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A TRANSITION FUNCTION SELECTION

While we experimented with alternative distributions for
the transition function, including LaPlacian, Gaussian, and
Levy distributions of the absolute difference and relative
difference in HR between two beat-to-beat intervals, we
observed that our transition function using a discretized
Gaussian prior fit on the logarithmic change log yt

yt�1
led

to the best results while offering a reasonable fit to the
observed histogram of heart range changes (see Figure 1).
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Figure 1: Logarithmic change of HR values in the IEEE
dataset.

B SELECTION OF �y

We represent the ground-truth HR yt as a discretized nor-
mal distribution with density N

�
yt,�2

y

�
. The selection of

the hyperparameter �2
y is based on an ablation study, and

the results, as demonstrated in Table 1, indicate minimal
sensitivity to variations in yt.

*These authors contributed equally to this work

Table 1: Ablations of BeliefPPG with different �y under
LoSo-CV on BAMI-1. We report MAE, its standard devia-
tion across subjects (STD) and the log-likelihood on the test
set.

�y 0.25 0.5 0.75 1.0 1.5 2.0 2.5 3.0 4.0

MAE 2.15 2.30 2.34 2.18 2.00 2.45 2.29 2.45 2.35
STD MAE 0.90 1.30 1.70 1.00 1.00 1.80 1.50 1.50 1.40
Log Lik. -4.13 -4.2 -4.22 -4.13 -4.12 -4.28 -4.23 -4.3 -4.33
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Figure 2: Mean absolute percentage errors (MAPEs) visu-
alized by activity for LoSo on DaLiA. Boxes correspond
to interquartile ranges and whiskers to 10th and 90th per-
centiles over subjects. The blue lines indicate the median,
and the orange line marks the acceptable error of 10%.

Figure 2 presents the Mean Absolute Percentage Errors
(MAPE) across activities compared to the AAMI standard
[ANSI/AAMI, 2002] for the DaLiA dataset. The AAMI
standard sets the acceptable limits for HR monitoring within
±10%, which is implemented using the MAPE statistic as
defined by the Consumer Technology Association [Associa-
tion, 2018].

The results demonstrate that the median MAPE for all activ-
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ities is significantly below this limit. Notably, none of the
15 peak detectors benchmarked by Charlton et al. [Charlton
et al., 2022] achieved this level of accuracy.

D ARCHITECTURE DETAILS

Table 2 provides architecture and training details. We imple-
mented our network using TensorFlow 2.8.0.
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Table 2: Details about BeliefPPG’s heart rate network architecture and training configuration

Heart rate network architecture
Up-/Downspl. fac. Comment Kernel Size Padding Filters / Inner Dim Activation Dropout Output shape

Time-Frequency Branch // input shape: (Ws, Ns, 2) = (7, 64, 2)
2x Conv2D - - 3x3 same 32 leaky_relu 0.1 (7,64,32)
embedding 4x - - - - 32 - - 4 x (7,64,32)
2x attention + reduce mean - reduces 1st axis - - - - - (64, 32)
3x downsampling block (1D) 4 stride=poolsize=4 3x1 same 12, 24, 48 relu 0.2 (1, 48)
bottleneck attention - - 2x1 - 48 tanh, relu 0.2 (1, 48)
3x upsampling block 4 upspl. size=4 3x1 same 48, 24, 12 relu 0.2 (64, 12)
Conv1D - - 1x1 same 1 softmax - (64,)

Time Branch // input shape: (Lx, 1) = (1280, 1)
Conv1D + bn + MaxPool 4 dilation_rate=2 10 causal 16 leaky_relu 0.1 (320, 16)
Conv1D + bn + MaxPool 4 dilation_rate=2 10 causal 16 leaky_relu 0.1 (80, 16)
LSTM - - - - 64 tanh 0.1 (80, 64)
LSTM - - - - 64 tanh 0.1 (64,)
Dense 2x - - - - 48 leaky_relu - 2x (1, 48)

Training Parameters
Batch Size 128
Optimizer Adam(lr=0.00025)
LR Scheduler ReduceLROnPlateau(factor=0.5, min_lr=1e-10 monitor="loss", patience=3)
Stopping criterion EarlyStopping(patience=40 restore_best_weights=True, monitor="val_loss")
TTA: gaussian noise std 0.25
TTA: max stretching factor 25%
�y: label standard deviation 1.5
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