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Figure 1: (a) Mise-Unseen uses eye-tracking in VR headsets to hide changes that occur inside the user’s field of view 

by applying them outside the user’s fovea. Mise-Unseen unnoticeably changes the scene as the user is focusing else-

where (circle): (b) cross-facing pieces together (arrow) to help the user solve this puzzle, (c) swapping the gallery 

painting to adapt to the user’s detected interest in modern art, (d) hiding the low fidelity of this “explosion”, 

(e) matching the virtual axe’s position to the haptic prop following the detected user interest, (f) shifting storage racks 

while walking to adapt to a lack of physical space, (g) reducing motion sickness during teleportation by blending static 

images outside the fovea, and (h) updating hints to prevent the user from solving this riddle too quickly. 

ABSTRACT 

Creating or arranging objects at runtime is needed in many 

virtual reality applications, but such changes are noticed 

when they occur inside the user’s field of view. We present 

Mise-Unseen, a software system that applies such scene 

changes covertly inside the user’s field of view. Mise-Un-

seen leverages gaze tracking to create models of user atten-

tion, intention, and spatial memory to determine if and when 

to inject a change. We present seven applications of Mise-

Unseen to unnoticeably modify the scene within view (i) to 

hide that task difficulty is adapted to the user, (ii) to adapt 

the experience to the user’s preferences, (iii) to time the use 

of low fidelity effects, (iv) to detect user choice for passive 

haptics even when lacking physical props, (v) to sustain 

physical locomotion despite a lack of physical space, (vi) to 

reduce motion sickness during virtual locomotion, and (vii) 

to verify user understanding during story progression. We 

evaluated Mise-Unseen and our applications in a user study 

with 15 participants and find that while gaze data indeed sup-

ports obfuscating changes inside the field of view, a change 

is rendered unnoticeably by using gaze in combination with 

common masking techniques. 
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INTRODUCTION 

Mise-en-scène, creating and arranging a scenery, or staging, 

is an essential part of many media productions, be it theater, 

games, or movies. Staging happens either before or, more 

interestingly, as an experience unfolds. While movies and 

plays follow a linear flow and predetermined timing of 

events, an unexpected need for staging may arise as a result 

of user input to an interactive system. Changes to the scene 

during staging are commonly designed to be hidden from us-

ers, requiring them to occur outside the visible area: They 

either happen behind an obstacle (e.g., door [13]) or simply 
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outside the field of view [47]. Theater or movie productions 

make use of a controlled field of view to drive the narration 

– the user does not see the rigger or the boom operator, which 

would break the perceived consistency of the experience. 

In virtual reality (VR) and augmented reality, dynamic stag-

ing poses a special challenge. First, the user may freely look 

around the scene and therefore might observe a change while 

it is happening, adding constraints to the application’s de-

sign. Second, as the field of view of headsets becomes larger, 

even less space will be available for dynamic staging. To-

day’s commercial VR headsets have a field of view of up to 

120° horizontal and we expect them to eventually reach the 

maximum of human vision (~180° horizontal). Contrast this 

to traditional cinematography, where the director fully con-

trols the viewpoint and camera focal length.  

To create opportunities for dynamic staging in VR, we pro-

pose changing the content inside the users’ field of view. 

Since the user might notice such a change, breaking the 

user’s perceived consistency of the scenery, we use eye-

tracking in combination with a variety of masking tech-

niques (e.g., change saliency, distractors, etc.) to hide a 

change in plain sight. We believe that as eye-tracking be-

comes readily available in consumer VR devices (e.g., [19]) 

it can be used for dynamic staging in unattended areas (cen-

tral vision is about 30° [52], foveal vision is about 5°). 

We present Mise-Unseen, a software system to unnoticeably 

apply changes inside a VR user’s field of view to provide 

dynamic staging in VR. Our goal is to allow creators to au-

thor covert changes for dynamic staging. Mise-Unseen pro-

vides authored changes to any VR application. As illustrated 

in Figure 1 we show seven of such applications, pointing to 

possible use of this idea. In our user study, we validate our 

approach and show that hiding changes benefit from the use 

of eye-tracking together with masking techniques. 

RELATED WORK 

Mise-Unseen builds on work in eye-tracking, covert scene 

changes, perception theory (specifically change blindness 

and inattentional blindness), and stage magic techniques.  

Eye-tracking and covert scene changes 

Gaze information so far has been applied to use cases such 

as foveated rendering to save computational cost, more intu-

itive user controls [15,38], adaptive AI or new game me-

chanics [51] where eye-tracking is used for navigation or se-

lection, displaying techniques [4], and for predicting users’ 

actions [12,45] .  

For our use case of effecting unnoticeable changes inside a 

user’s field of view, the related work is limited. Autopager 

[55] uses gaze to automate page turning in electronic docu-

ments or books by fading in new text outside the user’s fo-

vea. Other studies show that covertly reducing image quality 

can be beneficial for foveated rendering [10]. Sparse Haptic 

Proxy [12] uses gaze to predict where users touch an object 

and updates its redirection methods on the fly to make re-

peated use of a prop for passive haptics. Sun et al. use sac-

cades to shift user orientation during redirection [48]. 

Covert scene changes and cognitive illusions without 
eye-tracking 

A range of applications achieve similar effects with head 

gaze instead of eye gaze. Redirection methods such as Im-

possible Spaces [47] as well as VMotion [46] change scenes 

to extend walking space. Sightline [60]  changes scenes for 

a surreal cinematic experience. As these projects do not use 

eye-tracking, they update their scenes outside the field of 

view, whenever the user turns the head to look around.  

Many applications apart from redirection methods imple-

ment cognitive illusions. HCI has long adopted cognitive il-

lusions using stage magic techniques [20,49].  For example, 

Anderson et al. hide user interactions in collaborative tasks 

[1]. Marshall et al. deceive their users by adapting the ‘three 

cups’ magic trick [32]. Many other applications, including 

games, make use of such techniques [61]. 

Stage magicians use techniques that (mis)guide an audi-

ences’ attention, sometimes at the sensory level (e.g., smoke 

and mirrors). Cognitive illusions instead rely on social cues 

[29] and guiding user expectations [28] as Kuhn and col-

leagues explain based on their experience as stage magi-

cians. Martinez-Conde and Macknik add that “cognitive il-

lusions are not sensory in nature. Rather they involve high-

level functions such as attention, memory and causal infer-

ence.” [33], These high-level functions can be approximated 

with gaze data, as we will demonstrate in the system section.  

Perception theory and eye-tracking 

The aforementioned work on cognitive illusions and stage 

magic borrows from concepts in perception theory. Here we 

consider the potential impact of eye-tracking on models of 

visual attention, memory, and cognitive load (see [36] for an 

introduction). 

Visual attention measured by gaze 

Visual attention has been thoroughly studied (see [9] for a 

review). Arguably, the most important function of our selec-

tive visual attention is to direct our gaze rapidly towards ob-

jects of interest [24]. This evolutionary driven feature helps 

us perceive changes in the environment in a fast manner. 

While this ability would seem to make it very difficult to 

hide changes within the user’s field of view, research has 

demonstrated its limitations. Simons et al. found inatten-

tional blindness [43] to occur during moments of attentional 

capture. Participants occupied with a primary task (counting 

ball throws) regularly failed to see an otherwise obvious 

stimulus (a gorilla passing through the scene). While a pri-

mary task seems to be essential to achieve inattentional 

blindness, some tasks do not direct gaze. Consequently, eye-

tracking is beneficial in tasks that do not naturally direct the 

viewer’s gaze. One of our attentional models therefore ac-

counts for the user’s gaze position.  

Visual memory measured by gaze patterns 

A viewer might fail to notice a change at the moment it hap-

pens, but recall previous staging and realize something has 

changed. Covert changes therefore require an understanding 

of user’s visual memory in order to exploit it. Change blind-

ness is an effect similar to inattentional blindness where 



 

viewers fail to notice a salient change in a scene. This effect 

is related to visual memory and human confidence. It occurs 

as a result of the richness of our daily visual experience [39]. 

To avoid semantic violations the brain prefers to simply as-

sume the previously unregistered changes were part of the 

mental model from the beginning. In a way our outside 

world functions as our external memory [35], which can be 

overridden. Computational models for spatial memory exist 

[31] some of which include gaze information [39]. Ocular 

scan-paths are important for later recall [6,58], as well as 

path length and dwell time [21]. Considering the above, we 

implement a model of spatial memory to prevent later recall. 

Cognitive load measured by pupillometry and saccades 

Task involvement is an essential part of inattentional blind-

ness. The pupil diameter, also measured by eye-trackers, can 

be used in this context. Pupil dilation has been used as an 

indicator of cognitive load [54] and several metrics exist that 

use pupillary activity to assess cognitive load [16]. However, 

there is controversy on its relation to inattentional blindness 

[57]. We implemented the Index of Pupillary Activity [16] 

to explore its potential use for detecting change, i.e., mo-

ments of higher probability of inattentional blindness. We 

further used eye-tracking to detect saccades, which can indi-

cate user attention. User attention correlates with visual sa-

liency [17], a spatial metric [24] for images and an excellent 

predictor for attention [7]. The distribution of visual saliency 

(or visual entropy) impacts the amount of saccades [50]. Few 

saccades can be interpreted as high workload or focus and 

therefore low probability of detecting a change.  

Covert attention and saccades 

It is possible to attend to something without directly looking 

at it. Such “covert” attention [41] would seem beyond the 

reach of eye-tracking based models. One of our models ex-

ploits the fact that intentional (endogenous) covert attention 

has a deploy time of about 300ms for specific locations and 

500ms for specific features. Unintentional (exogenous) cov-

ert attention is transient and peaks at around 120ms after the 

event. Ideally, changes happen within those time limits, i.e., 

until 300ms after a saccade. More in-depth models of covert 

attention can be derived from gaze data [41]. 

Supplementary masking techniques 

Changes made outside the fovea might still be detectable in 

many circumstances as we are drawn to visual motion and 

saliency [17]. This perceptual phenomenon has been used to 

direct gaze and attention [3]. To hinder attention, VR today 

incorporates different visual masking techniques [20]. The 

attentional blink [9,41], the inability to perceive distinct 

stimuli in close order, hinders temporal attention. A gradual 

fade of the stimulus hinders spatial attention [44]. We use 

these techniques to mask scene changes. 

MISE UNSEEN 

Mise-Unseen is a software system that applies covert 

changes to a virtual scene that can occur inside the user’s 

field of view. Mise-Unseen processes gaze data to prevent 

the user from noticing a change. Specifically it prevents ob-

servation of the change when it is happening, recall after it 

has happened and anticipation when it is about to happen 

(Figure 2). To achieve this, Mise-Unseen uses five models 

of user attention together with visual masking techniques. 

Each model incorporates the knowledge of a specific field of 

perception theory summarized in the related word. We will 

later discuss other forms of input besides gaze data.   

 

Figure 2: Mise-Unseen prevents anticipation, observa-

tion, and recall of a scene change using five attention 

models together with visual masking techniques.  

We will exemplify Mise-Unseen’s process with different ap-

plications. The jigsaw application (Figure 3) secretly rear-

ranges its pieces to make solving it easier for the user. The 

forge application (Figure 4) places either a virtual hammer 

or an axe at the position of a physical surrogate for the user 

to experience passive haptics. In both cases the change 

should be hidden, as noticing unrealistic movement of weap-

ons or jigsaw pieces would break immersion into the experi-

ence.  

After the application defines what changes to inject into the 

scene Mise-unseen decides if and when to inject them. Mise-

Unseen computes the probability of the user noticing it based 

on the application’s selected attention models (Figure 2). For 

example, the forge specifies that the hammer moves onto the 

physical prop using attention models one and five (current 

attention and spatial memory). Mise-Unseen computes each 

attention model’s value at every frame and takes the maxi-

mum as the probability of noticing the change. Once this 

value falls below a predefined threshold, Mise-Unseen in-

jects the change into the scene and the hammer moves.  

Prevent observation: four models and visual masking  

Model one (current attention) implements the naïve ap-

proach: virtual objects that appear outside the fovea are less 

likely to be detected. Visual distractors, or masking tech-

niques, reduce this likelihood further. The need for distrac-

tion may be eliminated by finding the moment where users 

are already involved in a task. Models two and three thus 

measure cognitive load, a requirement for inattentional 

blindness. While our applications did not use these more ex-

perimental models, we evaluated them in our study. Model 

four (covert attention) covers the possibility of attending to 

a changing object without looking at it.  

Attention model 1: gaze point for current attention 

We first compute the convex hull of a projection of an ob-

ject’s geometry onto the view plane. If the angular distance 



 

between the convex hull and the currently gaze point falls 

below a threshold, the object is considered to be in the user’s 

focus. This threshold depends on the precision and reliability 

of the eye-tracking data: we use a minimum angular thresh-

old of 7° to be above the 5° angle of foveal vision [52], fac-

toring in possible tracking errors. 

Attention model 2: pupillometry for cognitive load 

We implemented the Index of Pupillary Activity [16] as a 

measure of cognitive load. The advantage of using pupil di-

lation over absolute pupil size is that no calibration is re-

quired to establish a baseline. This measure uses fast wavelet 

transforms on the pupil diameter, counts local peaks of that 

value, and finally normalizes that count. We additionally 

factored in the scene illumination (various methods on the 

influence of luminance on pupil size exist [53]). Our model 

runs the same measure (fast wavelets) over the changing 

value for scene illumination. If pupillary activity occurs 

shortly after a spike in scene illumination (here 200ms), 

which could have triggered it, its signal is removed from the 

final count. While we did not find this signal alone to be a 

reliable predictor, its correlation with the detection rate of 

changes is evaluated in the user study.  

Attention model 3: saccades for cognitive load 

This model uses saccades as a measure of cognitive load 

(based on [17,50]). We count the number of saccades over 

time and normalize this number (using maximum of 5 sac-

cades per 5sec).  

Attention model 4: considering covert attention 

Covert attention cannot be measured. This model merely re-

ports its possibility based on measured saccades. From the 

moment of a saccade until 300ms after it was measured cov-

ert attention is impossible and the user focuses on objects 

inside the fovea only [41]. Applications may ignore this, 

trading a possibility for detection for 300ms less time delay. 

The jigsaw, for example, applies a due change also after a 

saccade instead of using a cross-fade. This is hard to com-

bine with model three (saccades for cognitive load) – this 

model only allows for changes after a saccade, while model 

three recommends changes when fewer saccades occur, giv-

ing little opportunity for injecting a change. Covert attention 

can be prevented preemptively by implementing a primary 

task that requires the user’s visual attention (e.g., reading). 

Visual masking techniques 

Based on our literature review, we use the following tech-

niques to mask transient signals: 

(i) We present changes in unattended areas of the dis-

play, i.e., outside the user’s fovea. 

(ii) We create salient noise that can create distractions 

to ‘drown’ the signal of the change.  

(iii) We reduce the signal strength with visual tech-

niques like gradual fades and low contrast.   

(iv) We strategically provide tasks that will overload the 

attention of participants, preventing covert attention. 

   

Figure 3: Eye gaze driven adaptive difficulty. (a) To 

help the user solve this jigsaw puzzle by unnoticeably 

rearranging pieces, (b) such dynamic staging would 

normally be performed only out of view. Since users 

alone control the field of view in VR, Mise-Unseen de-

tects the user’s gaze to (c) hide this change inside the 

field of view, but outside the foveated area. (d) As Mise-

Unseen detects the user’s gaze resting on the cat, it 

cross-fades this puzzle piece to a new position (e) closer 

to its matching pieces. (f) The user continues solving the 

jigsaw puzzle, unaware that a change took place. 

Applications may apply individual distractors by receiving a 

callback through Mise-Unseen’s API with a direction vector 

(pointing to scene coordinates onto which to distract the 

user) and the recommended size of the distraction (screen 

space). Our jigsaw puzzle responds to this callback by trig-

gering an animation of the black cat on the table. Mise-Un-

seen also offers to inject a change when it would occur out-

side the field of view, behind another object, or during a 

blink or a saccade. To handle accidental gaze shifts Mise-

Unseen either aborts or speeds up changes if they threaten to 

enter the fovea, depending on the duration left.    

The masking techniques are an alternative to attention mod-

els two or three (Figure 2). The attention models are appli-

cation agnostic, they make use of the fact that applications 

provide distracting tasks anyway. Masking techniques can 

be more reliable but the experience must be changed to effect 

them. They may constrain when or where the change hap-

pens, require certain visuals, or imply a user task. The mov-

ing cat we used fits into the theme of the jigsaw application, 

but cannot appear just anywhere in the user’s field of view.  



 

 

Figure 4: Passive haptics enabled by eye-tracking. (a) In 

the forge, the user may pick up any of the two weapons 

on the table. (b) However, only one physical prop is 

available. The weapons are already clustered around 

the prop, but neither one is mapped onto it. (c) The user 

looks as an axe a2 on the wall informing Mise-Unseen 

that the user probably more interested in axes than 

hammers. (d) The spatial memory model is a weighted 

graph that represents all objects w, a1, a2 as nodes. As 

the user looks at weapons, the weights change to repre-

sent internalized (here allocentric) distances between 

objects. (e) Mise-Unseen now shifts the axe onto the 

physical prop. (f) The user picks up the axe virtually 

and (g) physically. 

While a strong attention-grabbing event might work without 

gaze information, Mise-Unseen verifies that the user does 

not pay attention to a change, so that lighter, more casual 

motions can be used that better fit the design. These motions 

are easier to integrate or might already exist in the scene 

(moving shadows, wind effects). The natural movement of 

the cat is merely triggered by the system.  

Prevent recall: one model and staging recommendation 

Model five aims to prevent users from using visual recall to 

notice a change post-hoc. 

 

Figure 5: Validating user choices. (a) For the hacker 

riddle the user needs to find and enter the right code se-

quence. (b) However, if guessed correctly, the solution 

changes unnoticeably. (c) The hint adapts to the new so-

lution. (d) Mise-Unseen detects if the user understood 

the hint by following the users gaze pattern (hint: 

“white rabbit”, solution: “white” = 0, “ra” = 0, “bb” = 

0, “it” = 1, 0001). (e) Only after understanding the hint, 

the solution is accepted. 

Attention model 5: dwell times for spatial memory 

We implemented a weighted directed graph to represent the 

user’s spatial memory, i.e., the distances (spatial and angu-

lar) between relevant objects in the scene the user has inter-

nalized. Figure 4d shows the forge as an example. Nodes 

represent all scene objects, e.g. weapons in the forge, as well 

as the user themself. The edges and their weights represent 

the internalized distance between pairs of objects (allocen-

tric), and objects and user (egocentric). The egocentric 

weights increase when the user looks at an object, the allo-

centric weights increase when the user looks at any two ob-

jects in a row. The weights decrease when the user looks 

away (here after 1 second). As computational cost is expo-

nential in the number of nodes, pairing all objects can be 

computationally costly. We reduce cost by working with a 

subset of relevant objects.  

Mise-Unseen reduces the probability of a user noticing a 

change by recommending new positions and rotations for 

objects unconnected to the change. For example, the weapon 

in the forge that is not picked (Figure 4) moves together with 

the weapon that should be matched onto the physical prop. 

Mise-Unseen computes the difference of all internalized dis-

tances (edge weights) before and after the change, normal-

ized by a baseline distance and baseline rotation. This differ-

ence quantifies the violation of spatial memory and is our 

predictor for attention. Mise-Unseen recommends a new po-

sition and rotation for each object. This results in in less of a 

difference, less violation of spatial memory and thus lower 

probability of detection. 



 

Prevent anticipation: unpredictable triggers 

A user should not be able to anticipate a change by tying it 

to a specific, overt action: covert changes need covert trig-

gers. We either use random triggers, or, more interestingly, 

derive verification of user understanding and user intention 

through eye-tracking.  

The jigsaw uses random triggers, as it cross-fades pieces at 

random time intervals.  

The forge uses user intent as a trigger. Once the user’s intent 

for reaching for a virtual hammer or an axe is clear, Mise-

Unseen injects the change before the user takes action. We 

measured user intent by capturing and thresholding dwell 

times on objects (or sets of objects). This follows existing 

implementations that use eye-movement patterns to predict 

user actions [45,59].  

The hacker riddle uses user understanding as a trigger. Once 

the user has understood the hint the riddle may be solved, 

else the hint changes. We measure user understanding by fol-

lowing related work [6,58] and match the user’s exhibited 

gaze pattern onto a pre-defined scan path (linear or tree). 

Here the user’s gaze must follow the hidden code sequence 

on a sheet of paper (Figure 5d). Our implementation uses an 

variation of attention model five (spatial memory) with 

faster increasing and decreasing edge weights, similar to a 

short term memory. Something is deemed understood once 

the edge weights closely match a set of pre-defined values. 

APPLICATION SCENARIOS 

The main motivation of this work is showing the feasibility 

of hiding changes in plain sight, yet outside the foveated 

area. We implemented seven applications, depicted through-

out the paper. Each application shows a distinct use-case of 

our approach and the feasibility of hiding changes in this 

context. Applications are similar in so far as they share the 

same attention model(s). For example, the forge and the gal-

lery both use attention model five, but the former enables 

passive haptics, while the latter individualizes content to the 

user. 

Two applications (forge, loading room) are specific to VR, 

while the others apply to desktop environments as well.   

The Forge – free choice in passive haptics  

Figure 4 shows and describes this application. Related work 

on passive haptics [23] includes retargeting methods for 

prop re-use [2, 12] and dynamic adaptation of virtual objects 

onto props [22]. This application shows that instead of retar-

geting user movements [12], the idea of adaadaptation can 

use eye-tracking as an indicator for user’s.  

The Loading Room – free choice in real-walking 

Figure 6 shows and describes this application. The loading 

room is conceptually similar to the forge. Instead of match-

ing weapons onto a prop, one of two walking paths are 

matched onto space. Space compression techniques already 

include the adaptation of the virtual world onto the physical 

world [34,42], even by using change blindness outside the 

user’s field of view [47]. Also, the idea of predicting walking 

directions is not new [59]. This application illustrates how 

these approaches could benefit from eye-tracking to create 

more opportunity for these changes. As changes for real-

walking would use more screen space than changes for e.g. 

passive haptics, distractors are mandatory, possibly using 

other modalities such as audio (e.g., phone ringing).  

 

Figure 6: Real-walking enabled by eye-tracking. (a) In 

the loading room, the user is walking towards two lines 

of storage racks. (b) Mise-Unseen shifts the rack that 

the user appears more interested in, (c) so that the user 

can walk through. 

The City Flythrough – cinematic sequences, 360 video, 
virtual locomotion 

Figure 7 shows and describes this application (video con-

tained in auxiliary material). In contrast to the black masks 

that are commonly used to eliminate motion in the peripheral 

vision, we maintain a full field of view. We instead remove 

peripheral motion by reducing the frame rate outside the fo-

vea to 1Hz and blending the renderings of foveated and pe-

ripheral areas together. We hide the reduced frame rate in the 

peripheral area by interpolating between frames, feathering 

the edge to the foveated area, and adding a motion blur.  

 

Figure 7: Virtual locomotion. (a) In this cinematic se-

quence the user jumps from one rooftop to another. 

(b) Conventionally, motion sickness is prevented by 

masking out peripheral vision, but even if this mask fol-

lows the user’s gaze, it is quite noticeable. (c) We in-

stead mask out peripheral motion, by reducing the 

frame rate in the peripheral vision to 1Hz. The blur ob-

fuscates the low frame rate outside the user’s fovea.  



 

Ultimately the effect is similar to foveated rendering, but in-

stead lowers the time resolution instead of pixel resolution 

and uses frame interpolation instead of pixel interpolation. 

Because unlike the other proposed techniques this change is 

not transient in character, we evaluated it separately (see ‘re-

ported noticeability’ in results).  

The Jigsaw Puzzle – adaptive difficulty 

Figure 1 and, in more detail, Figure 3 show and describe this 

demonstration of adaptive difficulty. For cognitive tasks, de-

signers might want to provide help in a covert way so as to 

not diminish the user’s satisfaction in completing a task. 

The Gallery – adaptive content  

Figure 8 shows and describes a demonstration. Past work has 

demonstrates how to change a presentation or personalize an 

experience using gaze [11,62]. The gallery builds on this 

idea and hides the changes. This illustrates how adaptive 

content benefits from our approach as obvious and unbeliev-

able transitions can reduce immersion.  

 

Figure 8: Interest-driven content. (a) In the gallery, the 

user looks at modern art paintings. (b) The painting on 

the left is ignored. (c) Mise-Unseen switches the painting 

in the left frame from impressionist to modern art to 

adapt to the user’s interest. (c) The changed gallery. 

The Hacker Riddle – validating user choices / story pro-
gression 

Figure 5 shows and describes this application. It shows how 

applications can covertly prevent users from guessing their 

way through an experience. This may help foster story pro-

gression or support a narrative arc, e.g., in adventure games, 

or it may be used in training or learning applications.  

The Car Explosion – saving development costs  

Figure 9 shows and describes this application. Foveated ren-

dering already saves computing cost. We want to highlight 

that also development costs can be reduced, leaving more 

resources for development of other parts of the experience. 

As users tend to afterwards look at the area where the tran-

sient change happened, we guide user’s focus. This guiding 

of users attention points to possible use for authoring, e.g., 

to achieve “synchrony of attention” in narratives [5]. 

 

Figure 9: Saving development costs. (a) The user does 

not attend to this car. (b) Instead the user attends to the 

street sign the moment this “explosion” happens. The 

low fidelity of this effect is harder to perceive as it oc-

curs outside the user’s fovea. (c) The user looks at the 

car after it exploded. 

IMPLEMENTATION 

The software, example applications and user study are im-

plemented in C# using Unity3D. Relevant source code is 

available online for researchers to replicate our work [63]. 

USER STUDY 

We validated Mise-Unseen in a two-part user study.  

We first conducted a psychophysics study to better under-

stand how gaze data supports hiding changes in the partici-

pant’s field of view. We implemented a visual search task 

[56], in which participants identified a new target dot appear-

ing within a cluster of 8 other dots (Figure 10). We compared 

a gaze-only method to a baseline condition, in which the dot 

appeared in the center of the field of view, and five other off-

fovea experimental conditions that use different visualiza-

tion techniques to make the visual search task more difficult.  

The second part of our study demonstrates the external va-

lidity of these results. Since our applications use similar vis-

ualization techniques, direct comparisons between applica-

tions should follow results of the first part. 

Participants 

We recruited 15 participants from our organization (5 fe-

male, 10 male, mean age 36.8 sd 10.1 years). Of these par-

ticipants, 12 had experience with VR, 5 with eye-tracking 

and 8 with magic tricks. All participants gave written in-

formed consent (according to the declaration of Helsinki) 

and were paid for their participation. This user study was ap-

proved by an Institutional Review Board. 

Interface conditions 

In the first part of our study we compared a total of six con-

ditions, each motivated by pilot studies which we do not re-

port. 

In our baseline condition, the target appeared in the center 

of the field of view (head-gaze), depicting the worst case 

scenario of placing the change. To not appear on the center 

of the display we added a random 5° angular offset.  

In our off-fovea condition, the target appeared with a 33° an-

gular offset to the head gaze just inside the field of view, but 

outside the fovea. The target was randomly placed within a 

180° radial range opposite to the currently measured eye 

gaze, thus making the position of the target unpredictable to 

the user (see Figure 10). Effectively, this puts the target out 



 

of the foveal vision of 5° and central vision of 30°. Com-

pared to the baseline, this condition shows the effect of gaze 

on hiding scene changes.  

Covertness of scene changes is increased using visual mask-

ing techniques represented by the following conditions: 

In our add-crossfade condition, the target appeared similar 

to the off-fovea condition, but with a linear three second 

fade-in.  

In our add-low-contrast condition, the target appeared simi-

lar to the add-crossfade condition, but the final color was 

altered to use 80% of the background color, lowering the 

contrast of the stimulus to the background. 

In our add-task condition, the target appeared similar to the 

add-low-contrast condition, but the participant was faced 

with an RSVP (rapid serial visual presentation) reading task 

[25]. The participant was forced to read the text out loud as 

a primary task while searching for the target (text appeared 

in front of the participant with ~14 characters/sec using 

IELTS text samples “lessons from the titanic”).  

In our add-motion-distractor condition, the target appeared 

similar to the add-low-contrast condition, but the set of other 

dots was increased from 8 to 18 and moved around the dis-

play with varying speeds.  

In the second part of our study, we compared five of our ap-

plications which exemplify the previously experienced vis-

ual search tasks. 

The forge and gallery experiences demonstrate the add-

crossfade condition, as objects fade in and out, but neglect 

differences in contrast and provide no primary task.  

The hacker riddle experience demonstrate the add-task con-

dition, as participants were tasked with finding the missing 

code sequence, but no motion distractor was used. 

The jigsaw experience demonstrates the add-motion-distrac-

tor condition, as a primary task was given (solving the jig-

saw), and the cat provided added motion whenever the 

pieces moved. Additionally, the contrast of the pieces to the 

table was lowered.  

We evaluated our virtual locomotion technique using two 

separate conditions in the city application. 

In our city black mask condition (Figure 7b), the field of 

view was diminished using the classic circular cutout used 

in many VR applications, with the difference that the cutout 

followed the participant’s gaze. This is equivalent to the off-

fovea condition, as there is no primary task, and only gaze is 

used for obfuscating the visualization. 

In our city full-FOV condition (Figure 7c), the participant 

had a full field of view, but motion outside the fovea was 

removed by reducing the update rate to 1Hz. We cross-fade 

between frames and add motion blur to hide the reduced up-

date rate. This is equivalent to the add-low-contrast condi-

tion, as contrast between areas inside and outside the fovea 

is lowered and cross-fades obfuscate the visualization.  

Apparatus 

We conducted the study in our lab, using a VIVE Pro HMD 

and Trackers to track participants’ head and hand as well as 

the prop, a PupilLabs system for eye-tracking (200Hz, 4.5ms 

latency) and the applications described earlier.  

Task and procedure 

After being introduced to and consenting to the experiment, 

each participant calibrated the eye tracking system. The first 

part of the study took roughly 15 minutes, the second part 

30. Participants received compensation for their effort.  

In the first part, for each trial participants had to find a target 

dot appearing in a cluster of other dots that were placed 

within a range of a horizontal 120° and 66° from the partic-

ipant (Figure 10). Participants could move their head and 

eyes freely. Participants were given a brief tutorial of three 

trials. The position of the other dots changed each trial. Par-

ticipants had to turn their head towards all dots before the 

stimulus was introduced, to control for the possibility of vis-

ual recall (except add-motion-distractor that had more dots). 

The timing of the onset of the stimulus was randomized, as 

was the order of trials. Participants identified new dots by 

turning their head towards it and pressing a key. We chose a 

within-subject design with an adaptive number of repetitions 

per conditions (12 to 18, see [37], also see auxiliary material 

for a complete walkthrough).  

 

Figure 10: (a) In our visual search task our study par-

ticipants saw a cluster of dots in which they had to iden-

tify an appearing dot, like (b) this red dot. (c) The stim-

ulus is randomly placed (plus sign denotes head gaze, 

minus sign denotes eye gaze not visible to participant).  

For the second part of the study, participants experienced a 

random selection of the applications described in the user 

study section above (due to time constraints), during which 

they also gave qualitative feedback by thinking aloud. 

Measurements 

We measured detection rate in the first and enjoyment and 

reported noticeability in the second part of the study. 

The detection rate, our main metric, is the ratio of correctly 

observed newly appearing dots. For small differences in de-

tection rate we additionally compare inverse-efficiency (see 

[8]), the ratio between task completion time (time on identi-

fication of stimulus minus time on stimulus onset) and the 

detection rate. Low values indicate good task performance.  

Enjoyment was measured by asking participants to rate a 7-

item Likert scale statement (“I enjoyed this experience” 1 – 

agree not at all, 7 – agree very much). This metric was taken 

to show that the implemented applications are valid; we 

merely report these values. 



 

Reported noticeability was measured similarly (“changes in 

the virtual scene were noticeable” 1 – agree not at all, 7 – 

agree very much). This metric was taken for comparisons. 

Hypotheses 

We compared the off-fovea condition to the other five con-

ditions, including the baseline condition. We hypothesize 

that changes in the off-fovea condition are less noticeable 

(lower detection rate or higher inverse efficiency) than in the 

baseline condition (H1), but more noticeable than in the con-

ditions add-crossfade (H2), add-low-contrast (H3), add-

task (H4) and add-motion-distractor (H5). Additionally, we 

want to see if the psychophysics results are consistent with 

the applications part of the study. We assumed that noticea-

bility in the jigsaw would be lower than hacker riddle due to 

motion distractors (H6), which in turn would perform better 

than gallery and forge due to the primary task (H7). The 

stimulus in the city is not transient, making it hard to com-

pare to the others, so we merely hypothesized the city full-

FOV is less noticeable than city black mask (H8). 

Analysis  

We used a Friedman test for the analysis of the visual search 

task with two-tailed Wilcoxon signed rank tests for post-hoc 

pairwise comparisons. For the second part, in which each 

participant experienced a different subset of applications, we 

ran a Kruskal-Wallis together with Wilcoxon rank sum tests.  

Results 

Detection rate: Figure 11 shows the main results. Detection 

rate was significantly different between conditions 

(χ2(5) = 38.5, p < .001). Detection rate is lowest in add-task 

and add-motion-distractor. Add-motion-distractor was sig-

nificantly lower than add-task (p < .05, r = .64). When com-

pared to off-fovea, both conditions show lower detection 

rate, (add-task: p < .05, r = .51; add-motion-distractor: 

p < .01, r = .84). This confirms H4 and H5.  

 

Figure 11: Detection rate is significantly lower for con-

ditions involving a task and moving distractors (bars 

show standard error). 

The remaining conditions do not show significant differ-

ences on detection rates, despite the fact that detection low-

ers incrementally with the added complexity of the different 

conditions. For such smaller detection differences we com-

pare their inverse efficiency. 

Inverse efficiency: Figure 12 shows the results. Inverse effi-

ciency was significantly different between conditions 

(χ2(3) = 16.4, p < .001). Since no successful detections oc-

curred in the add-motion-distractor condition and only a few 

in the add-task condition, only the first four conditions are 

included for computing the main effect. We observe that off-

fovea has a significant impact on inverse efficiency of the 

visual search task when compared to baseline (p < .05, 

r = .74), i.e., using gaze data reduces task performance for 

detecting changes. Add-crossfade is not measurably differ-

ent, but add-low-contrast increases inverse efficiency signif-

icantly more than off-fovea (p < .05, r = .85). These results 

do not confirm H2, but confirm H3 and, importantly, H1.  

 

Figure 12: Inverse efficiency of the off-fovea condition is 

higher than in the baseline. Adding visualization tech-

niques obfuscate the injected change further.  

Results from the second part of the study validated the ap-

plicability of the psychophysics results in our demonstration 

applications.  

Reported noticeability: Figure 13 shows the results. Reported 

noticeability was significantly different between conditions 

(H(5) = 20.6, p < .001). Participants found the city black 

mask more noticeable than city full-FOV (p < .05, r = .61) 

confirming H8. Hacker riddle performed better than forge 

(p < .05, r = .51) and gallery (p < .05, r = .54) confirming 

H7. Jigsaw scored lower than the hacker riddle, however, 

not significantly, therefore we cannot confirm H6.  

 

Figure 13: Participants average ratings on the state-

ment “changes in the virtual scene were noticeable” re-

flect the findings from the first part of the study (bars 

show standard error). 

Enjoyment: Overall, participants enjoyed our applications the 

jigsaw (5.2 sd 1.3), the hacker riddle (4.9 sd 1.0), the gallery 

(5.2 sd 0.7), the forge (6.5 sd 0.5), and the city (4.1 sd 1.7).  



 

Qualitative feedback 

Participants noticed some changes in the gallery condition 

(P4: “I noticed the gradual transition”, similar P9), often due 

to recall (P1: “the moment I looked back”, similar P4).  

Participants reported to have noticed less changes in the jig-

saw condition, because of the primary task (P14: “I was 

more concentrating on how to complete it”, similar P1, P2, 

P6, P8) and because of the distractor (P12: “the cat was mov-

ing, I was not looking at anything else”, similar P5). 

Most participants preferred the city full-FOV condition (P5: 

“there is no motion sickness”, similar P5, P6, P7, P15), but 

some did not (P10: “the update rate is noticeable if objects 

are close”, similar P9, P11). Participants commented on the 

field of view (P12: “in [black mask] the field of vision de-

creased”, similar P8) and the contrast (P15: “[black mask] I 

am drawn to the contrast”, similar P4, P5, P6, P7, P11, P12).  

Additional results – cognitive load measured by pupil-
lometry and amount of saccades 

Pupillometry has been proposed to indicate a user’s attention 

to a task [26] or cognitive load due to task involvement [16]. 

We describe our implementation of this measure of cognitive 

load in our system section (model two). We computed the 

average of this measure from the onset of the stimulus until 

the end of the trial. We found that cognitive load correlated 

positively with our inverse efficiency metric (p < .05, 

r = .38), i.e., negatively with task performance. Changes are 

less noticeable when cognitive load increases. The baseline 

condition was removed from this analysis as it showed out-

lier characteristics (data points too close together due to high 

efficiency). This correlation between the pupillometry and 

our task performance further validates the use of this metric 

for cognitive load. We also examined our saccade-based 

metric of cognitive load (model three), but found no conclu-

sive results.  

DISCUSSION 

Our main insight is that gaze data supports hiding changes 

inside the user’s field of view. The use of attention models 

paired with masking techniques, such as occupation with a 

primary task (hacker riddle) or presentation of visual distrac-

tors (jigsaw), reduces the detection rate to a level that may 

be useful in many applications. 

We think these results can be generalized. Consistent with 

our measurements, participants reported less noticeability in 

applications with these masking techniques. We believe our 

results are ecologically valid, as participants could move 

their head and eyes freely and reported high enjoyment.  

Our study concentrates on Mise-Unseen’s prevent observa-

tion part. It directly validates attention model 1 (current at-

tention) and our visual masking techniques. It also shows 

that attention models for deriving cognitive load could po-

tentially be used to supplement or replace visual masking 

techniques. Specifically the pupillometry data (model 2), 

while noisy, shows noteworthy preliminary results. Using 

saccades (model 3) looked promising during pilots, but we 

could not measure a correlation in the study. We did not run 

a study on covert attention (model 4), but we found it to work 

better with changes small in screen size (e.g. hacker room), 

as cross-fades cannot be used due to time constraints. We 

propose Mise-Unseen’s other parts prevent anticipation and 

prevent recall with our computational model of spatial 

memory (model 5) as a stand-in for possibly much better 

computational models [31,39]. These should be evaluated 

separately.  

We speculate that Mise Unseen will find use in a broad range 

of fields. VR will be ubiquitous [13,34,46,47], but tracking 

data of the physical environment will include noise and de-

lay, so  runtime changes for dynamic staging are required. 

Ubiquitous VR will, however, first require further research 

on parametric and generic design. We presented other uses 

like detecting user preference or logical understanding [40]. 

This may have implications for storytelling as advances in 

narrative are now possibly contingent on where one looks. It 

also extends Mise Unseen’s applicability to areas like edu-

cation and training applications where task adherence is im-

portant. Since users do not notice they are being helped, mo-

tivation might increase. On a hardware level, the quality of 

eye-tracking will further improve and compensate for drift 

[18] (our eye-tracker has an accuracy of 1°, but a lack of auto 

calibration caused drift, requiring occasional recalibration). 

More importantly, the field of view in future VR headsets 

will increase and more space for dynamic staging will be 

available, supporting our approach. 

In this work we focused on eye-tracking. Naturally, our ap-

proach can be fused with other input. Video processing pro-

vides saliency maps, which are great indicators of attention 

[7]. Brain-computer interface signals, like EEG, could also 

supplement our approach [27,30]. Our visual masking tech-

niques can be extended (e.g., [3]). On a mechanical level, a 

change could be triggered while forcing a user to blink [14].  

CONCLUSION  

We presented Mise-Unseen, a software system for covertly 

injecting changes to virtual scenes inside the user’s field of 

view. We incorporated findings from our literature review to 

process gaze to form high-level models of attention, inten-

tion and spatial memory to find out if and when to inject a 

change into a scene. We use Mise-Unseen in our implemen-

tation of seven different applications that we presented in 

this paper to highlight potential usages for the system. We 

validated our system and our applications in a two-part user 

study. We found that eye gaze indeed supports hiding 

changes, but only in combination with different masking 

techniques can changes be obfuscated reliably.   
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