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Abstract

We present a novel learning-based method that
achieves state-of-the-art performance on several
heart rate estimation benchmarks extracted from
photoplethysmography signals (PPG). We consider
the evolution of the heart rate in the context of a
discrete-time stochastic process that we represent
as a hidden Markov model. We derive a distribu-
tion over possible heart rate values for a given PPG
signal window through a trained neural network.
Using belief propagation, we incorporate the sta-
tistical distribution of heart rate changes to refine
these estimates in a temporal context. From this,
we obtain a quantized probability distribution over
the range of possible heart rate values that captures
a meaningful and well-calibrated estimate of the
inherent predictive uncertainty. We show the ro-
bustness of our method on eight public datasets
with three different cross-validation experiments.

1 INTRODUCTION

Photoplethysmography (PPG) is an optical sensing tech-
nique that measures the blood volume pulse from the inten-
sity of reflected light at the surface of the skin. PPG is widely
used in clinical settings to monitor a patient’s vital param-
eters, including heart rate (HR) and pulse oximetry [Allen
et al., 2021]. Because PPG sensors are unobtrusive, they
are also a common part of wearables such as smartwatches
or fitness trackers to monitor cardiac activity and health in
ambulatory settings. The use in ambulatory settings holds
much potential for the early diagnosis and prevention of
cardiovascular diseases in the general population.

However, in practice, PPG signals are typically affected by
artifacts, especially outside controlled clinical conditions

*These authors contributed equally to this work

Frequency Domain

Frequency in Hz
0.5 1.0 1.5 2.0 2.5 3.0 3.5

M
ag

ni
tu

de

Time in seconds
0 2 4 6 8

Time Domain

In
te

ns
ity

PPG
Accelerometer
True HR

Figure 1: Example of a PPG signal captured with green LED
(wavelength: 515 nm) from the IEEE test dataset [Zhang
et al., 2015]. Due to motion artifacts, the PPG signal con-
tains several dominant peaks within the range of possible
heart rate frequencies.

and, thus, where they could prove most useful. Due to the
optical sensing principle, changes in ambient light affect re-
solved intensities as do motion-induced artifacts from activ-
ities such as walking, running, or gesturing. These motions
result in spurious peaks in the signal, causing additional
candidates in the frequency spectrum of possible HR val-
ues, thus making the extraction of reliable measurements
difficult (see Figure 1).

Therefore, extracting HR from PPG signals that may be
noise-afflicted is an important and challenging problem.
While methods in classical signal processing have long dom-
inated the field of estimating HR from PPG signals, recent
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research has shown that these algorithms tend to perform
poorly on unseen out-of-distribution (OOD) data [Reiss
et al., 2019]. Various deep-learning-based methods have
since been proposed [Biswas et al., 2019, Chung et al.,
2020, Chang et al., 2021]. Importantly, these methods lack
the critical capability to indicate when they fail to produce
a reliable result, which is essential in the healthcare sector,
where erroneous readings may have severe consequences.

In this paper, we propose a novel learning-based method
that simultaneously estimates HR from PPG signals along-
side the uncertainty of its estimates. The key idea of our
method is to consider HR prediction within the context of a
time-discrete stochastic process. We model the HR sequence
through a probabilistic graphical model that incorporates the
statistical transition probabilities between HR classes, such
that we can learn a probabilistic relation between instanta-
neous HR values and observed PPG signal windows through
a neural network. Through message passing, our method
takes the probability over all possible past HR trajectories
into consideration, allowing us to predict a meaningful dis-
tribution over the range of discrete HR classes that captures
the predictive uncertainty for an HR estimate at a given time
step. From the mean of the distribution for each time step,
we can obtain a single HR estimate.

Through a series of experiments on eight public datasets
with three different cross-validation schemes, we empiri-
cally demonstrate the robustness of our proposed method.
For Leave-one-Subject-out (LoSo), we achieve a mean abso-
lute error (MAE) of 3.57 beats per minute (BPM) on PPG-
DaLiA [Reiss et al., 2019], the largest available PPG dataset
captured in natural environments. This outperforms related
approaches with state-of-the-art (SOTA) performance by
18%, even beating them when our method was only trained
on samples of other datasets. We further show that our pre-
dicted output distribution is well-calibrated and demonstrate
its utility in an experiment where we gradually remove sam-
ples with higher predictive uncertainty to further reduce the
average prediction error.

1.1 CONTRIBUTIONS

We make the following specific contributions in this paper:

• a method that estimates heart rate as a hidden stochas-
tic process from a sequence of observed PPG signals,
refining the output distribution of a trained neural net-
work through message passing,

• a novel neural network architecture that operates on
both the time and the time-frequency domain for PPG-
based HR prediction with fewer trainable parameters
than previous methods, and

• a series of experiments that evaluate the calibration
of the predicted output distributions and demonstrate

SOTA accuracy of our HR estimates, including on out-
of-distribution data1.

While we demonstrate our method on the problem of PPG-
based HR estimation, we believe it could show similarly
encouraging results on related temporal sequence estimation
problems within other domains.

2 RELATED WORK

The work in this paper is related to deep learning-based
uncertainty estimation and PPG-based HR estimation.

2.1 DEEP LEARNING-BASED UNCERTAINTY
ESTIMATION

The total uncertainty of predictive models can be divided
into aleatoric and epistemic uncertainty [Ulmer and Cinà,
2021]. The aleatoric uncertainty captures the uncertainty
inherent in the data and the epistemic uncertainty is an
estimate of the uncertainty due to constraints on the model
or the training process [Depeweg et al., 2017]. For a well-
calibrated model, the uncertainty estimates and the model
error are perfectly correlated [Band et al., 2022].

Several approaches have been proposed to estimate the un-
certainty of a deep learning model. These include fitting
a parametric probability distribution over network activa-
tions and weights [Hernández-Lobato and Adams, 2015],
sampling using dropout [Gal and Ghahramani, 2016], and
Bayesian neural networks [MacKay, 1992, Neal, 2012].
Most of the previous work only evaluated their predictive
performance and the quality of their uncertainty estimates on
curated datasets such as CIFAR-10 and FashionMNIST [Os-
awa et al., 2019, Ovadia et al., 2019]. In the domain of
personalized health, where great inter-subject variability is
common, robust uncertainty estimates are crucial.

2.2 PPG-BASED HEART RATE ESTIMATION

Increasing interest into PPG-based HR prediction has led
to the release of large publicly available datasets [Schmidt
et al., 2018, Reiss et al., 2019, Zhang et al., 2015]. Pre-
vious research on PPG-based HR estimation has mainly
focused on classical signal-processing methods such as fi-
nite state machines (FSM) [Chung et al., 2019] or adaptive
filters [Guo et al., 2022, Temko, 2017] that aim to extract
the underlying pulse wave component from the PPG sig-
nal before estimating HR. Temko [2017] further employed
Viterbi decoding to extract the most likely HR path from an
extracted histogram, but acknowledges that this approach
is constrained to offline post-processing. Zhou and Selvaraj

1Our implementation is publicly available at
https://github.com/eth-siplab/BeliefPPG.



[2020] proposed to track heart rate values in the frequency
domain using rule-based decision-making algorithms. How-
ever, these methods rely on manually-tuned hyperparame-
ters that do not generalize across datasets where participants’
activities differ.

To overcome this, deep learning-based approaches have
been introduced for PPG-based HR estimation [Reiss et al.,
2019]. These typically either operate on the time-[Biswas
et al., 2019, Rocha et al., 2020, Ray et al., 2022, Shyam
et al., 2019] or time-frequency [Reiss et al., 2019, Chung
et al., 2020] representation of the PPG signal. Proposed
architectures include convolutional, linear and recurrent lay-
ers, and have been optimized using Network Architecture
Search [Burrello et al., 2022, 2021, Song et al., 2021].
While most of these approaches estimate the most-likely
heart rate in a regression setting, Chung et al. [2020] refor-
mulates the PPG-based HR estimation as a classification
over 222 HR bins. Ray et al. [2022] propose a Bayesian neu-
ral network combining Bayesian inference with Monte Carlo
dropout to obtain estimates of the aleatoric and epistemic
uncertainty. Chang et al. [2021] and Sarkar and Etemad
[2020] use generative machine learning to improve signal
quality before applying a classical method.

Our novel deep learning method estimates the HR through
a discrete set of classes over the range of possible heart
rate values to better represent multi-modal distributions
that capture the uncertainty across the frequency spectrum
(see Figure 1). In addition, our method considers its predic-
tion within the temporal context of the HR trajectory using
belief propagation to decrease the effect of motion artifacts
and OOD samples in an online fashion.

3 METHOD

In this section, we describe our method BeliefPPG for the
reliable estimation of heart rate from PPG signals as input.
We represent the evolution of the heart rate in the form of a
probabilistic graphical model. Using probabilistic inference,
our method predicts a representative distribution that cap-
tures the inherent predictive uncertainty over the range of
possible heart rate values over time.

3.1 PROBLEM FORMULATION

Our method estimates the instantaneous heart rate yt 2 R
at time t based on a window of input signals XXXt =�

xxxt�(i�1)Tx

 Lx
i=1 where Lx 2 N is the length and Tx 2 R+

is the sampling interval of the signal window. A sample of
the signal window xxxt 2 RNx generally includes the values of
the channels of the PPG sensor as well as the acceleration
captured by an accelerometer that is integrated into most
sensing hardware for the discrimination of motion artifacts
obscuring the PPG signal.

We further consider yt in the context of a discrete-time
stochastic process of PPG-based heart rate estimates sam-
pled at an interval Ty, where each yt corresponds to an ob-
served signal window XXXt extracted from a recorded trace
of PPG and acceleration signals. We describe this sequence
in the form of a Forney factor graph (see Figure 2), which
reveals the structure of a hidden Markov model (HMM)
assuming that the hidden heart rate state Yt only depends
on its previous state Yt�1 and the current observation XXXt .
The factor graph comprises the factor vertices fT and fN .
fT captures the transition probability between the heart rate
state Yt and its previous heart rate state Yt�1. fN models the
statistical relation between an observed signal window XXXt
and the heart rate state Yt at time t, and thus, resembles the
emission probability in a standard hidden Markov model.

3.2 HEART RATE ESTIMATION NETWORK

We model the factorial fN (Yt ,XXXt) capturing the statistical re-
lation between the heart rate state Yt and the signal window
XXXt at time t through a neural network trained with supervi-
sion to estimate the conditional probability p(Yt |XXXt). We
represent pYt (ŷt |XXXt), ŷt 2 C, as a discrete distribution over
the set of heart rate values C with c classes linearly spaced
in the range [ymin,ymax) to enable the prediction of arbitrar-
ily multimodal distributions [Van Den Oord et al., 2016,
Chung et al., 2020]. ymin and ymax correspond to physiologi-
cally sensible limits of 30 BPM and 210 BPM respectively
[Tanaka et al., 2001].

3.3 HEART RATE TRANSITION FUNCTION

The HR transition function is inspired by related medical
literature that investigated the distribution of beat-to-beat
differences for heart rate variability [Dünnwald et al., 2019,
Penna et al., 1995, Kiyono et al., 2004].

We model the heart rate transition factor fT as a conditional

. . . =

fT

= . . .

fN fN
XXXt�1 XXXt

Y 00t�1 Yt�1 Y 00t Yt

Y 0t�1 Y 0t

Figure 2: Forney factor graph representing the probabilistic
graphical model for the evolution of the heart rate over time.
The factor graph includes the factor vertices fT and fN . fT
captures the transition probabilities between the heart rate
states Yt across time. fN represents the relationship between
an observed PPG and acceleration signal window XXXt and
the heart rate state Yt at time t.



probability distribution using the normal distribution fitted
to the logarithmic change log yt

yt�1
across one timestep (see

supplementary material),

p(yt | yt�1) =
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(1)

We discretize this conditional probability distribution to
the heart rate transition function fT (ŷt , ŷt�1) by integrating
p(yt | yt�1) according to the intervals of the heart rate states
C from ŷ�t /ŷ+t�1 to ŷ+t /ŷ�t�1, where the superscript + indi-
cates the upper bound and � the lower bound of the interval
represented by the respective heart rate class.

3.4 PROBABILISTIC HEART RATE INFERENCE

We present two methods for heart rate inference that rely on
message passing on the factor graph in Figure 2.

3.4.1 HR distribution via belief propagation

We infer the current heart rate state distribution using for-
ward sum-product message passing (belief propagation),
where �!µ represents the forward message in the positive
time dimension,

�!µ Y 0t (ŷt) = fN (ŷt ,XXXt) , (2)
�!µ Y 00t (ŷt) = Â

ŷt�12C
fT (ŷt , ŷt�1)

�!µ Yt�1 (ŷt�1) , (3)

�!µ Yt (ŷt) =
1
Zt

�!µ Y 0t (ŷt)
�!µ Y 00t (ŷt) , (4)

Zt = Â
ŷi2C

�!µ Y 0t (ŷi)
�!µ Y 00t (ŷi) , (5)

pYt (ŷt |XXX1, . . . ,XXXt) =
�!µ Yt (ŷt) . (6)

pYt (ŷt |XXX1, . . . ,XXXt) is a probability mass function of the
discrete heart rate state Yt over the set of heart rate val-
ues C. Note that the forward pass for the computation
of pYt (ŷt |XXX1, . . . ,XXXt) can be computed in an online man-
ner and efficiently implemented in standard deep-learning
frameworks using matrix multiplications. The distribution
over the heart rate classes pYt (ŷt |XXX1, . . . ,XXXt) captures the
inherent predictive uncertainty of our method. We can re-
fine the granularity of the discrete heart rate class spacing
through linear interpolation and normalization to approxi-
mate a more continuous distribution over the range of possi-
ble heart rate values.

It can be further reduced to a single heart rate value for time
step t through the computation of the mean heart rate,

ỹt = Eŷt⇠pYt (ŷt |XXX1,...,XXXt ) [ŷt ] = Â
ŷt2C

ŷt pYt (ŷt |XXX1, . . . ,XXXt) .

(7)

We compute an estimate of the predictive uncertainty using
Shannon’s entropy over the distribution

H (Yt) =� Â
ŷt2C

pYt (ŷt |XXX1, . . . ,XXXt) log pYt (ŷt |XXX1, . . . ,XXXt).

(8)

We also experiment with the standard deviation over
pYt (ŷt |XXX1, . . . ,XXXt) to measure how much the distribution is
spread out over the heart rate classes.

3.4.2 HR sequence via max-product message passing

Alternatively, we can compute an a posteriori estimate of
the most likely heart rate sequence over the hidden state
variables

�
Ŷ1, . . . ,Ŷt

�
using max-product message passing

that considers the temporal context of the whole sequence,

�
Ŷ1, . . . ,Ŷt

�
b=argmax

Y1,...,Yt

p(Y1, . . . ,Yt |XXX1, . . . ,XXXt) , (9)

where in the case of a unique maximizer

ŷk = argmax
Yk

max
Y1,...,Yt except Yk

p(Y1, . . . ,Yt |XXX1, . . . ,XXXt) . (10)

Following the Viterbi algorithm [Forney, 1973], we keep
track of the product maximizing previous state ŷt�1 2 C for
each heart rate class ŷt 2 C in the forward recursion with
the forward message �!µ over the heart rate state variables
(Y1, . . . ,Yt),

�!µ Y 0t (ŷt) = fN (ŷt ,XXXt) , (11)
�!µ Y 00t (ŷt) = max

ŷt�12C
fT (ŷt , ŷt�1)

�!µ Yt�1 (ŷt�1) , (12)

�!µ Yt (ŷt) =
�!µ Y 0t (ŷt)

�!µ Y 00t (ŷt) . (13)

We then recursively reconstruct and update the maximizing
path over the state sequence in a backward pass starting
from the maximum heart rate class in the last time step t,

ŷt = argmax
Yt

�!µ Yt (ŷt) , (14)

ŷk�1 = argmax
ŷk�12C

fT (ŷk, ŷk�1)
�!µ Yk�1 (ŷk�1) . (15)

Due to the backward pass, max-product message passing is
more suitable for offline processing.



4 IMPLEMENTATION

We now describe the implementation of our method, in-
cluding the representation of our input, the HR estimation
network, and the HR transition function in detail.

4.1 INPUT REPRESENTATION

Our network operates on the inputs in their time as well as
frequency representation. The Fourier spectrum of a PPG
signal is expected to contain a dominant peak at the heart
rate frequency, facilitating a straightforward heart rate es-
timation for artifact-free signals. While components from
motion artifacts in the PPG signals with frequencies further
away from the instantaneous heart rate can be typically elim-
inated through a comparison with the Fourier spectra of the
acceleration channels, leakage and low-resolution effects
[Stoica et al., 2005] in the fast Fourier transform (FFT) can
significantly obscure this filtering for motion artifacts with
frequencies that are very close to the heartbeat frequency
[Zhang et al., 2015, Zhang, 2015]. The latter are frequently
present for wrist-worn sensors during strong movements
and repetitive arm motions. In this case, the patterns in the
time-domain representation of the signal might provide ad-
ditional discerning information, which intuitively motivates
the inherent duality of our inputs.

For the time domain representation, we z-score normalize
the PPG channels of the window XXXt after band-pass filtering
them with corner frequencies 0.1 and 18 Hz using a Butter-
worth bandpass filter. Then we average across channels and
resample the result to 64 Hz, obtaining X̃XXt 2 RLx⇥1.

For the Fourier representation, we first subdivide XXXt into
another Ws overlapping 8-second windows with 2 seconds
shift, z-score normalize and downsample them before com-
puting the FFT with 535 points. To obtain a spectrogram for
each window of XXXt , we extract the magnitudes of the Ns fre-
quency components within the PPG pulse wave frequency
range between 0.5 Hz to 3.5 Hz.

We repeat this process for each channel of XXXt separately
and then average across available PPG- and acceleration
channels to obtain X̂XXt 2 RWs⇥Ns⇥2, where the last dimension
consists of the information from the PPG sensor and the
accelerometer.

4.2 HEART RATE TRANSITION FUNCTION

We fit µT and sT (see Eq. (1)) over the distribution of rela-
tive heart rate changes observed in the training set and then
perform the discretization depending on the number of heart
rate classes c. The supplementary material includes an ex-
ample plot for the heart rate transition distribution extracted
from real-world data.

4.3 HEART RATE NETWORK ARCHITECTURE

The architecture of our network consists of two input
branches. One branch operates on the spectrogram X̂XXt , while
the other receives X̃XXt as input.

Two consecutive 2D convolutional layers that operate across
the time and frequency axes simultaneously with a kernel
of size 3x3 extract an embedding for each PPG-acceleration
magnitude pair in X̂XXt . A dot-product attention layer then
computes the correlation between the linear embeddings
computed across the frequency dimension to obtain an
attention-refined aggregate, which considers the context
across all frequency components along one time step of the
spectrogram. A second dot-product attention layer extracts
equivalent features from the spectrogram across the time
dimension for each spectrogram frequency. We add these
embeddings to a linear embedding directly computed on
the output of the convolutional layers. This is followed by
an average pooling layer that computes the mean of all ag-
gregate vectors along the time dimension. A 1D Attention
U-Net [Oktay et al., 2018] transforms this into a logit vector
with c classes. At the bottleneck of the U-Net, we fuse the
latent vector hhh 2 RLh of size Lh 2 N with the output of the
time-domain branch. The time-domain branch consists of a
downsized version of CorNET [Biswas et al., 2019], a two-
layer 1D convolutional neural network with max-pooling
layers, and a 2-layer LSTM head. The branch computes a
weighting vector vvv 2 RLh and a feature vector sss 2 RLh .

We add sss and vvv in the form of a residual through an adapted
form of additive attention, obtaining the input ĥhh 2 RLh for
the upsampling branch of the U-Net as

ĥhh = hhh+ tanh(WWW v [hhh;vvv]+bbbv)�ReLU(WWW s [hhh;sss]+bbbs) .
(16)

WWW v,WWW s 2 RLh⇥2Lh and bbbv,bbbs 2 RLh are trainable weight ma-
trices and bias terms respectively. ReLU is the ReLU activa-
tion function, [·; ·] is a concatenation operator and � is the
element-wise Hadamard product.

After upsampling, the softmax activation function converts
the logit vector to a probability distribution estimate across
the c respective classes. We included a more detailed de-
scription of the network architecture in the supplementary
material.

4.4 LOSS FUNCTION

We train the network using categorical cross-entropy loss.
Since we reformulate the regression of the real-numbered
output yt as a classification problem, we do not use a bi-
nary target vector but represent yt as a discrete probability
distribution over the set of heart rate values C, pYt (ŷt |XXXt).

We obtain pYt (ŷt |XXXt) by discretizing the normal distribution



N
�
yt ,s2

y
�

with expectation yt and variance s2
y . Here, yt

is the ground-truth heart rate and s2
y is a hyperparameter,

which has a regularizing effect on the output distribution.
Using pYt (ŷt |XXXt), we compute the categorical cross-entropy
loss L against the estimated output distribution from our
network, p̂Yt (ŷt |XXXt) (see algorithm 1).

Algorithm 1: Computation of loss L

f (y) N (yt ,s2
y )

pYt (ŷt |XXXt) f (ŷt)/Âỹ2C f (ỹ)
L  �Âŷt2C pYt (ŷt |XXXt) log( p̂Yt (ŷt |XXXt))

We use 64 classes, resulting in a mean quantization error
E
h���yt �Eŷt⇠pYt (ŷt |XXXt ) [ŷt ]

���
i

of 0.02 and a maximum quanti-
zation error of around 0.035. We implement the heart rate
transition function as a matrix T 2 Rc⇥c to ease integration
in the message-passing algorithm.

4.5 TRAINING

We implement our model in TensorFlow. The models are
trained on an NVIDIA GeForce RTX 3090 GPU until con-
vergence with an early stopping criterion obtained on a
separate validation set. We use a batch size of 128 and the
Adam [Kingma and Ba, 2014] optimizer with a learning rate
of 2.5⇥10�4. We further augment our training dataset by
applying random time stretches with up to 25% on the input
signals and extracted labels as well as by adding Gaussian
noise n to the inputs, n⇠N

�
0,0.252�.

5 EXPERIMENTS

We evaluate our approach on eight publicly available
datasets using three different cross-validation schemes to
test for robustness and generalization capability. Mean ab-
solute errors (MAEs) and standard deviations are presented
as the average and standard deviation across sessions.

5.1 CROSS-VALIDATION SCHEMES

Leave-one-Session-out (LoSo) cross-validation The sub-
jects are split into n� 2 training, one validation, and one
test subject. The split is rotated until all sessions have been
used as test set. We perform the experiments on each dataset
separately.

Five-Fold cross-validation Each dataset is randomly split
into 20% test and 80% training sessions, where each session
captures the recording for a unique subject. One validation
subject is randomly chosen from the training set. We com-
bine the respective splits from all datasets so that every
dataset contributes to the experiment for each fold.

Leave-one-Dataset-out cross-validation One dataset is
taken as test data, and the remainder serves as training data.
One validation session is drawn from each training dataset.

Only predictions on test sets (unseen data) are reported. The
model is optimized on the training set until validation loss
does not decrease for more than 50 epochs.

5.2 DATASETS

Our evaluation considers eight datasets, including IEEE
train and test [Zhang et al., 2015], PPG-DaLiA [Reiss et al.,
2019], WESAD [Schmidt et al., 2018], the two datasets
published by the BAMI-Labs [Chung et al., 2020, Lee
et al., 2019], BIDMC PPG [Pimentel et al., 2017] as well
as CLAS [Markova et al., 2019]. They jointly provide a
diverse data collection comprising different subjects, activi-
ties, and recording hardware. DaLiA is not only by far the
largest but also the only data collection gathered in natural
environments.

5.3 HEART RATE ESTIMATION ACCURACY

On all eight datasets and under all three evaluation strate-
gies the method achieves or outperforms state-of-the-art
results among cross-validated methods. A full compari-
son is shown in Table 1. Under leave-one-session-out as
well as five-fold cross-validation the model achieves low
mean absolute errors despite the small dataset sizes in the
former and the heterogeneous data in the latter. On PPG-
DaLiA the method outperforms the reported MAE of the
runner-up method Q-PPG by 0.8 (18%) BPM under LoSo
evaluation. The small IEEE datasets however remain chal-
lenging: Although achieving the lowest error among LoSo-
evaluated deep learning methods, hand-tuned algorithms
such as WFPV still perform slightly better.

During out-of-distribution evaluation (Leave-one-Dataset-
out) we observe a slight decrease in accuracy on the DaLiA
and BAMI datasets (+0.5, +1.7, +1.6 BPM MAE) while
the performance on the other datasets remains unchanged.
Notably, our method still outperforms its in-distribution-
trained competition on PPG-DaLiA.

In summary, the model produces highly competitive results
in terms of MAE under various data distributions and cross-
validation methods.

Errors by activity We added a plot of the relative errors
achieved across activities performed in PPG-DaLiA in the
supplementary material. We observe the highest errors for
the "walking stairs" activity (6.6% mean absolute percentage
error) and the lowest errors for sedentary activities.

Errors by subject As shown in Table 1, the standard
deviation of the MAE across subjects is low in comparison



Table 1: HR estimation accuracy compared to prior work. Values indicate MAE and standard deviation in BPM using LoSo
cross-validation if not indicated by footnotes otherwise.

Approach #Param. IEEE train IEEE test PPG-DaLiA WESAD BAMI-1 BAMI-2 BIDMC CLAS
CLASSICAL METHODS (not cross-validated)
WFPV1 [Temko, 2017] - 1.02 1.97 10.7 ± 3.8 8.5 ± 4.3 11.28 6.09 - -
TAPIR1 [Huang and Selvaraj, 2020] - 2.5 ± 1.2 5.9 ± 3.5 4.6 ± 1.4 4.2 ± 1.4 - - - -
CurToSS1 [Zhou and Selvaraj, 2020] - 2.2 4.5 5.0 ± 2.8 6.4 ± 1.8 - - - -

DEEP LEARNING METHODS
CardioGAN [Sarkar and Etemad, 2020] - - - 8.30 8.60 - - 0.7 -
DeepHeart [Chang et al., 2021] 3.3M 4.76 (1.986) - - - - - - -
BAMI2 [Chung et al., 2020] 3.3M 0.674 0.864 - - 1.394 1.46 - -
Binary CorNET [Rocha et al., 2020] 257k 4.67 ± 3.7 6.61 ± 5.4 - - - - - -
PPGNet [Shyam et al., 2019] - 3.36 ± 4.1 12.48 ± 14.5 - - - - - -
Deep PPG [Reiss et al., 2019] 8.5M 4.0 ± 5.4 16.51 ± 16.1 7.65 ± 4.2 7.47 ± 3.3 - - - -
DeepPulse [Ray et al., 2022] 730k 2.76 ± 3.05 5.05 ± 5.55 2.12 ± 3.15 - - 2.38 ± 2.65 - -
NAS-PPG3 [Song et al., 2021] 800k 0.824 1.034 6.02 ± 10.6 - - - - -
MH Conv-LSTM [Wilkosz and Szczęsna, 2021] 680k - - 6.28 ± 3.5 - - - - -
ActPPG3 [Burrello et al., 2022] 900k 3.27 ± 2.0 4.88 (3.847 ) - - - - -
TEMPONet3[Burrello et al., 2021] 269k - - 4.36 (3.617 ) - - - - -

OURS
Leave-one-Session-out Cross-Validation
BeliefPPG (ours) 138k 1.75 ± 0.8 3.78 ± 2.2 3.57 ± 1.4 4.28 ± 2.0 2.00 ± 1.0 1.48 ± 0.9 - -
BeliefPPG / viterbi 138k 1.47 ± 0.6 3.06 ± 1.9 3.18 ± 1.3 4.02 ± 1.9 2.12 ± 1.1 1.46 ± 0.3 - -
Five-Fold Cross-Validation
BeliefPPG (ours) 138k 1.82 ± 0.6 4.20 ± 2.3 3.74 ± 1.8 3.81 ± 1.9 2.17 ± 1.1 1.32 ± 0.3 1.11 ± 1.7 1.47 ± 1.0
BeliefPPG / viterbi 138k 1.49 ± 0.4 2.61 ± 1.4 3.34 ± 1.7 3.63 ± 1.9 2.20 ± 1.0 1.53 ± 0.2 1.40 ± 1.5 1.48 ± 0.8
Leave-one-Dataset-out Cross-Validation
BeliefPPG (ours) 138k 1.88 ± 0.7 4.39 ± 3.1 4.26 ± 1.6 3.88 ± 1.9 3.83 ± 3.8 2.90 ± 3.5 1.34 ± 1.6 1.41 ± 0.8
BeliefPPG / viterbi 138k 1.48 ± 0.5 3.14 ± 2.1 3.83 ± 1.6 3.70 ± 1.8 3.67 ± 3.7 2.96 ± 3.5 1.59 ± 1.5 1.67 ± 0.8

1 Reported results without cross-validation of hand-tuned parameters
2 Reported results using a single train-test split across datasets
3 Performed network architecture search with respect to test set
4 Training error
5 Mixed training and testing error
6 Applies post-processing technique without cross-validation
7 Subject-specific fine-tuning
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Figure 3: Bland-Altman plot of HR estimates during LoSo
cross-validation on IEEE test. The colors represent subjects.

with existing methods. Figure 3 further plots the error on
IEEE test by subject.

5.4 EVALUATING PREDICTIVE UNCERTAINTY

Calibration To evaluate the calibration of our predicted
heart rate distributions, we assess whether the empirical
probability of the ground truth heart rate falling within a
heart rate region is matching the regions aggregated proba-
bility mass. In our experiment, we successively consider the

intervals representing the class bins from the heart rate class
with the highest assigned probability value to the heart rate
class with the lowest probability value.

Results are plotted in a calibration plot in Figure 4, which
shows that our method is generally well-calibrated, but
slightly overconfident for higher confidence levels.

We also present the negative log-likelihoods (NLL) of our
method on the test set as a measure of its predictive perfor-
mance in Table 2.

Table 2: NLL on the test set for BeliefPPG under various
Cross-Validation (CV) Schemes.

IEEE train IEEE test DaLiA WESAD BAMI-I BAMI-II
Leave-one-session-out CV 3.92 5.07 4.74 4.89 4.12 3.82
Five-fold CV 4.01 4.82 4.78 4.7 4.18 3.75
Leave-one-dataset-out CV 4.08 4.83 5.01 4.89 4.68 4.19

Quantification of uncertainty The estimated probability
distribution captures the predictive uncertainty of our model.
This can be used to discard samples with high uncertainty.
To that end, we quantify the predictive uncertainty using
entropy and successively discard the most uncertain predic-
tions while computing the MAE on the remaining samples.
By removing the top-1% most uncertain predictions (over
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Figure 5: Evolution of MAE for five-fold cross-validation
while successively excluding the most uncertain predictions,
using entropy as metric.

all datasets and experiments) we reduce MAE by 4%; by
removing the top-5% we achieve an improvement of 15%.
Figure 5 visualizes the effect on different datasets. Stan-
dard deviation and entropy achieve almost equal (within
⇠1%) results in these experiments, indicating that they both
represent meaningful estimates of the predictive uncertainty.

The calibration was evaluated after linearly upsampling the
probability distributions to 1000 intervals.

5.5 ABLATION STUDY

We perform an ablation for our proposed method.

Network Architecture Performance degrades when suc-
cessively disassembling the proposed architecture. Table 3
shows that the omission of the data augmentation leads
to worse results. The additional removal of the attention
layer that combines the seven frequency-timesteps increases
errors by more than 20% on PPG-DaLiA. Notably, this re-

Table 3: Results (MAE in BPM) of ablation experiments
with five-fold CV. The first row corresponds to a version
of BeliefPPG with a higher resolution of both features and
labels, resulting in an additional layer of depth in the U-Net
component. Subsequently, the table presents incremental
ablations of the final model (bold). Note that the last three
rows represent models that operate on a shorter feature
window of eight seconds, resulting in a single timestep in the
spectral representation (Ws = 1 instead of Ws = 7), thereby
rendering the initial dot-product attention layer obsolete.
U-Net and CorNET Light refer to the standalone Fourier
and time-domain branches of the model, respectively.

IEEE train IEEE test PPG-DaLiA WESAD BAMI-I BAMI-II
BeliefPPG (256 bins) 1.66 ± 0.8 4.53 ± 4.0 3.65 ± 1.4 3.89 ± 1.9 1.96 ± 1.0 1.24 ± 0.4
BeliefPPG (64 bins) 1.67 ± 0.6 4.47 ± 2.9 3.59 ± 1.7 3.94 ± 2.1 2.08 ± 1.0 1.34 ± 0.3
- w/o Message Passing 1.62 ± 0.8 7.61 ± 5.2 4.02 ± 1.9 3.98 ± 2.0 2.42 ± 1.2 1.4 ± 0.3
- w/o Data Aug. 1.62 ± 1.1 8.56 ± 8.9 4.02 ± 1.9 4.17 ± 2.0 2.43 ± 1.4 1.5 ± 0.8
- with 8-second window 1.69 ± 1.2 13.27 ± 10.0 4.86 ± 2.3 4.6 ± 2.2 3.32 ± 1.6 1.97 ± 0.9
U-Net (8-sec) 2.65 ± 1.9 11.16 ± 8.1 7.93 ± 4.2 6.89 ± 2.7 3.21 ± 1.5 1.84 ± 0.7
CorNET Light (8-sec) 9.85 ± 7.7 19.32 ± 9.9 5.31 ± 2.7 4.24 ± 2.0 9.86 ± 6.7 3.16 ± 1.8

duces the overall considered signal window to 8s. If we
further decompose the resulting network into the downsized
CorNET and the frequency-domain U-Net, MAEs increase
by another 9% and 63% respectively.

Effect of message passing Table 3 also shows how tem-
poral modeling in the form of message passing improves
performance. The effect is particularly strong on datasets
with larger errors such as IEEE test and PPG-DaLiA.

Output HR resolution We validate the chosen tradeoff
between complexity and accuracy in representing the output
space with 64 intervals (2.81 BPM width) by running ex-
periments against a higher resolution of 256 intervals (0.70
BPM width). The input spectra and the U-Net are scaled
by the same factor, resulting in a non-trivial increase in the
computational cost. Results indicate little improvement in
accuracy.

Regularization with sy To reduce the quantization error
in the label we use a Gaussian distribution with a standard
deviation of sy = 1.5. Ablations (provided in the supplemen-
tary material) indicate that the choice of sy has very little
impact on performance.

5.6 OFFLINE DECODING

If online estimates are not required, Viterbi decoding can
further decrease error. On PPG-DaLiA, this results in an
additional reduction of 11% MAE compared to online de-
coding. Corresponding results are displayed in Table 1.



6 LIMITATIONS AND FUTURE WORK

The HR discretization introduces quantization errors, albeit
small, and imposes additional hyperparameters on the model
such as the number of bins, label variance s2

y , and the fixed
range. Experiments, however, demonstrate low sensitivity
towards these parameters. Despite not being specific to HR
estimation, the framework is limited to low-variate regres-
sion problems due to the exponential scale-up of the number
of output classes.

We anticipate that our approach can be readily adapted to
address a broad range of related problems involving 1D-
time signals exhibiting a similar HMM structure, including
various other health-related challenges [Karlen, 2021, Pino
et al., 2017, Chen and McDuff, 2018, Kang et al., 2018]. We
recognize these as promising directions for future research.
Furthermore, considering the utilization of self-supervised
learning techniques [Ghorbani et al., 2022, Yang et al., 2023]
with large-scale unlabeled PPG datasets, collected from
wearable devices in real-world settings without ground-truth
labels, may lead to improved outcomes.

7 CONCLUSION

We have introduced a novel deep-learning method for PPG-
based heart rate estimation. Our method joins the time and
the time-frequency domains with a dual, U-Net-based neural
network, producing discrete probability distributions over
HR intervals. These distributions are contextualized through
belief propagation over time, allowing online inference of
expected heart rate.

Through extensive experiments on eight publicly available
datasets, we have demonstrated state-of-the-art performance
and robustness of our method, surpassing previous meth-
ods on PPG-DaLiA by 18% in accuracy. Even in our out-
of-distribution evaluation, our model outperforms existing
methods. The predictive uncertainty of our method is well-
calibrated, in particular in lower certainty levels. Measuring
uncertainty by entropy enables incremental MAE reduction
by rejecting uncertain predictions, with 5% rejections result-
ing in a 15% boost on average. Alternatively, performance
can be improved by max-product message passing offline.

We believe that our proposed method has the potential to not
only enhance the reliability of cardiac monitoring but also
address various related problems involving quasi-periodic
1D-time signals.
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