depending on the muscle tension.

While our solution does not utilize EMG, previous research that
used EMG showed the effectiveness of biofeedback for instrument
performance in general.
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2.2 Alternative sensing methods
Even though sEMG setups are not as invasive as intramuscular EMG,
accurate medical devices can still be cumbersome and expensive,
especially with high-density sEMG setups that use matrices of many
electrodes instead of individual pairs. Furthermore, professional
devices require expertise and a dedicated operator. Even setting up
only few electrodes [25] can reduce spontaneity when practicing
at home. Hence, researchers also investigated low-cost unobtru-
sive alternatives for automatically assessing different aspects of
performance [20, 23, 24, 26, 36, 43] in order to enable everyday-use
without complicated setups [17].

The most related commercial product is Pickatto [42], which
fully integrates a pressure sensor and wireless transmission into a
guitar pick. The two purposes of the device are counting plucks (to
facilitate practicing with the picking hand) and measuring pressure
levels to warn learners when they squeeze the pick too hard3.

Specific sensor setups can not only measure muscle tension,
but also other indicators of performance or even stage fright [28].
Grosshauser et al. [18] equipped a violin and the bow with sensors
to analyze whether the (asymmetric) tasks of the two hands are exe-
cuted synchronously. LetsFrets by Marky et al. [34] uses LEDs along
the frets as guidance (similar to the Fretlight guitar series [27, 49]).
In addition, their prototype enables the accurate capture of finger
positions via integrated, 3D-printed touch sensors to adjust the
feedback based on the performers input. Similarly, Guaus et al. [21]
used aluminium foil attached to the frets to detect different playing
techniques. Shin et al. [47] approached the problem of detecting
which string was played by placing piezo sensors in the saddle of
the guitar to sense the vibration of the strings. Matsushita [35] de-
veloped a system that estimated the wrist’s angular velocity while
playing the rhythm of heavy metal songs. This approach provided
accurate picking timing information and enabled beginner-level
participants in a user study to significantly increase their down-
picking speed. Grosshauser [16] measured the absolute pressure on
the bow of a violin to provide visual feedback. Later, Grosshauser
and Tröster [19] attached sensors to various instruments (violin,
acoustic guitar and piano) in order to sense the finger position
and the exerted pressure. Reboursière et al. [44] attached several
sensors to an electric guitar to detect the current playing technique.
Their aim was to detect a wide range of techniques (including palm
muted, bend, slide and so on) using audio signals (one channel per
guitar string using commodity RMC pickups). Subsequent research
showcased how playing techniques can even be recognized from a
single recorded audio track [7, 50], meaning that the guitar does
not need to be equipped with additional pickups.

2.3 Augmenting instrument performances
Equipping instruments with sensors can not only be useful for
unobtrusive performance measurements, but also enhance the per-
formance itself. Often times, those two purposes (assessing perfor-
mance and augmenting performance) go hand-in-hand when using
sensors [37]. For instance, Frisson et al. [15] defines the purpose of
physically enhancing instruments along two axes: adaptive learning
(as previously discussed) and augmenting guitar performances. The

3At the time of writing, the Pickatto product is not released, i.e., there is limited
information about the exact capabilities.

latter is a not a goal of our work. However, some of the previous
works that aim to augment performances are nevertheless relevant
because of their sensor setups. Magpick by Morreale et al. [40] is a
guitar pick that can sense the motion relative to the electric guitar
by using electromagnetic induction. This extra input can be used
to subtly manipulate the sound generated by the performer (e.g.,
manipulating the volume for a tremolo-like effect). Many previous
works enhanced a guitar pick similar to our device. Yoshida and
Matsuyama [56] attached a pressure sensor to a guitar pick and
an IMU to a ring around the index finger. They implemented a
heuristic for classifying playing techniques. They did not focus
on biofeedback and instead used the real-time data for generating
live visualizations matching the guitar performance. The MIDI pick
by Vanegas [52] aims to replace the guitarist’s foot pedal, making
it possible to switch modes with the pick instead. Vets et al. [53]
enhanced the pick and the guitar strings with sensing capabilities
to sense motion, gestures and more for live performances.

Augmenting the guitar performance is an inherent additional
capability enabled by sensors. While the physical design of our
PressurePick prototype is related to such works and our device
could in principle support simple augmentations, our work revolves
around estimating muscle tension.

2.4 Summary and positioning in literature
Previous research showcased the effectiveness of biofeedback, but
many approaches require sophisticated setups. Indirectlymeasuring
muscle tension, e.g., via pressure sensing, is a promising approach
for providing feedback to learners in an unobtrusive way. Equip-
ping a guitar or a guitar pick with pressure sensors has the potential
of detecting inappropriate amounts of muscle tension. However,
we need to understand the patterns emerging in the pressure time
series and in which way they can be indicators for muscle tension.
This also includes understanding how the employed technique and
the number of strings being hit (single strings, chords etc.) changes
the way in which the signal needs to be treated. Building upon
prior knowledge from music-performance research, we focus on an
unobtrusive solution for estimating muscle tension when playing
the guitar. Some of the previous works discussed in this section
directly inspired our approach. Others are focusing on aspects of
instrument learning orthogonal to our pressure-based approach
(e.g., previous research based on motion sensing or audio process-
ing). Thus, our solution can be complementary to many previous
guitar learning interfaces.

3 DATA COLLECTION STUDY
We first conducted a data collection as a basis for our analysis,
which had three goals: (1) Find out, which pressure sensing location
(guitar neck or guitar pick) yields the most promising signal. (2)
Investigate, what patterns emerge in the pressure time series when
playing the guitar. (3) Identify the features in the pressure time
series that are most suitable for estimating muscle tension.

We equipped the neck of an electric guitar and a guitar pick with
pressure sensors. Using this setup, participants did twelve exercises
and played three songs. After each exercise, participants provided
a subjective muscle tension rating. The study was approved by the
local ethics commission of ETH Zürich.
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3.1 Participants
We recruited participants via word of mouth and flyer advertise-
ments on the university campus, as well as at instrument stores
and music schools. The main requirement for participation was to
have at least basic guitar skills and being able to use a guitar pick.
Concretely, participants had to be able to play the most common
open chords and basic strumming patterns. Furthermore, partici-
pants had to be familiar (though not necessarily proficient) with
the hammer-on and pull-off techniques and had to be able to play
the standard E- and A-shaped bar chords. In total, we recruited 12
participants (1 female). Their age ranged from 22 to 35 (M = 26.3).
All participants played the guitar right-handed (one participant was
left-handed, but was able to play the guitar right-handed).

3.2 Apparatus
We provided a Fender Stratocaster, which is a common electric guitar
design and a Dunlop Max Grip 1.0 guitar pick. We video-recorded
the session with a camera that pointed to the guitar (i.e., without
capturing the participant’s face).

Our sensor setup consisted of three FSRs in total (Figure 2). One
was a strip (SF15-600), attached to the back of the guitar’s neck. It
measured the pressure the participant’s left hand applied to the
instrument (Figure 2 top). We attached two circular FSRs (Bolsen
Tech FSR402, about two centimeters in diameter) to both sides of
the guitar pick (Figure 2 bottom). All FSRs were connected to an
ESP32 micro-controller, which streamed the sensor values to a PC.

The guitar was connected to a Focusrite digital audio interface,
which in turn was connected to the PC to record the electric gui-
tar without the need for an amplifier or specialized microphones.
Connected to the digital audio interface, headphones allowed the
participants to hear the sound they produced with the guitar while
playing, as well as a metronome.

Figure 2: Sensor arrangement of our data collection. Top: A
long FSR strip along the neck of the guitar. Bottom: Two cir-
cular FSRs attached to a guitar pick (front and back).

3.3 Procedure
The experimenter greeted the participant and explained the purpose
of the study. The participant filled out a consent form and had the
opportunity to ask questions. Afterwards, the participant filled
out a pre-questionnaire containing questions about demographics
and previous experiences with the guitar. Each experiment session
lasted for about 90 minutes and consisted of two blocks.

3.3.1 Block 1: Exercises. We designed three types of exercises with
each type containing four exercises, leading to a total of twelve
exercises. All exercises of this block are showcased in Video Figure A
in the supplemental materials and described in the following.

Picking exercises. Exercises 1 to 4 focused on hitting single strings
using two different picking techniques. In general, with down-
picking (DP), the guitarist plays every note by striking the guitar
string in a downward motion. With alternate-picking (AP), the
guitarist alternates between hitting the string in a downward mo-
tion and an upward motion. The participant played each technique
while hitting the same string versus switching between two adja-
cent strings. In sum, the picking exercises were:
E1: DP on the same string
E2: AP on the same string
E3: DP on two adjacent strings
E4: AP on two adjacent strings
Chord strumming exercises. Exercises 5 to 8 consisted of playing
a common progression of open chords (G C D), a simple progression
of power chords (F Bb G# C#) with two strumming techniques,
and an unusual progression of bar chords (Gm C A Dm). For the
open chord, the participant used alternate-strumming (AS), which,
analogous to AP, alternates between down-strokes and up-strokes
when playing the chords.For the power chords, participants used
both, alternate-strumming and down-strumming (DS). Lastly, the
bar chords were played with AS. In sum, the chord exercises were:
E5: AS with open chords
E6: DS with power chords
E7: AS with power chords
E8: AS with bar chords
Hammer-on and pull-off exercises. Exercises 9 to 12 involved
only the left hand. With hammer-on and pull-off (HOPO), a gui-
tarist plays notes by hammering onto and pulling off from the guitar
string with any finger of their fretting hand, the thumb excluded.
For the HOPO exercises, the participant used their index finger as
an anchor, leaving the middle, ring and little finger free to perform
the technique. Specifically, the exercises of this type were:
E9: HOPO with the middle finger
E10: HOPO with the ring finger
E11: HOPO with the little finger
E12: HOPO with cyclical use of the middle, ring and little finger
The participant had to perform each of the twelve exercises

for two cycles of three different tempi, leading to six sections per
exercise (120 BPM → 150 BPM → 180 BPM → 120 BPM → 150
BPM → 180 BPM). The tempo was indicated to the participant via
a metronome track heard through headphones. The participant
was instructed to play eighth notes, i.e., they hit one note on the
metronome click and one in between two clicks. Each section lasted
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20 seconds. After completing an exercise, the participant rated their
perceived muscle tension for each of the six sections on a scale
from 1 (low tension) to 10 (high tension).

Instead of explaining all exercises at once, the experimenter pro-
vided instructions for each exercise right before it started. During
the whole block, we configured the system to apply no effects to
the output signal of the guitar (e.g., no distortion or reverb).

3.3.2 Block 2: Free-playing. After the structured exercises con-
cluded, the participant was asked to play three songs (or sections of
songs) of their choice, each between one and two minutes in length.
During recruitment, they were encouraged to think about which
songs they wanted to play. The songs were required to match the
following descriptions:

(1) Easy song: The participant can play this comfortably, and mis-
takes are very unlikely to occur.

(2) Medium song: This song displays the participant’s current skill
level, and a few mistakes are likely to occur.

(3) Difficult song: This song is slightly beyond the participant’s
current skill level, and mistakes are very likely to occur.

The following guidelines applied to the choice of songs:

• The participant needed to be able to play the song with a guitar
pick on a 6-string electric guitar.

• As opposed to the first block, the participant could choose to play
with a distorted or high gain sound, as well as some reverb if they
wished. We used the audio workstation REAPER [22] to apply
the effects to the output. However, tonal effects were limited.
If a song relied on more elaborate effects, the participant was
instructed to chose a different song.

• Using a capo was not possible.
• Changing the tuning of the guitar (e.g., Drop-D) was allowed.

3.3.3 Post-questionnaire and end of session. After both blocks con-
cluded, the participant was asked to reflect on whether they encoun-
tered any states of high muscle tension while they were performing
the exercises or the songs. Additionally, they were given the option
to express any closing thoughts they might have had. This also
included possible thoughts about the twelve exercises or the appa-
ratus (e.g., in terms of intrusiveness). After the study concluded, the
participant received a small assortment of guitar picks as a gratuity
for their time and was then dismissed.

4 DATA ANALYSIS
The main goal of the data collection was to gather an understand-
ing of the relationship between pressure patterns and subjective
muscle tension. This also entails understanding the pressure pat-
terns depending on the number of strings hit in one motion and
the technique. The free-playing block allowed us to visually inspect
the pressure signals recorded while playing songs. All plots of both
blocks can be found in the supplemental materials. The majority of
our analysis revolved around Block 1, which contained the twelve
structured exercises. We pre-analyzed our data by first inspecting it
visually and by calculating descriptive statistics. We then identified
the sensors and features that are most promising for estimating
muscle tension. This section reports the different steps and the
results of our analysis.

4.1 Previous guitar experiences of participants
Wefirst summarize the responses of the pre-questionnaire about the
participants’ previous experiences. We report descriptive statistics
using mean (M), median (m), and standard deviation (SD). The
participants’ playing experience ranged from 5 to 18 years (M =
11.8, SD = 4.5). The average playing time per week in the last
three months ranged from 30 minutes (or less) to 8 hours (M = 3.6,
SD = 3.2). On a scale from 1 (beginner) to 10 (expert), participants
rated their skill level between 2 and 7 (m = 5.5). The responses of
the most relevant pre-questionnaire items can be found in Table 1.

4.1.1 Previous muscle tension experiences. We specifically asked
participants to comment on their previous experience with muscle
tension. Except for Participants 8 and 9, all participants reported
that they generally experience muscle tension to different degrees.
Participants 2, 5, 7 and 10 reported the most common muscles to get
tense to be those in their left hand involved in playing bar chords
and power chords, specifically the muscles in their thumb and index
finger. Participant 3 has also experienced tension in their left hand
when playing chords with wide finger placements. Participant 12
stated that high muscle tension in their left hand was most likely
to arise while they used hammer-on and pull-off techniques. Par-
ticipant 2 states that, whenever feasible, they substitute bar chords
with other fingerings of the same chords which require less force
in order to alleviate tight muscles. Participant 3 has encountered
muscle tension in the elbow region of their right arm while Partici-
pant 4 faces tightness in their right hand when they are focusing
very intently. Participant 6 initiates the picking movement with
the thumb and index fingers (pinching motion) of the right hand
instead of with their wrist. This causes the participant to feel tense
in the thumb of their right hand. Strategies to deal with tension em-
ployed by most participants include shaking the hands, massaging
the muscles, and playing something less taxing for the muscles.

Participant Years exp. Time / week Skill est. Tension
1 5 45min 3 2
2 18 4h 7 3
3 6.5 2.5h 7 6
4 5 6h 7 6
5 15 1h 4 2
6 13 < 30min 6 3
7 13 2h 6 3
8 15 < 30min 2 1
9 10 8h 4 1

10 16 < 30min 5 4
11 17 8h 7 7
12 6 30min 5 5

Table 1: Previous experiences of participants. ‘Years exp.’
refers to the number of years that the participant played the
guitar. ‘Time / week’ is the average aggregated weekly prac-
tice duration. ‘Skill est.’ is the estimated skill of the partici-
pant (self-assessed), ranging from 1 (beginner) to 10 (expert).
‘Tension’ is the regularity of uncomfortable muscle tension
when playing, ranging from 1 (never) to 10 (very often).
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4.2 Pressure patterns on the guitar pick
Before investigating muscle tension estimation, we visually in-
spected and pre-analyzed the patterns in the pressure time series
that emerge depending on the number of strings that are hit (e.g.,
single strings versus chords) and the playing technique (e.g., down-
picking versus alternate-picking). As a representation of typical
pressure time series, Figure 3 shows the raw pressure data of a test
recording with the two pressure sensors that are attached to the
pick. The figure shows different combinations of techniques (DP &
DS versus AP & AS) and numbers of strings (1, 3 or 4).

All pressure patterns are oscillating in multiples of the beats
per minute. When comparing down-picking and alternate-picking
(or down-strumming and alternate-strumming), a large difference
can be seen in the oscillation patterns. In the case of DP & DS,
the pressure increases when approaching the string and is lower
between hits (Figure 3 left). Our frequency analysis across all DP
& DS data points indeed identified the number of eighths hit per
second as the most dominant frequency. In contrast, AP & AS
exercises led to frequencies that are half as high as the frequencies
of the DP & DS exercises. This difference in mean is statistically
significant with a p < 0.0001 according to a Wilcoxon signed rank
test. This can also be seen in Figure 3 with a single oscillation
roughly taking up two hits in the AP & AS examples. However,
there was more variation in the frequency spectrum (7.19Hz versus
5.48Hz, respectively). While the high-frequency oscillations are
still present when the individual strings are hit, it is clear that down-
strokes and up-strokes cannot be treated in the same way when
analyzing the performance. As a side effect, this clear difference also
implies that, while down-strokes and up-strokes generate almost
the same sound, the pressure time series can likely be used to
distinguish between those techniques in many cases.

Based on our recordings it seems like the pressure sensors are
precise enough to capture the moments in which every individual
string is hit. Specifically, small high-frequency oscillations corre-
sponding to the number of strings hit can be seen in the plots of
Figure 3. While this can be a useful signal for various purposes (e.g.,
estimating number of strings hit), those high-frequency oscillations
do not serve a purpose for our goal of estimating muscle tension.
Therefore, we use a low-pass filter on all signals in order to focus
on the lower-frequency oscillations. The smoothed signal is also
visualized in our front end (e.g., Figure 1 right).

Another observation is that the base pressure (or mean) does
not necessarily increase depending on the number of strings that
are hit (i.e., single strings versus chords). In fact, in our data, the
amplitude of the oscillation decreases as more strings are hit at once.
When hitting a chord (E5 - E8), the average oscillation amplitude is
lower compared to hitting a single string (E1 - E4). This difference
in mean is significant with a p-value smaller than 0.05 (Wilcoxon
signed rank test).

The pressure patterns of the two sides of the pick are very similar,
yet not fully identical. This was also reflected in the collected data.
Across all collected samples, we observed a cross-correlation of 0.77
between the signals of the two pressure sensors on the pick. This
provides a first indication that a second pressure sensor on the pick
does not add much information compared to a single sensor. We
evaluate this in more detail later in subsection 4.5.

Figure 3: Pressure time series on the two sensors of the pick
to visually compare down-picking and alternate-picking (or
strumming in the case of chords) each with 1, 3 or 4 strings
hit. The x-axis is time and the y-axis is pressure in all plots.

We also observed oscillations and vibrations with varying am-
plitudes in the data of the pick sensors during the HOPO exercises,
even though the pick hand was technically inactive. Upon video
inspection, those can be explained by participants tapping to the
beat or small movements of the guitar when performing HOPOs.
Interestingly, for some participants who held the pick firmly while
performing the HOPOs, we observed a slight increase in pressure
over time as the exercise became more demanding for the left hand.
Therefore, there are indications that a pick sensor can be used for
measuring tenseness during HOPOs. However, since participants
did not hold the pick persistently during the HOPO exercises, a
dedicated data collection would be needed to confirm this effect.

4.3 Base pressure and subjective ratings
There were individual differences in terms of base pressure levels
and variation. Figure 4 shows the box plots of the mean pressure
of the pick’s front FSR for all exercises and tempos for each par-
ticipant together with the variation in the pressure signal. This is
not surprising as similar individual differences were also found in
previous works, particularly works that found individual muscle
activation differences with sEMG [6, 13, 25].

Figure 5 shows how the standard deviation of the peaks relates
to subjective muscle tension ratings for the different BPM in E1.
Within each play speed, we observed an almost identical relation-
ship to subjective muscle tension ratings. This indicates that the
variation in the amplitude of oscillation peaks is likely linked to
muscle tension ratings and not just the BPM.
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Figure 4: The distribution of pressure per participant
recorded from the pick’s front sensor across all exercises.
The box plots are colored based on the average standard de-
viation of the pressure signal in each section per participant.

4.4 Feature extraction
A simple global pressure threshold or integral cannot be used to
assess muscle tension because (1) there were individual differences
in the base pressure, and (2) the pressure peaks depend on the num-
ber of strings that are hit. Therefore, we need to identify different
features that can estimate muscle tension and general performance.
We computed the following four features for all three sensors (pick-
front, pick-back and neck) in each exercise section.
• M: Mean pressure
• SD: Variation in amplitude at the peak of an oscillation
• ∆SD: Variation in the pressure difference of the valley to the
consecutive peak of an oscillation

• M+SDn : The variation in oscillation peaks after normalizing the
pressure signal (dividing by the maximum to make them lie be-
tween 0 and 1) plus the mean amplitude of peaks (to incorporate
base pressure levels).

4.5 Estimation models
Since we cannot assume linear relationships between the measured
FSR signals and the subjective muscle tension ratings, we need
to choose a model that can handle nonlinearities. We use Propor-
tional Odds Logistic Regression (POLR) to assess the explanatory
power of the four features. Compared to standard regression tech-
niques, POLR (a generalized linear model) does not assume a linear
relationship between the different levels of muscle tension. For or-
dinal responses, POLR models are a common choice and preferable
over many (non-linear) regression techniques [2, 3], because POLR
models do not make assumptions about the spacing between the
response levels. Cut-off points are optimized as part of the fitting
process. Hence, with their simplicity and flexibility to model ordinal
data, POLR models perform well for ordered categorical responses
and often outperform more complex regression techniques [2].
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Figure 5: SD of pressure peaks (variation) againstmuscle ten-
sion ratings at three different tempi for the first exercise (DP
on one string) across all participants. The trend lines within
each tempo (BPM) indicate that sections with increased vari-
ation tended to have higher muscle tension ratings.

For each combination of sensor, feature and exercise, we fitted a
model across all participants and calculated the explained variance
as the squared Pearson correlation coefficient between fitted mus-
cle tension ratings and true muscle tension ratings. The explained
variance (R2 ∈ [0, 1]) indicates how much of the variation in mus-
cle tension ratings is captured by the structural part of the POLR
model [11]. A higher R2 indicates a stronger correlation between
predictions and true observations. In the following, we discuss the
results shown in Table 2, which contains the model performance in
terms of explained variance of the four features with each of the
three sensors in each exercise.

We observe that for five of the picking or strumming exercises,
one of the four feature combinations achieves to explain more than
10% of the variance in subjective muscle tension ratings for at least
one of the three sensors. In E1, 40% of the variance in muscle ten-
sion ratings is explained with M+SDn . The sensor located at the
front of the pick achieves or matches the best performance in seven
out of the twelve exercises, and performs best for all picking exer-
cises (E1–E4). Notably, mapping the mean pressure (M) to model
muscle tension ratings is always outperformed by a model using
an alternative feature. The feature M+SDn achieves or matches
the best performance for E1, E4, and E6 (see Table 2). The feature
∆SD, however, achieves or matches the best performance for E2,
E4, E5, and E6. The neck sensor generally performed worse than
any of the pick sensors and some sections of time series had to be
removed when fitting the model, as the pressure signals were too
weak. The tension in E8was generally challenging to estimate even
with the neck sensor, which supposedly receives most pressure in
this exercise. Only in E5 (open chords) and E8 (AS bar chords) did
it outperform the pick sensors, but it is only marginally better than
the second best model in both cases. We conclude that the pick
sensors generally performed best for estimating muscle tension.
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Pick-front (thumb) Pick-back (index finger) Guitar neck
M SD ∆SD M+SDn M SD ∆SD M+SDn M SD ∆SD M+SDn

E1: DP single 0.09 0.3 0.31 0.4 0.06 0.12 0.27 0.1 - - - -
E2: AP single 0.03 0.15 0.17 0.16 0.08 0.09 0.15 0.1 - - - -
E3: DP adjacent 0.04 0.1 0.07 0.21 0.06 0.09 0.19 0.19 - - - -
E4: AP adjacent 0.07 0.03 0.09 0.07 0.01 0 0.03 0.03 - - - -
E5: AS open chords 0 0.12 0.03 0.25 0.02 0.16 0.16 0.07 0 0.2 0.26 0.18
E6: DS power chords 0.02 0.03 0.04 0.06 0.02 0.04 0.06 0.06 0.03 0 0.04 0.04
E7: AS power chords 0 0.05 0 0.09 0 0.15 0.02 0.21 0 0 0.02 0
E8: AS bar chords 0.03 0.06 0.04 0.04 0.03 0.03 0.08 0.05 0 0 0.09 0.02
E9: HOPO middle 0.12 0.26 0.06 0.17 0.04 0.09 0.1 0.24 0.04 0 0 0.02
E10: HOPO ring 0 0 0 0.07 0 0.19 0 0.12 0 0.02 0 0.09
E11: HOPO pinky 0 0.05 0.09 0.16 0.09 0.05 0.35 0.15 0.13 0.09 0.07 0.1
E12: HOPO multi 0.14 0.4 0.28 0.37 0.12 0.4 0.27 0.27 0 0.05 0.16 0.02

Table 2: Models with different combinations of features with each of the three pressure sensors. Bold numbers indicatemodels
that worked best for the respective exercise (sometimes multiple for the same exercise). In the first four exercises (picking)
the neck sensor did not receive enough pressure (denoted as dashes in cells). The pick sensors provided signals in many cases
within the HOPO exercises, but the pick was technically not part of those exercises. Hence, those cells are grayed out.

5 FINAL PROTOTYPE
Based on the findings from the analysis of our data collection, we
created the PressurePick prototype device and a simple guitar tuto-
rial front end specifically for muscle tension estimation (Figure 1).
We encourage the reader to watch the supplemental video to see
the final prototype hardware and software in motion.

5.1 Device
Figure 6 shows our final prototype device. As reported in the data
collection, the pressure time series on the pick can be used to
estimate perceived muscle tension. Furthermore, the two pressure
sensors on the pick that we used in the data collection provide very
similar signals. As shown in the data, the pick sensors provided
more reliable models for most techniques compared to the neck
sensor. For those reasons, we only use a single pressure sensor on
the pick without attaching a sensor to the guitar.

Figure 6: Hardware of our PressurePick prototype device.
We use an FSR on the guitar pick. The remaining compo-
nents are attached to a drawing glove (all fingers exposed).
A battery can be attached between the glove and the device
(when using the device wirelessly).

Instead of integrating all electronic components into the pick, we
aimed tominimize changes to the weight and form factor of the pick.
Therefore, only the pressure sensor is attached to the pick and all
other components are attached to a glove. We repurposed aWacom
drawing glove (leaving the thumb and fingers exposed) to make the
prototype wearable. To easily attach and detach the components,
we sewed Velcro to the glove. We connected the pressure sensor
to a small Xiao ESP32C3. The micro controller can transmit the
pressure time series data via a serial USB connection, via Wi-Fi, or
via Bluetooth Low Energy (BLE). A battery with Velcro on both
sides powers the device when untethered.

5.2 Software
The software part of our prototype allows to record performances of
specific songs in order to estimate and visualize the muscle tension.

5.2.1 Song format. Our prototype is based on guitar tabs (or ‘tab-
latures’), which is a common notation for the guitar parts of songs.
For instance, various websites allow musicians and hobbyists to up-
load tabs so that they can be used for practicing interactively (e.g.,
Ultimate Guitar [30]). Tabs directly communicate which strings
to push down at which fret and at what time. Another advantage
compared to sheet music notation is that they uniquely specify, on
which string to play a note (on the guitar, the same notes can be
played on multiple strings except for very low or very high notes).
More concretely, for sequences of notes, it is fully specified in the
tabs when the same string is hit multiple times and when different
strings are hit. This can be advantageous in the analysis, as pressure
patterns differ when hitting the same versus different strings.

Our software also supports ‘stress accents’, e.g., notes or chords,
which are supposed to be played louder and hence with more pres-
sure. For instance, parts of the fourth bar in the ‘Bridge’ of Figure 7
are marked as accents (those tabs are darker than the rest). Defining
accents ensures that playing some notes and chords intentionally
louder is not penalized when analyzing the variance in pressure.
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Figure 7: The user interface of our prototype. The top shows
the overall estimated muscle tension ranging from green
(Relaxed) to red (Tense). We also visualize the estimations
for each part of the song. In addition, each song part can be
expanded to closely inspect the recorded pressure time se-
ries synchronized with the tabs of the song. Red circles in
the tablatures indicate missed notes. For instance, the last
hit of ‘Interlude’ is detected as missing.

5.2.2 User interface. After the learner is done playing, the system
analyzes the pressure time series and generates visual feedback
(Figure 7). As high-level feedback, the front end displays the overall
estimated muscle tension throughout the song (Figure 7 at the very
top). A number from 1 to 10 indicates the overall estimated muscle
tension, where 1 means almost no tension (relaxed) and 10 means
very high tension, meaning that the lower the number, the better.
The front end visualizes this number using 10 boxes arranged from
left to right with the number of filled boxes corresponding to the
estimation. Additionally, the boxes form a color-gradient ranging
from green (left-most box) to red (right-most box).

Besides the overall estimation, every part contains a separate
muscle tension estimation (in the same format as the overall estima-
tion). The reason is that it is often the case that some song parts lead
to more muscle tension than others. Sometimes the same repeated
part even can have different muscle tension levels depending on
where in the song it reoccurs. For instance, a part can be easy to
play the first time, but as tension builds up throughout the song,
there could be a different level of muscle tension the second time
the same riffs are played.

Each part can be expanded by clicking on it (e.g., ‘Intro’ and
‘Chorus’ in Figure 7). This reveals the tabs and the plots of the
smoothed pressure time series, making it possible to inspect each
individual hit. Furthermore, if there is no peak detected even though
there is a note in the tabs, the front end flags the note as a missed
hit (e.g., at the end of ‘Interlude’ in Figure 7).

The muscle tension output can be interpreted as the estimated
subjective answer that the learner would give when reflecting upon
muscle tension when playing. In addition, they could be interpreted
as their general pressure consistency. This means that using the
muscle tension feedback together with the low-level plots, learners
can monitor their progress in terms of consistency when playing.

5.2.3 Implementation. We used the Velt Framework [14] for the
overall dataflow and the UI. To create the muscle tension feed-
back, we use the POLR models with the features and weights as
optimized in subsection 4.5. This means, we first categorize the
different techniques and number of strings hit (single string, power
chords, open chords and bar chords). For instance, for each part of
the song, all power chords are assessed with the POLR model that
worked best for the power chord exercises in the data collection. If
a part contains mixes of single notes, chords and so on, we simply
average the estimations for each type. Hence, some parts in Fig-
ure 7 have partially filled boxes. While averaging the estimations
is not completely accurate, we consider this a simple way of pro-
viding a single estimation instead of visualizing every estimation
of each type. Similarly, the overall estimation is the average of the
estimations of each type of notes and chords throughout the song.

6 LIMITATIONS AND FUTUREWORK
This work primarily aims to understand how pressure patterns
relate to muscle tension. There are many possible future directions
that can build upon our approach and results.

Our final prototype is wireless and unobtrusive, but our study
apparatus was tethered. It became clear from the post-questionnaire
that many participants initially had issues with the many sensors
and cables of the study apparatus. Participants generally got used
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to the setup eventually. For instance, Participant 4 said that it was
less intrusive than they initially thought and Participant 5 said that
the setup was ok, once everything was settled. However, a data
collection that uses a simple wireless device could provide addi-
tional insights. In connection to this, a long-term deployment with
multiple learners using the final prototype could provide insights
about the broader effectiveness of the approach, also in the context
of a more fully realized tutorial system that also incorporates other
types of feedback for learners, e.g., based on audio processing.

In this work, we focused on collecting data with specific struc-
tured exercises. As we could see in the data, even with the same
tempo and technique, playing the same string repeatedly generates
different patterns compared to playing different strings. Capturing
a larger variety of pairs of strings or transitions from a single string
to chords might improve the models. For this, a future undertaking
could use a crowd sourcing approach, in which guitar players play
songs with different combinations of string transitions to train a
model with many combinations of notes and chords.

The captured signal from the FSR is near linearly dependent on
the physically applied force and so far we did not apply a correction
to make it fully linear. POLR is in principle able to handle such non-
linear inputs and features. However, in the future, we would like to
explore different mappings from the raw signal to the model input,
e.g., to make the input linear with regards to the actual applied
pressure or pre-processing it in other ways that can potentially
improve the model’s output.

Our current front end is designed around practicing specific
songs akin tutorial software like Rocksmith [51]. This allows de-
tailed assessment of individual parts of pre-defined songs. To also
enable free-playing, our approach could be complemented with a
classifier that first detects the technique that is being employed and
then chooses the appropriate estimation model on the fly.

7 CONCLUSION
We presented PressurePick, a pressure sensing pick for predicting
muscle tension aimed at guitar learners. Our device complements
audio feedback and can be used to ensure that a moderate amount
of pressure is applied when practicing guitar songs. This is par-
ticularly useful for self-taught learners or between guitar lessons
when there is no teacher present to ensure that the learner’s mus-
cles are relaxed. We conducted a data collection and analysis to
investigate the pressure patterns that emerge when practicing with
the guitar and particularly its connection to muscle tension. We
extracted features that predict subjective levels of muscle tension
only using pressure time series. Based on the insights from the data
collection and analysis, we built the PressurePick device and user
interface. We believe that our approach can improve the learning
outcome of guitar practice sessions in an unobtrusive way and can
be complementary to existing practicing methods.
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