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(a) Moments of fear (haunted house) (b) Moments of fear (vertigo in a virtual pit) (c) Moments of frustration (rigged archery)

(d) Moments of frustration (collapsing cards) (e) Moments of insight (escape room)

Fig. 1: In a study with 24 participants, we elicited transient psychological states using: (a&b) moments of fear, (c&d) moments
of frustration when accomplishing a task, and (e) moments of insight when solving a puzzle. During the study, we measured
participants’ cardiac, pulmonary, electrodermal, and pupillary activity to capture participants’ physiological behavior and present an
analysis to understand the short-term responses to events in VR.

Abstract—Physiological sensing often complements studies of human behavior in virtual reality (VR) to detect users’ affective and
cognitive states. Some psychological states, such as fear and frustration, can be particularly hard to differentiate from a physiological
perspective as they are close in the arousal and valence emotional space. Moreover, it is largely unclear how users’ physiological
reactions are expressed in response to transient psychological states such as fear, frustration, and insight—especially since these
are rich indicators for characterizing users’ responses to dynamic systems but are hard to capture in highly interactive settings. We
conducted a study (N = 24) to analyze participants’ pulmonary, electrodermal, cardiac, and pupillary responses to moments of fear,
frustration, and insight in immersive settings. Participants interacted in five VR environments, throughout which we measured their
physiological reactions and analyzed the patterns. We also measured subjective fear and frustration using questionnaires. We found
differences between fear and frustration pupillary, respiratory, and electrodermal responses, as well as between the pupillary changes
that followed fear in a horror game and those that followed fear in a vertigo experiment. We present the relationships between fear
levels, frustration levels, and their physiological responses. To detect these affective events and states, we introduce user-independent
binary classification models that achieved an average micro F1 score of 71% for detecting fear in a horror game, 75% for fear of vertigo,
76% for frustration, and 75% for insight, showing the promise for detecting these states from passive and objective signals.

Index Terms—Virtual Reality, Affective Computing, Emotions, Cognitive State, Physiological Measures

1 INTRODUCTION

Virtual reality (VR) immerses users into worlds—real or fictional—that
can substantially differ from any of their regular environments. This
inherent property of VR is useful for entertainment and discovery, such
as gaming and virtual travel. More interestingly, researchers can also
harness this property to expose users to situations that would not be
feasible in real-life or even dangerous [9], all while observing their
behavior, actions, and reactions. This feature provides an optimal
training environment for participants to develop new skills, as they can
fail without facing real-world consequences [17].

In addition to monitoring users’ physical behavior, researchers have
leveraged VR to study users’ physiological behaviors, such as stress
during training [17, 47], mental workload in manufacturing [7], or
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racial discrimination [2]. Studies of users’ psychological states can
help better understand human cognition and learning processes [24].
Beyond VR experiences [24], they can produce implications for the
design of real-world procedures [9].

However, studies of psychological states have mostly focused on
persistent states, which facilitates their detection and makes monitoring
easier. Studying and detecting transient psychological states is con-
siderably more challenging as they occur suddenly and are difficult to
reliably elicit. Fear, frustration, and insight are particularly interesting
in this regard because they can reveal findings that are orthogonal to
those gained from persistent states. Moments of fear and frustration can
have manifold of causes, but they always impair users’ performances
in VR tasks [46] and discourage engagement and future use [26]. Con-
versely, insight—colloquially called “Aha! moment” [25] or “Eureka
moment” [30]—can have the opposite effect and is often identified
as a form of creativity that can result in important innovations [30].
Past research has shown that users better remember solutions when
accompanied by moments of insight than when missing this feeling
of epiphany [11]. Identifying the reasons that lead to such “Aha! Mo-
ments” is non-trivial and has long been of interest [25], but there is a
lack of studies on frustration and insight responses that allow users to
freely move about as they would in regular VR settings.
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In this paper, we present a controlled study of users’ physiological
responses to contexts and events designed to elicit fear, frustration, and
insight. The purpose of our study was to capture the physiological re-
sponses to these events and transient states, monitored through wearable
sensors that record pulmonary activity (breathing belt), electrodermal
activity (finger straps), cardiac activity (ear clip), and pupillary activity
(eye tracker). Our wearable setup allowed us to expose participants to
a wide variety of scenarios and tasks to be completed during regular
interaction in VR. From our analysis of the physiological recordings,
we extract common patterns following interventions in VR and discuss
their potential for designing experiments and experiences in VR.

As shown in Figure 1, our study environment elicited a variety of
psychological states through five VR scenarios: a) fear when navigating
a haunted house in a horror game, induced by visual and auditory
effects, b) fear of vertigo when experiencing heights at various levels
while walking on a plank, c) frustration in a rigged archery game when
arrows slip and balloons fail to pop, d) frustration in a tower of cards
game when the tower collapses just before completion, and e) moments
of insight when completing escape-room puzzles.

Our analysis shows that although fear and frustration share close
proximity inside the emotional space [51], they elicit different physi-
ological and behavioral responses. While in both cases, participants’
heart rate variability (HRV) decreased and their pupil diameters in-
creased, the temporal evolution of their pupil dynamics, respiratory
rate, and phasic skin response greatly differed. Moments of insight also
manifested themselves in cardiac and pupillary responses that differed
from responses to frustration and fear. We further confirmed that physi-
ological responses to fear (in response to imminent threat in a horror
game) expressed different pupil variations than in fear of heights.

In a second step, we corroborate our analysis of these important
multi-modal signals through learning-based detection models. Our user-
independent classifiers achieve promising accuracies for detecting fear
of horror (mean micro F1 score of 71%), fear of vertigo (F1 = 75%),
frustration (F1 = 76%), and moments of insight (F1 = 75%).

Overall, our results demonstrate the link between physiological
patterns that result from users’ responses to transient moments of frus-
tration, fear, and insight. In our discussion, we outline the implications
of these indicators for future interactive systems, as they afford ob-
jective and passive monitoring of short moments that can influence
user experience in VR applications using non-invasive eye-tracking,
pulmonary and cardiac activity monitoring, and electrodermal activity
tracking—passive input modalities that are emerging as part of recent
VR headsets themselves [3, 34] as well as everyday glasses [23].

Taken together, we make the following contributions:
1. a controlled environment inside five VR scenarios to elicit tran-

sient psychological states, including fear in a horror scenario, fear
of vertigo, and frustration, all in response to events unfolding in
interactive scenes, and moments of insight while solving a puzzle,

2. an analysis of cardiovascular, pulmonary, and autonomic physio-
logical responses and their potential for indicating these transient
psychological states, and

3. a computational demonstration of detecting such transient psycho-
logical states using user-independent classifications models that take
physiological signals from wearable sensors as input, operating in
real-time in highly interactive VR scenarios.

2 BACKGROUND

2.1 Affective and Cognitive States in VR
Emotions have often been explored in the context of VR [35, 49]. Ko-
lakowska et al. [29] distinguished three ways to classify emotional
models: the dimensional, discrete, and hybrid perspectives. From a di-
mensional perspective, emotions are considered continuous phenomena,
usually within two or three dimensions [35]. The most popular emo-
tional dimensions are valence (from negative to positive) and arousal
(degree of mental activation) [35]. From a discrete perspective, emo-
tions are considered distinct. For example, the Big Six distinguish
Happiness, Sadness, Fear, Anger, Disgust, and Surprise [12]. The hy-
brid perspective combines discrete and dimensional viewpoints. For

example, the Russell [51]’s circumplex model of affect replaces some
discrete emotions in the dimensional space (arousal on x, valence on y).
In this model, afraid and frustrated are situated in the same emotional
space (negative valence, positive arousal; see supplementary materials).

In 1990, Hodges et al. [22] produced fear of height experiences
in VR. The experiment has been frequently replicated since [38, 53],
including in the well-known virtual pit experiment [38, 62]. While
vertigo is often used to treat clinically phobic patients in VR, vertigo
in VR was also shown to work on non-phobic users [38, 53]. Besides
the fear of height [53], there are also other types of fear that have been
used in entertainment (e.g., horror games [45]). Indeed, VR horror
games have been highly anticipated also to promote movies such as
Paranormal Activity: The Ghost Dimension or The Conjuring 2 [33].

In contrast, frustration has rarely been the subject of VR-based inves-
tigations. Experiencing frustration during UI interaction can negatively
influence productivity, user experience, reduce acceptance of a tech-
nology or of an interaction, and can drive users to seek alternative
systems [32]. Paladines-Jaramillo et al. [43] adapted Rozensweig’s
picture test for VR where users are exposed to various situations to
study their tolerance to frustration. They reported preliminary feedback
and showed that the adapted test was promising. Another study found
that interactive loading screens improved users’ experience in VR com-
pared to passive ones by measuring users’ frustration, enjoyment, and
perceived speed of loading UIs [19].

As for insight, it is a positive instant that occurs where one, for
example, suddenly finds the solution to a problem, understands a joke,
or realizes something about a situation or oneself. Insight has been
shown to benefit creativity and learning retention [30, 60]. Outside VR,
past work mainly relied on the compound remote associates test [30],
where users see three words (e.g., food, forward, break) and form a
compound or familiar two-word phrase with each of the three problem
words (e.g., fast for fast-food, fast-forward, and breakfast) to elicit
insight. Despite the many tools for creativity in VR (e.g., [27, 28, 39,
50]), there is only one study in which researchers tried to detect insight
in a learning setting using electrodermal activity (EDA, also galvanic
skin response GSR) [10].

2.2 Measuring Affective and Cognitive States
In VR, most studies rely on subjective methods such as questionnaires
to measure participants’ psychological states and experiences [52]. To
measure fear and distress, past VR studies used the Subjective Units
of Discomfort Scale (SUDS) [35, 53, 64] or custom Likert scale ques-
tionnaires to prompt participants about their experienced fear [33].
Frustration has been assessed using emotions questionnaires such as
the PAD or the Self-Assessment Manikin [6, 14]. Others have reused
items from questionnaires such as the NASA task load index for mea-
suring workload [18] or the User Engagement Scale (UES), which
measures users’ engagement in an application [42]. Previous studies
have also assessed frustration through customized Likert scales [19, 54]
or asked participants to self-report moments of frustration through but-
ton presses [26]. Since moments of insight are difficult to trigger and
identify, past studies have simply asked participants to self-report when
they experienced a moment of insight [10, 60].

While questionnaires are well established, they are typically pre-
sented post-hoc after each study condition or after the whole experi-
ment [59]. Questionnaires are thus restricted by human language and
can be biased since answers result from what participants believe they
have felt or perceived in retrospect. Questionnaires thus cannot capture
the nuances in the modulation of users’ psychological states during VR
use, as self-report measures cannot be assessed at high frequency.

All these reasons have motivated researchers to use physiologi-
cal signals to detect changes in the Autonomic Nervous Systems
(ANS) and the Central Nervous Systems (CNS) to evaluate VR ex-
periences [13]. Since physiological responses follow psychological
processes, researchers have hypothesized that they could be linked back
to psychological states through characteristic features [13]. Thus, the
impact of perceived emotion and cognition on physiological changes in
VR experiences has been extensively studied in the past [35, 38, 57]. In
particular, fear in VR has been found to affect heart rate and skin con-



ductance [45]. Fear and frustration are closely linked to arousal [51],
which impacts cardiac activity [37], electroencephalogram (EEG) sig-
nals [37], and EDA [38]. Outside VR, frustration was shown to affect
HRV [61], EDA [26, 48], pupillometry, and behavioral data [26, 61].
Frustration was studied in mostly static settings [26, 61] and moments
of insight were mainly studied using brain-computer interfaces [60].
The latter studies showed that a moment of insight was associated with
a burst in the γ-band power activity 300 ms before the button press
signaling that a solution was derived [30]. In VR, Collins et al. [10] pre-
dicted “Aha! Moments” through EDA signals while participants solved
a hypercube puzzle, achieving a prediction accuracy up to 98.81% (train
and tested using pooled data from all users).

As mentioned above, fear in VR has been explored in clinical and
entertainment settings. However, despite the common terminology
of fear, the stimuli used to induce fear in these two different settings
highly differ. Further, despite the fact that physiological sensors such
as eye-trackers are increasingly directly embedded into VR headsets
(e.g., HTC Vive Pro Eye, Varjo VR-3), the impact of different types
of fear on the pupil diameter and on the respiration rate in VR has not
been explored yet. These emerging signal modalities are promising as
users tend to be highly active in immersive virtual environments, which
introduces motion artifacts in epidermal and cardiac activity measure-
ments. Frustration and insight have rarely been measured in VR. Yet,
frustration as a state is particularly interesting to measure in the context
of interaction design or cyberness—issues that affect VR technologies
as they aim to gain wider adoption. However, it is unclear how frustra-
tion manifests itself in users’ physiological responses or how it may be
detected automatically inside interactive and immersive settings. Like-
wise, frustration and fear are closely situated in the arousal and valence
emotional space [51]. Differentiating physiological responses to both
moments is also relevant in this regard, particularly due to the frequent
deliberate use of fear in VR experiments. Similarly, moments of insight
have not been studied in representative VR conditions, which would
require unencumbered use and thus wearable physiological sensors
despite the growing interest in improving productivity, creativity, and
learning retention using VR [30]. Therefore, the study in this paper
fills this gap and investigates how fear, frustration, and insight differ in
the physiological responses they elicit as well as how accurately they
can be detected using wearable sensors.

3 EXPERIMENT

The goal of this experiment was to quantify the impact of acute fear,
frustration, and insight events on the dynamics of physiological sig-
nals using non-invasive sensors. These insights facilitated passively
recognizing such events through classification models in a second step.

3.1 Environments
In total, we designed and verified five VEs to elicit specific transient
psychological states (Fig. 1). We piloted the experiment and iterated
on the designs of the environments with 3 participants before the study
to validate the stimuli. The controls and interactions were explained to
the participants before each game. During the experiment, participants
were totally immersed in the VE and when they needed guidance or
help, the experimenter could display messages through appearing notes
in the VE, not to break their presence [56].

VE1: In the horror game, participants investigated and had to es-
cape from a haunted house. They could freely teleport in the virtual
mansion to a variety of highlighted locations and interact with virtual
objects using controllers. A variety of events occurred when partici-
pants teleported or interacted with virtual objects: a rat passed by in
front of them, a zombie flashed by in front of them and turned off the
light, slammed the door in front of them, or ran towards the participants.
After finishing the game, participants reported their anxiety level using
the SUDS [42]. When designing the environment, we paid special
attention to audio-visual details to engage users (e.g., flickering lights,
panicking respiration sounds, sound effects with interactions).

VE2: The vertigo scene replicated the virtual pit experiment [38]
using an elevator platform at various heights (similar to Seinfeld et al.’s
study [53]). Participants stood in a virtual elevator, from which a

plank led outside into a city environment. For this environment, the
experimenter placed a physical plank on the floor, calibrated to match
the position and size of the virtual plank to provide haptic cues while
walking. The elevator was completely opaque to avoid motion sickness
during vertical motion, and sound effects were added (doors, elevator
going up, wind). On each floor level, participants’ task was to exit the
elevator and walk on the plank as far as possible, look around, and
return back into the elevator after. This brought up a questionnaire
where they rated their anxiety level, after which the elevator advanced
to the next floor. Participants walked on the plank at four elevations (in
the order: 0 m, 50 m, 100 m, and 150 m).

VE3: In the archery game, participants used a bow and arrows to
shoot balloons that spawned and slowly rose. The environment elicited
punctual and acute moments of frustration. As participants increased
their score of shot balloons, increasingly many balloons failed to pop or
arrows ‘accidentally’ dropped before launch. The environment started
with a training phase where participants repeatedly shot arrows at a
bulls-eye to practice the interaction and then shot eight balloons. The
game behaved normally, so participants could gain confidence in the
interaction, and their own performance to score. However, the trial
phase was, then, rigged. Participants’ goal was to shoot 30 balloons.
After participants had reached a score of 5/30, the game applied a
50 % chance for an arrow to fail popping a balloon (in this case, the
balloon would just be pushed away) or drop down before launching.
To increase pressure, a timer counted down from 120 s and another
counter showed the number of remaining balloons that would spawn,
which we limited to 40. If participants still reached a score of 29/30, all
remaining shots were rigged until their trial timed out. A final “Game
Over” was displayed in front of them at the end of the timer.

VE4: In the cards game, participants’ task was to assemble a tower
of cards from a deck of cards, which would collapse to elicit moments
of frustration. Using the controllers, participants grabbed cards with
either hand and carefully placed them to build the tower. Transparently
shown guides helped snap cards into place to create a solid structure.
Assembling the tower required nine steps for completion as shown in
Figure 1. To make the game challenging, the tower would collapse
when a card grabbed by participants accidentally collided with already
placed cards. To ensure frustration near completion, the game ensured
that the tower always collapsed when placing the last card. When the
tower collapsed, the message “Oh no! The tower collapsed. Please
try again.” reinforced the frustration. In total, participants had three
attempts. A counter displayed their progress. After the last attempt, a
final “Game Over” message announced the end of the game.

VE5: In the escape room game, participants’ task was to find a way
out of a prison cell by discovering cues that would trigger moments of
insight. To move around the cell, participants could use the controllers
to freely teleport around. They needed to find two codes to open two
doors in the room. The first code became legible when participants
happened to be at the right location in the cell, looking towards the wall,
such that the bars occluded parts of the wall painting and revealed the
code. The second code was encoded as the sequence of flashes from
the flickering exit sign above of the second door. Counting the number
of flickers between breaks revealed the three-digit code.

We designed the puzzle to be challenging and ensured that par-
ticipants would not find them right away through piloting. Before
attempting the escape room, participants were instructed to pull the
trigger button whenever they felt that they just had an insight or thought
they knew how to advance. If they pulled it by accident, they were
instructed to report this, so the experimenter could void the event. In
addition, the experimenter labeled moments if participants verbally
expressed statements such as “Aah!” or “Oh!” when gazing at the
symbols or at the flickering exit sign.

The experiment followed a within-subject design. All users experi-
enced all five VEs designed to elicit different psychological states. The
order of the exposure to the environments was randomized to avoid
order effects. Each environment was preceded by a baseline phase
during which users were asked to relax (first baseline: 1 min, following
baselines: 30 s) and was followed by a pause where the participants
took off the headset.
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3.2 Dependent variables and collected data
The variables we assessed were: events, self-report measures, and
physiological measures.

Events: Each environment produced transient moments of fear, frus-
tration, or insight through the events listed in Table 1. Our environment
logged these events with timestamps for each participant. The vertigo
scene logged the moment of farthest position on the plank as the event.

State | Label VE Events

Fear VE1 Rat jumpscare,
zombie jumpscare 1, zombie jumpscare 2, zombie jumpscare 3

VE2 Elevator floor 50, elevator floor 100, elevator floor 150

Frustration VE3 Missed shot, fallen arrow
VE4 Tower collapsed following user input,

tower collapsed under system control

Insight VE5 Moments of insight experienced by the user

Table 1: Affective and cognitive stimuli logged in our experiment.

Self-reports: To assess fear in VE1 and VE2, participants filled
out the Subjective Units of Discomfort Scale (SUDS) [64] as used
to measure fear, discomfort, and distress in previous VR studies [53].
The scale measures changes related to anxiety levels from 0 (absolute
relaxation) to 100 (worst anxiety experienced). In VE1, participants
reported their discomfort level once at the end of the horror game inside
VR. In VE2, participants reported their discomfort level each time they
returned to the elevator on each floor.

To measure frustration in VE3 and VE4, participants filled out the
User Engagement Scale (UES) [42] on a laptop after completing each
scene. One item on the perceived usability subscale especially targets
frustration: “I felt frustrated while using this application.”

For capturing insight in VE5, participants report moments of insight
by pulling the trigger on any of the VR controllers while in the game.

Physiological measure: Our apparatus collected participants’ car-
diac activity through a photoplethysmography sensor (PPG, capturing
blood volume changes at 128 Hz to detect heartbeats and heart rate), res-
piratory activity through breathing (sampling a breathing belt at 20 Hz
to obtain respiratory rate), autonomic response from skin conductance
(EDA at 128 Hz, which measures emotional arousal), and pupillometry
(from eye tracking sampled at 120 Hz). All signals were logged with
Unix timestamps.

3.3 Physiological data processing
Table 2 lists the features we extracted from the physiological signals
recorded during the study. We extracted them from a 30 s window
centered on each labeled event.

Signal modality and extracted features

PPG: Beats per minute (bpm), mean inter-beat interval (ibi), median absolute deviation of
intervals between heart beats (mad), standard deviation of intervals between heart beats
(sdnn), root mean square of successive differences between neighboring heartbeat intervals
(rmssd), standard deviation of successive differences between neighboring heartbeat
intervals (sdsd), proportion of differences between successive heart beats greater than
50 ms and 20 ms (pnn50, pnn20), sd1, sd2, s, sd1/sd2

EDA: number of peaks, {mean, min, max, standard deviation} amplitude of the peaks,
{mean, min, max, standard deviation} rise time to the peaks, and {mean, min, max,
standard deviation} recovery time after the peaks

Pupillometry: (averaged from both eyes) Number of blinks, {mean, min, max, standard
deviation} of the filtered pupil diameter

Respiration: Respiratory rate (bpm)

Table 2: Extracted physiological features from the different sensors
used in this study.

PPG: Before feature extraction, we band-pass processed the raw
signal (0.33–5 Hz, 900th order FIR filter) to remove drift and higher-
frequency artefacts. Table 2 shows the 13 time-domain features we

extracted, mainly HRV features, including four non-linear measures
derived from Poincaré plot analysis (sd1, sd2, s, and sd1/sd2) using
Python’s HeartPy package. To ensure proper signal quality, we in-
spected the PPG signal for each event and excluded events that showed
unintelligible signals from the analysis.

EDA: For each window, we filtered the raw EDA signal using a
high-pass filter (2nd order Butterworth with a 1 Hz cutoff) and stan-
dardized the signal. The phasic component was obtained by applying
a high-pass filter (2nd order Butterworth with a .5 Hz cutoff), and the
tonic component was obtained by subtracting the phasic part from the
filtered signal. The tonic part represents slow changes (Skin Conduc-
tance Levels, SCL), while the phasic part corresponds to the rapid
responses to a stimulus (Skin Conductance Responses, SCR) [5]. SCR
are characterized by their peaks through features such as count, rise
time, and recovery time. Table 2 shows the features we extracted using
Python’s neurokit package. Again, we discarded windows of EDA
signals that exhibited one or more artifacts (i.e., steep drop or constant
signal portion) through manual inspection.

Pupillometry: From the logged signals (each eye), we extracted
the number of blinks and the pupil diameter, filtered by subtracting
the pupil diameter affected by the brightness to the measured pupil
diameter for each participant [8]. To ensure proper calculations, we
recorded a baseline for each participant where the scene progressed
from complete darkness to an average brightness level of 0.8 in 9 steps
to determine the relationship between brightness and participants’ pupil
diameters [8]. For all further analysis, we assessed the scene’s current
brightness alongside the logged raw eye data.

We modeled the effect of scene brightness on pupil diameter through
tanh (the relation between luminance and pupil diameter was previously
established [40]): pupild(b) = a1 −a2 ∗ tanh(a3 ∗ log(b)+a4), where
pupild is the pupil diameter and b is the VE brightness level. We
computed the coefficients a1,a2,a3,a4 for each eye and participant
using the data collected during the baseline (the supplementary material
shows an example of fitting for one participant).

We extracted the number of blinks from raw pupil diameters using
Hershman’s approach [20]. All analyses in the remainder of this paper
exclusively operate on filtered pupil diameters. We extracted features
from the left and the right eyes separately and averaged them (Table 2).

Respiration: We derived the respiratory rate from the force sensor
contained in the belt using standard low-pass filtering and averaging
peak-to-peak intervals.

3.4 Apparatus
The experiment was conducted in a room of 5 m × 5 m. Strict safety
and sanitary protocols were followed to ensure COVID-19 compliance
according to the local regulations, including wiping and sanitizing the
headset, controllers, and sensors before and after each participant, using
masks and extra VR HMD shields.

Participants were equipped with an HTC Vive Pro Eye, a Vernier
GoDirect respiration belt, and the Shimmer3 GSR+ sensors for PPG
and EDA measurements (Fig. 2). The respiration belt was placed on
the participant’s rib cage above their clothes with the sensor at their
chest. As shown in Figure 2, participants wore the Shimmer wristband
on their non-dominant wrists, the EDA sensors on the middle phalanx
of their middle and ring fingers, and had the PPG sensor clipped to their
earlobes on the non-dominant hand’s side. The eye-tracker data was
collected through the VR headset cable, and the respiration belt and
the shimmer sensors reported signals through Bluetooth. The computer
running the VR applications integrated all signals and logged them
with Unix timestamps. The wire of the headset passed through a ring
suspended from the ceiling, length adjusted to match the participant’s
height. A physical shelf served as the plank (275 mm × 115 mm ×
20 mm), which the experimenter placed on the floor and calibrated to
the virtual pit in VE2 to match the position of the virtual plank (Fig. 2).
The plank was removed for all other environments.

Participants used both HTC Vive controllers in all environments. We
developed the frontend in Unity 3D. The experience ran on an Intel
Core i7-9700K CPU 3.90 Hz computer with 32 GB of RAM, supported
by an NVIDIA GeForce RTX 3070 GPU.
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Fig. 2: Study apparatus. Participants wore a (1) VR headset that in-
cluded sensors for pupillary activity, (2) a photoplethysmography ear
clip to assess cardiac activity, (3) a respiration belt, and (4) electroder-
mal activity sensors mounted on the fingers. Participants performed
tasks in an office space. (5) A physical plank was placed on the floor
for the vertigo environment (VE2).

3.5 Experimental Procedure

The experiment consisted of five parts, lasting around 70 min total:

1) Written consent and instructions. Participants filled out a consent
form and signed a COVID-19 statement prior to the experiment. The
experimenter then introduced them to the experiment, the equipment
that was involved, and the data we recorded (which was anonymized).
Before starting, participants filled out questionnaires to assess their
experience with VR and video games, their susceptibility to motion
sickness (MSSQ [15]), demographic information, background, profile,
trait anxiety (STAI-T [59]), and level of alertness [21].

2) Equipment setup. The experimenter equipped participants with the
respiration belt and the Shimmer sensors and adjusted the length of the
suspended headset cable to allow free motion and avoid breaks in pres-
ence [58]. Before each environment, participants received instructions
about how to navigate the following environment and how they could
use the controllers. For the vertigo scene, the experimenter placed and
calibrated the plank. For the escape game, participants were told that
they would receive hints in the scene if needed.

3) Baseline. Before interacting in each environment, participants were
exposed to an empty baseline scene and instructed to stand still and
relax for pupillometry calibration. Before the first environment, we
recorded data for one minute, progressively switching the scene from
dark to bright, whereas the subsequent baselines lasted for 30 s.

4) Experiment. Interaction in a scene immediately started following
the baseline recording; participants did not take off the VR headset
before. Once they had completed the tasks inside VE1, VE3, and VE4,
they took off the headset and filled out questionnaires on a laptop. After
the vertigo scene, the experimenter removed the plank.

5) Debriefing. After the final scene, participants were encouraged to
report thoughts and feedback they may have using the laptop. A final
debriefing informed them about the rigged archery game and tower of
cards to elicit frustration.

3.6 Participants

The study was approved by the local committee responsible for the
ethical conduct of studies. The inclusion criteria for participants were:
the participants had to be 18–70 years old. They should neither have
had any COVID-19 symptoms nor have been in contact with con-
firmed cases in the previous 14 days. They should not have known
health-related problems, physical disability, clinical acrophobia, clini-
cal anxiety, be clinically autistic, or take drugs. They had to understand
and speak English. During recruiting, participants were informed that
the VEs included a horror game, a vertigo experience, puzzle games,
and that their physiological signals would be recorded. Participants
were not informed about the environment’s purpose of eliciting psycho-
logical states or that they may be rigged to elicit frustration.

24 healthy participants from the higher education institutions in
our city volunteered to take part in the study (7 female, ages 21–33,
M = 27.1, SD = 3.1). They originated from 15 distinct countries.
Nine participants wore glasses, 20 subjects reported having had little
exposure to VR technology (“none or occasionally”), and five reported
that they regularly played video games. No participant reported elevated
susceptibility to motion sickness on the MSSQ before the experiment.
Likewise, no participant reported having experienced any symptoms
of motion sickness during or following the study. Using the STAI-T,
participants reported an average trait anxieties (tendency to be generally
anxious) score of 45.88 (SD = 3.78). The scores range from 20 to
80 (higher scores correlate with greater anxiety). Finally, in their
ratings on the Stanford Sleepiness Scale before the experiment [21], 20
participants rated their state of alertness as “Awake, but relaxed” and
four as “Active, vital, and alert.”

3.7 Results: Subjective ratings

We now summarize participants’ subjective ratings (i.e., SUDS and
frustration level), their qualitative feedback, and our observations dur-
ing the user study. Figures 3 and 4 illustrate participants’ self-reported
measures from the questionnaires.

Elicitation of fear
Overall, participants reported a mean score of 46 of 100 (SD = 26)
on the SUDS at the end of the horror game (Fig. 3). Six participants
reported a score higher than 90, and two reported a score of 77. The
scores confirm that the horror game induced mitigated reactions in
participants. From our observations of the horror environment, fear
elicited in participants varied in extent: some screamed, jumped, cursed
in their native language, and some even asked the experimenter how
long the game would still last as they considered stopping the experi-
ment because it was too scary. Others just walked through the mansion
and did not show any sign of fear.

In the vertigo scene, participants reported a mean SUDS score of
36.5 (SD = 20.5) across all floors above ground. One participant’s
average was above 80 and two more had an average higher than 60. The
higher the elevator went, the more anxious participants rated themselves
(Fig. 3). Again, we observed varied responses to the elevator experience.
Some participants took no more than two steps on the plank and their
knees were shaking. Others seemed at ease and just walked on the
plank without hesitation.

Elicitation of frustration
For the archery and the tower of cards environments, participants’ goal
was to best complete the task. After the archery environment, they
reported a median frustration rating of 3.5 of 5 (Fig. 4) on the UES PU
subscale [42]. We observed that many participants openly expressed
their frustration, shouting “Hey!”, “What is going on?!”, “Gosh!”,
“This is a disaster!”, and “Oh no!”, especially when arrows dropped and
when the game-over screen appeared.

After the tower of cards environment, participants reported a median
frustration score of 3 of 5 (Fig. 4). Across their three attempts, the tower
collapsed 29 times due to their own collision with placed cards and
46 times because they had reached the last two cards and our system
rigged the game. In the latter case, most expressed their frustration
through “Come on!”, “Oh, why??”, “What the...”, “No, what?”
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Fig. 3: Reported subjective anxiety levels in the horror (VE1) and ver-
tigo (VE2) environments (Subjective Units of Discomfort Scale [64]).



Fr
us

tr
at

io
n

ra
tin

gs

Count

Cards

Archery

5 0 5 10 15

1 5

5

4

4

32

1 32

Fig. 4: Reported subjective frustration levels after the archery (VE3)
and tower of cards (VE4) environments (User Engagement Scale [42]).

Elicitation of Insight
In total, participants triggered the insight button 44 times (M = 1.8
times per game-play, SD = 1.7). Of the 24 participants, 19 expressed at
least once a moment of insight. Two did not need a hint from the exper-
imenter for the first code (wall painting), while four did not need hints
for the second (blinking exit sign). Afterward, most participants men-
tioned that the puzzles were particularly difficult, but found satisfaction
when they figured them out.

4 CHARACTERIZATION OF PHYSIOLOGICAL RESPONSES

We now analyze the physiological responses to the transient moments
of fear, frustration, and insight. We first compare signal behavior with
participants’ baselines. Then, we compare the differences in responses
to fear and frustration and investigate the differences between fear in
the horror game and fear of heights. Finally, we examine more finely
the correlation between the reported anxiety level (i.e., SUDS score) in
the fear environments, the frustration level (from the UES), and their
physiological responses.

4.1 Impact of transient states on physiological behavior
Comparing participants’ physiological responses to elicited psycho-
logical states to their baseline behavior, we first extracted instances of
such moments above a certain magnitude. To analyze the effect of fear,
frustration, and insight, we respectively only considered subsamples of
participants who experienced fear, i.e., this resulted in all fear events
from 14 participants who rated fear ≥ 40 of 100 on the SUDS in the
horror or the vertigo environment, in all frustration events from 23
participants who rated frustration ≥ 3 of 5 in the archery or the cards
game, and in all insight events from 19 participants who self-reported
at least one moment of insight (Table 3). We chose the respective
thresholds for fear and frustration as the rounded mean between the
mean scores reported in the two related VEs.

Table 3 summarizes our results (please see the supplementary mate-
rial for all values).

We summarize the procedure here for clarity and ran the same anal-
ysis in Sections 4.1, 4.2, and 4.3. We separately performed statistical
tests by pair (i.e., fear vs. baseline, frustration vs. baseline, insight vs.
baseline), considering affective event (i.e., baseline, fear, frustration,
insight) a within-subject factor and participant a blocking factor in each
test. For all dependent variables, we performed Shapiro-Wilk tests to
verify if the variables followed a normal distribution. Because all tests
showed positive results, we performed Wilcoxon signed-rank tests and
report p values and effect sizes r.

The effect sizes were largest for pupillometry (rmax = .72) and res-
piration metrics (rmax = .64), followed by EDA (rmax = .36) and PPG
metrics (rmax = .25). This suggests a stronger relationship between the
states events and participants’ eye behavior and respiratory activity.

Overall, our analysis shows that all events increased participants’
bpm, pupil max diameter, and respiration rate. All events also impacted
the variation of the pupil diameter (min, max, and/or SD of the pupil
diameter) and the skin conductance response (SCR) (i.e., more peaks).
While participants were asked to relax during the baseline, a few peaks
were still detected in the SCR during the baseline.

Frustration and insight increased the mean pupil diameter. Fear
decreased it. Both fear and insight increased the variation of the pupil
diameter (i.e., lower min, higher max, higher SD), while frustration
significantly decreased it (i.e., higher min, higher max lower SD) and
decreased participants’ blinks.

Fear and frustration both tended to increase HRV and tended to
increase the SCR peaks amplitude.

Modality Feature B → Fe B → Fr B → I Fe → Fr FeV → FeH

N = 14 N = 23 N = 19 N = 13 N = 13

PPG bpm ↑*** ↑ ** ↑* (↑) (↓)
HRV ↓ + ↓ ** (↑) ↓ +

EDA

N SCR peaks (↑) (↑)
SCR peaks amplitude ↑ * ↑ + (↑) (↑) (↓)
SCR peaks rise time (↓) (↑)
SCR peaks recovery time (↑) (↓) (↑) (↓)

Eyes

N Blinks (↓) ↓ * ↓ * ↓ *
Mean pupil diameter ↓ * ↑ *** ↑ *** ↑ ** ↓ +
Min pupil diameter ↓ + ↑ *** (↓) ↑ *** ↓ *
Max pupil diameter ↑ **** ↑ ** ↑ **** ↓ *** ↑ ***
SD pupil diameter ↑ * ↓ **** ↑ **** ↓ *** ↑ *

Respiratory Respiration rate ↑ **** ↑ **** ↑ *** (↑) (↓)

Table 3: Effect of event type on physiological features. B=Baseline,
Fe=Fear, FeV =Fear in the Vertigo environment, FeH =Fear in the Horror
environment, Fr=Frustration, I=Insight events. Arrows indicate the
relation from the first to the second type of event indicated in the
columns. Example (number of blinks row, Fe → Fr column): ↓* means
that the number of blinks is significantly lower for frustration events
than the number of blinks for fear events. Parentheses indicate not-
significant effects (Wilcoxon’s r ≥ .1). Significances: +p ≤ .1, ∗p ≤ .1,
∗∗p ≤ .01, ∗∗∗p ≤ .001, ∗∗∗∗p ≤ .0001. Exact values are given in the
supplementary material.

4.2 Physiological responses: fear vs. frustration
Table 3 summarizes our analysis of the difference between physiologi-
cal responses to fear and frustration. We followed our prior analysis
method, considering event type (fear or frustration) a within-subject
factor and participant a blocking factor. We only analyzed events from
the 13 participants who reported both a high anxiety rating (SUDS
score) and a high frustration rating in at least one of the environments.

Overall, moments of frustration caused participants to blink less,
increased their mean pupil diameters, and reduced variation in pupillary
activity compared to moments of fear. Fear decreased participants’
mean pupil diameter and increased pupillary activity over a larger
amplitude compared to moments of frustration.

We found no significant differences that related to participants’ car-
diac activity and EDA to elicited transient moments.

4.3 Physiological responses: fear/horror vs. fear/vertigo
To analyze the differences between participants’ physiological re-
sponses to different types of fear across VE1 and VE2, we extracted all
events from the 13 participants who reported a high level of anxiety in
both environments. We considered environment (i.e., horror or vertigo
environment) a within-subject factor and participant a blocking factor.
Table 3 reports our results.

Overall, the difference between physiological responses to horror
events and vertigo events manifested mostly in participants’ pupillary
responses. Following moments of fear in the horror game, they blinked
significantly less, their pupil diameter was significantly lower, and their
amplitudes varied more than following moments of fear of vertigo.

Moments of fear in the horror game also led to lower median HRV
than when following moments of fear of vertigo (r = .3, p = .08).

4.4 Correlating subjective ratings and physio. responses
Above, we compared transient states to identify statistical differences
between them. We now investigate the relationship between levels of
fear, levels of frustration, and the physiological responses expressed by
participants and analyze the correlations between them.

To account for variability across participants, we analyzed the per-
centage change of all metrics from each participant’s baseline rather
than absolute values with the exception of pupil diameter (because it
is already adjusted per participant). We normalized all metrics follow-
ing Wiederhold et al.’s adapted approach [63]: percentage change =
100× [(value−baseline)/baseline]. All events from all 24 participants
were included in this analysis.
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Fig. 5: Spearman’s ρ correlations between the subjective ratings and
the normalized physiological features. The discomfort level was as-
sessed using the Subjective Units of Discomfort Scale (SUDS) [64]
(horror and vertigo scenes). Frustration was reported through the User
Engagement Scale (UES) short-form [42] (archery and cards scenes).
Only significant correlations are colored (p ≤ .05).

Using Spearman’s ρ coefficient, we evaluated the zero-order correla-
tion between subjective scores (i.e., SUDS and UES) and the percentage
change of physiological features around fear and frustration events. Be-
cause we could not quantify the magnitude of insights, we limited
this analysis to fear and frustration events. Figure 5 summarizes the
correlations we obtained. For the sake of readability, we use “increase”
and “decrease” to denote positive or negative correlations below.

In summary, the more anxious or frustrated participants were, the
more their HRV decreased (significant for archery), and the more their
mean pupil diameter increased (all p ≤ .05, all ρ ≥ .018).

Higher frustration levels significantly increased the number of peaks
in the SCR (cards, archery), increased the respiration rate (cards,
archery), decreased the SCR peaks amplitudes (archery), shortened
the time it took for peaks to rise (cards, archery), and shortened the
time it took for SCR peaks to recover (archery). Some of these correla-
tions are not significant in the cards game, but the correlation coefficient
all follow the same direction.

Higher fear levels significantly decreased the minimum pupil diam-
eter and decreased the SD of the pupil diameter in the vertigo scene.
Contrary to previous results shown in Table 3, higher fear levels also
significantly decreased the respiration rate.

We also observed differences in trends between the frustration and
fear responses. Higher frustration significantly increased the respiration
rate in both the archery and cards came. On the contrary, higher fear
levels significantly decreased the respiration rate in the horror game
and vertigo environment. Increased frustration levels in the cards game
led to increased min and max pupil diameters. Increasing fear levels
led to decreased min and max pupil diameters. Increased frustration
significantly shortened the SCR peaks rise time in the cards game. Fear,
however, tended to elongate the rise time of SCR peaks in the vertigo
scene (not significant).

Among other significant correlations, frustration level in the cards
game is positively correlated with the number of blinks of participants
while previous analyzes showed an overall decrease in the number of
blinks due to frustration events.

4.5 Results summary
Table 4 lists the effects of fear, frustration, and insight on heart rate,
HRV, SCR peaks, the number of blinks, pupillary activity, and respira-
tion rate. These effects are illustrated based on the previous findings,
favouring in the order: significant correlations p ≤ .05, significant ef-
fects p ≤ .05, non-significant correlations with Spearman’s ρ > .015,
non-significant effects significant effects with Wilcoxon’s r > .1.

The SCR peaks duration account for the SCR peaks mean rise time
and mean recovery time.

5 DETECTING MOMENTS OF FEAR, FRUSTRATION, INSIGHT

Having analyzed the characteristic impact of affective and cognitive
states on participants’ physiology in an immersive environment, we
now investigate the stability of the main features we identified in the

Physiological responses

Fear

Frustration
Archery

Horror
Vertigo

Cards
Insight

HRV SCR peaks
num amplitude duration

num
blinks

pupil diameter
mean sd

resp
rate

↑*
↑*↑*↑*↑

↑ ↑

↑↑

↓* ↓*

↑*↓*↑*

↑*↑

↓*↓*↑*

↓*

↓*

Table 4: Summary of effects of fear, frustration, and insight on the
physiological responses. The arrows indicate how transient states affect
features, based on the correlation analysis, then based on the statistical
differences reported. * indicates that at least one of the effects or
correlations was consistently statistically significant across the different
analyses (p ≤ .05).

previous section for automatically detecting such transient states. For
this, we compare the performance of three learning-based techniques
that we trained on the physiological features in Table 2 supervised by
the labels in Table 1, both of which we collected in our study.

5.1 Data selection
We trained separate binary classifiers to determine the presence of fear
(both and each horror and vertigo), frustration (both archery and cards),
and insight in a person’s continuous physiological signals (i.e., five
classifiers). All signals were normalized by subtracting the features
extracted from the baseline from each value, as recommended in pre-
vious work [34]. As described in Section 4.1, we extracted valid fear
events from participants who had rated their anxiety level above 40 in
the horror or the vertigo environment and we extracted valid frustration
events from participants who had rated their frustration level above 3 in
the archery or the cards game. We also extracted all insight events. In
total, this amounted to 509 frustration samples, 88 fear in horror game
samples, 42 fear of vertigo samples, and 43 insight samples.

For absence labels, we sourced a matching number of ‘none’ events
for each type of event, balanced to match event occurrences across
scenes and participants (e.g., for 509 frustration samples, we selected
509 ‘none’ samples from the same VE). We picked random moments
from related VEs (e.g., ‘none’ events from archery) where participants’
physiological signals indicated activity, but with a minimum offset
of 30 s to a proper event that occurred in the scene. We also padded
each selected sample with a buffer of 10 s before and after to prevent
selecting another sample from this region.

5.2 Classifiers
For each event type, we trained three supervised machine learning
classifiers: 1) logistic regression, 2) linear support vector machine
(SVM), and 3) a random forest (1000 estimators and a max depth of
5). SVMs and random forests have been frequently used in past VR
studies to classify affective and cognitive states in VR [35] as well
as for classifying physiological signals more generally [41]. In our
case, linear SVMs outperformed those with RBF kernels. As a third
classification method, we chose logistic regressions, because our ratings
were ordinal data.

We trained each classifier using the features listed in Table 2, sep-
arately calculating the features from 21 sliding 30-second windows,
starting in the period of [−15..5] s (step size = 1 s), where the event
occurred at 0 s. For comparison, we trained separate classifiers with all
the features from subsets of all sensors. We tuned the hyperparameters
using random search.

5.3 Results
To assess our classifiers, we used the micro F1 score that represents the
harmonic mean between precision and recall on the positive class (as
we are more interested in positive classes). We evaluated our trained
models using leave-one-subject-out cross-validation, holding out all
data from one participant per fold for testing, and averaging all N



State Algo. Modalities F1 score

Fear—Horror log PPG, Eyes 71 %
Fear—Vertigo log PPG, EDA, Eyes 75 %
Fear lsvc PPG, EDA, Resp 66 %
Frustration lsvc PPG, Eyes, Resp 76 %
Insight rf PPG, EDA, Eyes, Resp 75 %

Table 5: Our classifiers’ F1 scores (following leave-one participant
out evaluation). We filtered samples by SUDS and frustration score.
Classifiers: log = Logistic Regression, lsvc = Linear Support Vector
Classifier, rf = Random Forest.

models’ F1 scores. Table 5 lists the results of these user-independent
models for the best-performing models. Please see the supplementary
material for all sensor combinations and resulting F1 scores.

As evident in the table, all respectively best trained models achieved
an F1 score of above 66 %, though using a different subset of sen-
sors and thus features as input. This shows the promise of using
passively collected physiological signals to detect the presence of tran-
sient moments of fear, frustration, or insight for future applications.
Interestingly, apart from detecting moments of insights, all other best
performing classifiers are linear.

6 DISCUSSION

6.1 Physiological responses to fear
In this section, we consider fear ratings independent of the VE (horror
game and vertigo environments).

Moments of fear led to participants’ pupils varying over larger am-
plitudes and decreased their heart rate variability (HRV). These obser-
vations match the findings of previous studies on fear and anxiety [8].
Moments of fear also increased the peak amplitudes of electrodermal
activity responses (SCR), which is consistent with past findings about
the activation of the SCR due to stress and arousal [35]. Fear also
correlated with pupil diameter increase and pupillary variation in our
study. This corroborates past observations of increasing pupil diameter
in response to negative stimuli [1].

Our correlation analysis also showed that the higher the reported
anxiety level was, the lower their respiratory rate was. Prior studies
have linked fear with an increase in respiratory rate [31]. However, our
results are more consistent with Blatz’s findings that imminent threat
(sudden backward-tilting chair) decreases heart rate and respiratory
rate [4]. This difference may arise from the fact that many previous
studies have compared the physiological responses to an active con-
dition with physiological behavior during rest. Our results also show
this contrast: all five VEs increased participants’ respiratory rates and
heart rates compared to the baseline, likely a result of physical activ-
ity and not of elicited states. Another explanation for the decreasing
respiratory rates we observed may be the nature of the stimuli for fear.
Previous studies have analyzed the overall fear experienced during long
conditions [16, 36, 45], whereas we focused on short moments and
emotionally intense affective events.

Alternatively, the emotional outburst experienced by some partic-
ipants following a jumpscare could have cut their breath short, thus
decreasing their respiratory rate (and heart rate) for a longer period than
for those who experienced less intense fear.

6.2 Physiological responses to frustration
In our study, frustrating events caused participants’ HRV to decrease,
their blink rate to drop, and their pupil diameters to increase. This is in
line with prior findings (e.g., [26, 61]) that blink rate and respiratory
rate yield interesting insights about the occurrence of a frustration event.
The decrease in HRV and increase in SCR activity we observed can
be explained by the stress or emotional arousal reaction to frustration
events (e.g., when arrows dropped), supporting previously reported
effects of negative emotions [31].

Regarding eye activity, blink rate decreased for frustration events
compared to participants’ baseline, but there was a positive correlation
between frustration and the number of blinks in the cards game. An

explanation for this observation is that the number of blinks can be
considered a behavioral measure extracted from a physiological signal
(rather than an autonomic response). Thus, it may simply be a personal
reaction to frustration, much like blinking more in surprise or squinting
eyes in confusion. Stimuli context may be another explanation for this.
During archery, participants aimed to reach a score in a given time,
likely increasing their focus on the task and thus decreasing blink rate—
even though the game, at times, may have appeared not to work as it
should have. This would have decreased the overall blink rate despite
occurrences of frustration. Finally, the decrease in blinks could also be
explained by engagement. Prior work linked decreasing blink rates to
sustained attention, cognitive load, and increased engagement [55]. It
could be that the more participants were engaged in the game, the more
frustrated they became by the unfortunate events. This explanation is
supported by the previously found circular relation between emotional
intensity and presence, which itself is related to engagement [49].

6.3 Physiological responses to insight
Insight is particularly difficult to elicit in a controlled manner as it
requires users to discover solutions. Unlike analytic problem-solving,
users cannot readily explain the exact path they followed to reach
the solution [60]. Our escape game worked well to elicit insight, as
participants had to discover that codes were encoded in different ways
(light flashes to counts). Since the environment offered opportunities
for only two such insights, we have a limited amount of data points
only and will need more data to strengthen effects significance.

Few prior studies have investigated moments of insight in a physio-
logical context. Collins et al. [10] detected moments of insight using
EDA responses in a user-dependent model, pooling all users in the
training and testing dataset, and reached an accuracy of up to 98.81 %.
Our results, however, showed no significant difference between the
EDA responses elicited by insight and those during the baseline, which
may be due to our limited sample size.

Insight increased participants’ pupil diameter, led to variations over
larger amplitudes (lower min, higher max) and stronger deviations from
the mean (higher SD) compared to the baseline. Previous work found
insight to improve memory and creativity [11] and our results are in
line with previous results that found strong links between cognitive
states (e.g., cognitive load, attention) and pupil diameter [34, 44].

6.4 Difference between fear and frustration
Past work mainly aimed to classify different classes of emotional
arousal and valence [35]. However, identifying the differences be-
tween close emotions situated in the same emotional space such as
fear and frustration is particularly difficult and has consequences for
detecting these states. We designed two environments per emotion to
evaluate the differences between fear and frustration across contexts.

We found significant differences between fear and frustration in
blinks and pupillary activity, as well as differences in their correla-
tion with respiratory rate. As above, blink rate can be explained by
individuals’ behavioral differences.

Fear events impacted participants’ pupil diameter significantly more
(lower min, higher max, higher SD) than frustration events, which
on the contrary provoked a decrease in the SD of participants’ pupil
diameters. This difference can be explained by the higher arousal level
induced by fear events compared to frustration events.

More interestingly, a higher anxiety level was correlated with an
increase in the average pupil diameter and a decrease in the minimum
pupil diameter. Comparatively, frustration level was correlated with an
increase in the average pupil diameter and an increase in the minimum
pupil diameter in the cards environment. Thus, higher anxiety provoked
a constriction and dilation of the pupils, while higher frustration mainly
provoked a dilation of the pupils.

Anxiety level due to fear events negatively correlated with partici-
pants’ respiratory rate, as opposed to frustration level. While both fear
and frustration are negative emotions, fear events can be associated
with imminent threats, provoking users to be more guarded, contrarily
to frustration. Past work has shown that more anxious participants tend
to have more tense muscles [35]. This tension could also be associated



with compression of their thoracic cavity, making them retain more
their breath with increasing anxiety. Higher frustration levels, however,
would make individuals more active, which would increase their res-
piratory rate. This restlessness can also be found in the shortening of
their SCR peak activity.

Indeed, our correlation analysis consistently showed that higher frus-
tration levels increased the number of SCR peaks, decreased the SCR
peak amplitudes, the peak rise times, and the peak recovery times (com-
pared with no correlation with fear). This held true in both, the archery
and the cards game. Frustration can, thus, be associated with repetitive
small activations of the SCR (multiple short and low-amplitude SCR
peak activation).

6.5 Difference between fear/horror vs. fear/vertigo

Despite the fact that fear is a term used under the same denomination to
refer to the emotion felt when one feels in danger, we found differences
between fear in a vertigo scene and fear experienced during a VR horror
game physiological responses.

The correlation coefficient between the fear level and the mean
pupil diameter was much higher in the horror game than in the vertigo
scene (see Fig. 5). Increasing anxiety levels also decreased participants’
respiratory rate more in the horror game than in the vertigo environment.
These differences can be explained by the overall more intense horror
stimuli compared to the vertigo stimuli.

We also found that both the horror and the vertigo environment
significantly increased the SD of participants’ pupil diameter compared
to the baseline. However, anxiety level was negatively correlated with
the SD of the pupil diameter in the vertigo environment (Table 4).
This difference may stem from the difference in the acuteness of the
stimuli. Horror stimuli were overall more sudden than events in the
vertigo scene, which may have elicited physiological changes of higher
response amplitudes.

6.6 Recognition of short affective and cognitive events

We trained separate user-independent classifiers to determine the pres-
ence of fear, frustration, and insight and obtained a micro F1 score
above 66 % by using different subsets of sensors.

Interestingly, eye features proved important in all best-performing
classifiers except for recognizing context-independent fear. Our analy-
ses showed different trends between the overall impact of fear events
on the physiological responses against the baseline (i.e., increase of
the pupil SD) and the correlation between anxiety level reported in
fear environments and the physiological responses (i.e., negative cor-
relation between anxiety ratings and the pupil diameter SD). The fact
that eye features seemed little relevant for the classification of transient
psychological states when mixing different types of fear highlights the
difficulty to classify states across contexts, especially as they differ in
their physiological responses despite using the same terminology.

Overall, the performances of our models are comparable to prior
work (e.g., Kapoor et al. [26] classified frustration with an accuracy of
79.2 %, but used more modalities such as face recognition and pressure
exerted on a mouse.) It is important to note that we evaluated our
recognition models using a user-independent approach and without
any context-dependent variables (e.g., no task performances or input-
related features). We also had few data points in the fear and insight
environments. Considering these conditions, our models performed
surprisingly well compared to those in the literature [41].

For comparison, we also trained user-dependent models. They
achieved average F1 scores of up to 85 % for fear environments and
91 % for frustration. The models for insight performed poorly (64 %),
because of the small amount of data points available for training within
each participant. This performance is also consistent with past user-
dependent classifiers [10].

Our classifiers were primarily tuned in an attempt to investigate
whether the modalities and features importance in the classification
corroborate our previous analyses. We believe that our results indicate
a promising direction for future work to further tune hyperparameters
in addition to gathering more samples to bolster detection accuracy. For

example, modulating the size of the window could be useful to improve
the detection of fear, frustration, and insight events in real-time.

6.7 Limitations

Our study focused on transient psychological states that can impact user
experience in VR but that are particularly short in duration. Despite
being categorized in the same emotional space (i.e., negative valence,
positive arousal), our results shed light on the differences between fear,
frustration, and insight. However, we analyzed these differences in
a limited number of contexts and additional states in this emotional
space should be investigated, such as anger [41] and other types of
fear. We also presented only one VE on a positively valenced state,
because positive responses of short duration can be particularly difficult
to elicit—as we showed in the case of insight. Further investigating
the physiological responses to these additional states could help better
understand the relations between affective and cognitive states.

The dataset sizes and statistical power of our analyses were limited
(N ∈ [13,24]). We accounted for individual variability by normalizing
physiological responses in the correlation analysis and model training,
but larger sample sizes and a more diverse population are needed for
generalization and to detect potential interaction effects.

We analyzed the impact of transient states and their differences us-
ing wearable sensors in interactive settings. While the EDA and PPG
sensors yielded interesting insights about the effects of transient states,
their signals naturally suffered more from motion artifacts than the
respiration and eye tracking sensors. The resulting need for more elabo-
rate preprocessing currently limits their readiness for use in interactive
contexts. Advancing to robust but non-invasive wearable sensors will
be essential to improve the analysis of human cognition and behavior
using physiological signals.

Finally, while our study afforded participants free movement and
interaction, our physiological recordings have no baseline that is as
insightful as EEG. Future efforts could build on our elicitation design
to restrict head motion and use EEG to better understand the underlying
processes associated with emotion and cognition.

7 CONCLUSION

In this paper, we have presented the results of a user study that elicited
transient psychological states that are short in duration, such as fear,
frustration, and insight. Specifically, we investigated the cardiac, epider-
mal, pulmonary, and pupillary responses to changes in these states. 24
participants were exposed to five virtual environments that comprised
different fear, frustration, and insight events.

Despite the fact that fear and frustration are situated in the same emo-
tional space (negative valence, positive arousal), we found differences
in their physiological responses: anxiety level decreased respiration
rate across different fear contexts, while respiration rate increased with
frustration level. Higher fear level was linked to pupil dilation and
constriction, and higher frustration level produced an overall dilation of
the pupil. Frustration also triggered more changes in skin conductance
responses, shortening the overall phasic skin peak amplitudes and dura-
tion. High-intensity states such as fear and insight were also associated
with higher amplitudes of change in participants’ pupil diameters. We
also found significant differences in the pupillary behavior in response
to fear events in a horror game and fear events in a vertigo environment.

In a second step, we demonstrated that the behavior of the fea-
tures that we selected to characterize physiological responses to these
transient moments was systematic across participants and event types.
Using the events and participants’ physiological signals, we trained bi-
nary classifiers for detecting moments of fear, frustration, and insight in
an objective, unobtrusive, and real-time manner. Our user-independent
models detect these transient events with F1 scores above 66 %. The
implications of both, our results as well as our data-driven detection
of transient states show the potential to aid further understanding of
emotions and cognitive states in immersive environments, including in
productivity, creativity, and learning scenarios using VR.
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