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Figure 1: Our method Ultra Inertial Poser estimates 3D full body poses and global translation (i.e., SMPL parameters) from the
inertial measurements on a sparse set of wearable sensors, augmented and stabilized by the estimated inter-sensor distances
based on UWB ranging. Our lightweight standalone sensors stream raw IMU signals, from which we estimate each tracker’s 3D
state and fuse it with acceleration and inter-sensor distances in a graph-based machine learning model for pose estimation.

ABSTRACT
While camera-based capture systems remain the gold standard for
recording human motion, learning-based tracking systems based
on sparse wearable sensors are gaining popularity. Most commonly,
they use inertial sensors, whose propensity for drift and jitter have
so far limited tracking accuracy. In this paper, we propose Ultra
Inertial Poser, a novel 3D full body pose estimation method that
constrains drift and jitter in inertial tracking via inter-sensor dis-
tances. We estimate these distances across sparse sensor setups
using a lightweight embedded tracker that augments inexpensive
off-the-shelf 6D inertial measurement units with ultra-wideband
radio-based ranging—dynamically and without the need for station-
ary reference anchors. Our method then fuses these inter-sensor
distances with the 3D states estimated from each sensor. Our graph-
based machine learning model processes the 3D states and dis-
tances to estimate a person’s 3D full body pose and translation. To
train our model, we synthesize inertial measurements and distance
estimates from the motion capture database AMASS. For evalua-
tion, we contribute a novel motion dataset of 10 participants who
performed 25 motion types, captured by 6 wearable IMU+UWB
trackers and an optical motion capture system, totaling 200 minutes
of synchronized sensor data (UIP-DB). Our extensive experiments
show state-of-the-art performance for our method over PIP and
TIP, reducing position error from 13.62 to 10.65 cm (22% better) and
lowering jitter from 1.56 to 0.055 km/s3 (a reduction of 97%).
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1 INTRODUCTION
Accurate and unrestricted motion tracking is fundamental across
many domains and applications, such as animation, games, Aug-
mented and Virtual Reality as well as fitness training and reha-
bilitation. High-quality motion capture systems rely on cameras,
involving a tethered, comprehensive, and stationary setup [Opti-
track 2023; Vicon 2023]. Compensating for the worn capture suits
or markers these systems typically require, researchers have in-
stead explored markerless motion capture from images [Chen and
Ramanan 2017; Kanazawa et al. 2018] and videos [Habermann et al.
2019; Kocabas et al. 2020] from one [Habermann et al. 2020; Hu
et al. 2021; Li et al. 2020b] or more cameras [De Aguiar et al. 2008].

Beyond stationary setups, tracking systems built around wear-
able sensors have leveraged miniaturized cameras in head-mounted
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devices [Rhodin et al. 2016; Tome et al. 2019] or body-worn sen-
sors [Li et al. 2020a; Shiratori et al. 2011; Yi et al. 2023; Zhang et al.
2020]. Such motion capture is mobile and requires less instrumenta-
tion for tracking, though at the cost of substantial motion artifacts
and self-occlusion in sensor observations [Wang et al. 2021].

Substituting wearable cameras with even smaller motion sen-
sors, dominantly inertial measurement units (IMU), has enabled
less expensive setups but requires more comprehensive full-body
sensor coverage, usually attached to motion capture suits to achieve
comparable quality (e.g., 17–19 sensors for Xsens [Xsens 2024] or
Noitom [Noitom 2024]). The multitude of IMUs is needed to com-
pensate for the diminishedmotion cues, which commercial products
stabilize with kinematic models to fuse cross-sensor observations.

To lessen the need for comprehensive sensor coverage, recent
methods have proposed estimating full-body poses from only a
sparse set of inertial sensors with learning-based techniques [Huang
et al. 2018; Yi et al. 2022, 2021]. It is worth noting that the quality of
their estimates thereby rely on the well-calibrated absolute 3D state
provided by the IMU sensors, which has dominantly been from
Xsens’ proprietary units. Even so, without access to direct position
observations and due to the nature of inertial sensing, current
pose estimates suffer from overall drift and joint jitter as well as
degrading accuracy when body motions are performed slowly.

In this paper, we propose Ultra Inertial Poser, a learning-based
method for 3D full body pose estimation that fuses raw IMU read-
ings with inter-sensor distances for stable predictions. Our method
estimates these distances from ultra-wideband (UWB) ranging,
which we add to a small, inexpensive, and untethered embedded
sensor node (Figure 1). Our graph-based neural model fuses these
distances with our 3D state estimations from the raw IMU signals to
recover the SMPL parameters of body pose and global translation.

For training, we use AMASS [Mahmood et al. 2019] to synthesize
IMU signals and distances and augment them with our empirically
validated and collision-aware noise model. For evaluation, we in-
troduce a novel motion capture dataset in which participants per-
formed a long list of activities. Our method surpasses the current
SOTA methods PIP [Yi et al. 2022] and TIP [Jiang et al. 2022b] in
position accuracy (22% lower error) and jitter (97% reduction).

We make the following contributions in this paper:
(1) Ultra Inertial Poser, a novel method to incorporate distance con-

straints into a pose estimation framework for inertial measure-
ments. Our graph-based neural network affords effective train-
ing using existing large motion capture datasets (e.g., AMASS),
complemented by synthetic and noise-augmented distances.

(2) An embedded sensing platform with inexpensive off-the-shelf
components for UWB-based ranging and IMU-based motion
detection similar to those inside UWB-based item trackers. Our
UWB communication protocol and distance estimation requires
no stationary nodes and dynamically compensates for moments
of occlusion between nodes as ranging crosses the human body.
Compared to electromagnetic sensing, UWB ranging is lower
power, less susceptible to interference, and can scale simply.

(3) Ultra Inertial Poser’s pipeline is first to operate on the raw sig-
nals from IMU sensors (i.e., just acceleration, angular velocity),
and UWB radios—without requiring proprietary components to
obtain global 3D orientation as input (e.g., Xsens in prior work).

(4) UIP-DB, a novel motion dataset of 25 types of motion activities
from 10 participants, including everyday movements as well as
challenging motions for IMU-only tracking (e.g., slow transi-
tions). UIP-DB contains synchronized 6-DoF IMU signals, UWB
measurements and distances, as well as SMPL references based
on a 20-camera Optitrack setup, totaling 200 minutes of data.

Taken together, Ultra Inertial Poser is a scalable approach for inex-
pensive full-body motion tracking using sparse wearable sensors.
Our tracking approach is wireless and affords motion capture in
the wild outside controlled indoor environments (Figure 11).

2 RELATEDWORK
Ultra Inertial Poser is related to human body pose estimation using
wearable sensors and positioning based on ultra-wideband ranging.

2.1 Motion Capture from Inertial Sensors
Inertial Measurement Units (IMUs) are popular for tracking motion
due to their compact size, low power consumption, and affordability.
They combine accelerometers and gyroscopes to track changes in
acceleration and angular velocity, often supplemented by magne-
tometers to measure surrounding magnetic fields. However, IMUs
cannot directly observe positions, and position estimates suffer
from drift. Commercial systems address this by integrating data
from 17–19 IMUs with biomechanical models (XSens [Xsens 2024]).

Pose estimation from sparse sets of IMUs has become viable
using the large available motion capture (mocap) datasets to train
learning-based models [Guzov et al. 2021; Huang et al. 2018; Mah-
mood et al. 2019; Mollyn et al. 2023; Streli et al. 2023; Trumble
et al. 2017]. Early systems used offline optimization to fit the SMPL
body model to data from six IMUs (e.g., SIP [Von Marcard et al.
2017]). Deep Inertial Poser’s (DIP) bidirectional recurrent neural
network maps IMU readings to local joint motions [Huang et al.
2018], which other methods further improved [Nagaraj et al. 2020].
More recent methods also use 6 IMUs and optimize both pose and
translation estimation via ground contact points [Jiang et al. 2022b;
Yi et al. 2021] and physical constraints [Yi et al. 2022]. With the
advance of VR/AR applications, several methods further sparsified
input requirements to just the upper body to estimate full-body
pose from head and hand poses [Ahuja et al. 2021; Du et al. 2023;
Jiang et al. 2023, 2022a; Yang et al. 2021; Zheng et al. 2023].

To combat the persistent challenges in estimating accurate joint
angles and positions, researchers have revisited external [Pan et al.
2023; VonMarcard et al. 2018] or body-worn [Yi et al. 2023] cameras
for visual-inertial tracking. Alternatively, EM-Pose [Kaufmann et al.
2021] measures the relative 3D offsets and orientations between
joints using 6–12 custom electromagnetic (EM) field-based sensors.

Given the difficulties of reproducing custom EM sensing tech-
nology with commodity components, our work instead builds on
previous approaches that estimate mere distances between wear-
able trackers (e.g., using ultrasonic sensors [Liu et al. 2011; Vlasic
et al. 2007]). Our method obtains such pairwise distances from ultra
wideband-based ranging and integrates them as constraints into
a learning-based sparse inertial sensing pipeline. The small size,
inexpensive nature, and low power consumption of UWB radios
can thus complement IMUs as part of wearable and mobile devices.

https://siplab.org/projects/UltraInertialPoser
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Figure 2: Overview of our method. The person is wearing 6 sensor nodes, each featuring an IMU and a UWB radio. Our method
processes the raw data from each sensor to estimate sequences of global orientations, global accelerations, and inter-sensor
distances. These serve as input into our learning-based pose estimation to predict leaf-joint angles as well as the global root
orientation and translation as SMPL parameters.

2.2 Ultra-Wideband Ranging
Ultra-wideband (UWB) signals are characterized by their extensive
bandwidth (larger than 500MHz) and very short duration wave-
forms, typically in the order of a nanosecond [Sahinoglu et al. 2008].
This characteristic allows for accurate determination of the time
of departure and arrival of signals, making UWB systems ideal
for ranging applications through a variety protocols, including
Two-Way Ranging (TWR)[IEEE 2007], Time Difference of Arrival
(TDoA)[Tiemann and Wietfeld 2017; Ubisense 2023], and Angle of
Arrival (AoA) [Ledergerber et al. 2019]. Additionally, UWB radios
are compact and have low power consumption, making them suit-
able for a range of applications such as asset tracking both indoors
and outdoors [Arun et al. 2022; Zhao et al. 2021], robotics localiza-
tion [Cao et al. 2020; Lee et al. 2022; Ochoa-de Eribe-Landaberea
et al. 2022; Zheng et al. 2022] and collaboration [Corrales et al.
2008; Hepp et al. 2016; Queralta et al. 2022], and augmented real-
ity [Molina Martel et al. 2018].

Amajor challenge for accurate UWB ranging is the distortion due
to obstacles in the line of sight between ranging devices. Prior meth-
ods have addressed these by analyzing the raw channel impulse
response on UWB radios [Angarano et al. 2021; Barral et al. 2019;
Tran et al. 2022], which is resource intensive and makes real-time
operation on embedded platforms challenging. A more common
approach is sensor fusion (e.g., particle or Extended Kalman Filters,
EKF) to incorporate data from other sensors such as IMUs [Feng
et al. 2020; Hol et al. 2009; Mueller et al. 2015; Ochoa-de Eribe-
Landaberea et al. 2022], and cameras [Queralta et al. 2022; Xu et al.
2022]. We also build on an EKF-based UWB+IMU filter.

Previous work has focused on UWB positioning via trilatera-
tion with fixed anchors in the environment or using at least four
rigidly coupled antennas on a node. In contrast, our method solely
measures inter-sensor distances, thus requiring only a single UWB
antenna and eliminating the need for stationary instrumentation.

3 METHOD
3.1 Problem Statement
Our goal is to estimate full-body pose from the sequential (raw)
IMU observations and inter-sensor UWB ranging cues from a sparse
set of 𝑆 wearable sensors. In line with prior work, we examine this
problem with 6 body-worn sensors on the pelvis, knees, wrists,
and head. Given 𝑆 sensor nodes with a 6-DoF IMU and a single
UWB radio, we first aim to estimate each node’s 3D orientation
𝑅𝑡 ∈ R𝑆×3, global accelerations 𝐴𝑡 ∈ R𝑆×3, as well as inter-sensor
distances between all nodes 𝐷𝑡 ∈ R𝑆×𝑆 . We then aim to predict the
joint angle Θ𝑖

𝑡 as well as the global translation 𝑇𝑡 in SMPL human
model parameters [Loper et al. 2015]. The pelvis sensor is the root
of our body model, whereas the other sensors are leaf nodes.

Figure 2 shows an overview of our pipeline as detailed below.

3.2 Wearable Sensing Pipeline
3.2.1 Sensing Hardware. Our method is designed to estimate poses
from commodity sensors, i.e., those commonly found in commercial
devices. As such, we developed 6 wireless prototypes with a 6DoF
IMU (LSM6DS) and a UWB radio (DWM1000) each, integrated
into a 35×35mm package (Figure 1 and Figure 10). An onboard
microcontroller (NRF52840) runs custom firmware to sample the
IMU and implement a UWB ranging protocol, streaming the results
over BLE to a host computer. The host handles synchronization
across the 6 devices and runs the rest of the sensing pipeline.

3.2.2 Obtaining Orientation and Acceleration Measurements. We
sample each IMU at 100Hz to obtain sensor-frame acceleration a𝑖
and angular velocity 𝜔𝑖 signals from sensor 𝑖 in 𝑆 . We implement a
VQF filter [Laidig and Seel 2023] to estimate gravity-compensated
acceleration â𝑖 in the world frame and the absolute orientation
quaternion q̂𝑖 . At every time step, the estimates from each sensor
are concatenated to form the orientation and global acceleration
sequences 𝑅𝑡 and 𝐴𝑡 respectively. We perform a simple IMU cali-
bration by estimating the gyroscope and accelerometer offsets as
the wearer holds an initial T-pose.
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3.2.3 UWB Ranging. The 6 devices implement a broadcast two-
way ranging protocol to obtain the UWB distances 𝑑𝑖, 𝑗 between
each sensor pair (𝑖, 𝑗). In a ranging round, illustrated in Figure 8, Re-
sponder devices reply in turn to a request from an Initiator with the
timestamps required to resolve time-of-flight 𝜏𝑖 𝑗 between devices.

𝜏𝑖 𝑗 =
1
2 (𝑡𝑖𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 − 𝑡𝑖𝑆𝑒𝑛𝑡 + 𝑡 𝑗𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 − 𝑡 𝑗𝑆𝑒𝑛𝑡 ) (1)

Initiator and Responder roles are assigned at startup. In a network
of 6 devices, this protocol allows us to measure all 15 pairwise
distances at a rate of 25Hz.

Individual UWB radios require an initial calibration to correct
for hardware-specific variables, notably antenna delay which sig-
nificantly affects ranging accuracy [Decawave 2017]. We calibrate
all nodes at once, using a RANSAC regression to find an affine
mapping of the raw ranges to the ground truth captured with a
marker-based motion capture system. This calibration process is
conducted once and applied consistently regardless of sensor place-
ment or subject. The calibration mapping is however sensitive to
temperature. with a variation of 2.15mm/°C [Decawave 2018].

The parameters determined through this process remain valid
given similar operating temperatures [Decawave 2014].

3.2.4 Estimating Filtered Inter-Sensor Distance Measurements. The
raw UWB ranges exhibit increased noise when the body obstructs
the direct line of sight between sensor pairs. To mitigate this, we
fuse UWB ranges with the acceleration and orientation estimates
for each sensor pair with an Extended Kalman Filter.

Our filter tracks the state space comprised of relative position,
relative velocity, and relative orientation between a sensor pair
(𝑖, 𝑗), which we express as x =

[
𝒙𝑖 𝑗 𝒗𝑖 𝑗 𝒒𝑖 𝑗

]⊤. We initialize the
state assuming a starting position in T-pose. In the prediction step,
our filter relies on dead-reckoning using the estimated acceleration
and orientation as control inputs u =

[
𝒂𝑖 𝒂 𝑗 �̂�𝑖 �̂� 𝑗

]⊤. The
predicted state x̂𝑡 at discrete time step 𝑡 becomes

x̂𝑡 = 𝑓 (x𝑡−1, u𝑡 ) =

𝒙𝑖 𝑗𝑡−1 + Δ𝑇𝒗𝑖 𝑗𝑡−1 + Δ𝑇 2

2 (𝒂 𝑗𝑡 − 𝒂𝑖𝑡 )
𝒗𝑖 𝑗𝑡−1 + Δ𝑇 (𝒂 𝑗𝑡 − 𝒂𝑖𝑡 )

�̂�−1𝒊𝒕 �̂�𝒋𝒕

 (2)

where Δ𝑇 is the difference between consecutive time steps.
The noise in the prediction step is mainly introduced by the

control input and therefore not simply additive. The VQF filter
lacks explicit orientation covariance outputs. Instead, we treat we
𝒂 and �̂� inputs as independent, and define the prediction step noise
covariance 𝑸𝑡 as:

𝑸𝑡 =𝑾𝑡Σ𝑢𝑾
𝑇
𝑡 𝑾𝑡 =

𝜕𝑓 (x𝑡−1, u𝑡 )
𝜕u

(3)

where 𝚺𝑢 is the diagonal matrix of each of the input sensors’ vari-
ance, which we determine from ground-truth. We introduce UWB
ranges at the correction step. Before fusion, we remove raw UWB
outliers outside a range of acceptable inter-sensor distances, to
ignore measurements that are incompatible with human motion
constraints. This range for each sensor pair is defined apriori assum-
ing body heights of [1.5, 2m] and constant across subjects. These
ranges and their first derivative, form the measurement model h(x)

defined in Eq. 4, and linearized as Eq. 5.

h𝑡 (x) =
[
𝑑

𝑣

]
=

[
∥𝒙𝑖 𝑗 ∥2
∥𝒗𝑖 𝑗 ∥2

]
(4)

𝐻 (x) = 𝜕ℎ(x)
𝜕x

=

[ 𝒙𝑖 𝑗
𝑥 03
03

𝒗𝑖 𝑗
𝑣

]
2×6

(5)

The measurement covariance matrix is simply the diagonal matrix
of the distance and speed variances observed from raw distance
measurements against ground-truth. It is different for each sensor
pair, as some are LOS while others are not, but constant across
subjects. Without direct observations, the relative position estimate
𝒙𝑖 𝑗 is still prone to drift, however, its norm 𝒅𝑖 𝑗 = ∥𝒙𝑖 𝑗 ∥2 provides a
distance estimate more robust to NLOS distortions.

3.3 Pose Estimation with Distance Constraints
3.3.1 Model. The first module of our estimation pipeline is a sen-
sor position estimator. It consists of two branches to capture the
temporal and spatial information from input signals. In the first,
we deploy an LSTM network [Hochreiter and Schmidhuber 1997]
cells to estimate sensor positions relative to the root from acceler-
ation and orientation estimates 𝐴𝑡 and 𝑅𝑡 . This module leverages
temporal information from the sequence of inputs, and we denote
its output as P𝑡 ∈ R𝑆×3.

In parallel, we introduce a second branch to estimate relative sen-
sor positions from pairwise distances using a Distance Attention
Graph Convolutional Network (DA-GCN). As illustrated in Fig-
ure 3, we represent our system of wearable devices with a graph
G = {V, E}, with vertices V ∈ 𝑆 and edges E. Each node 𝑖 holds
the orientation estimate R𝑖

𝑡 , while edges represent inter-sensor dis-
tance estimates D𝑡 . Previous GCN implementations [Zhao et al.
2019] exploit a pre-defined affinity matrix with binary values to
represent connectivity between joints of a skeleton model. We take
it further by encoding inter-sensor distances on edge features, to
capture additional correlation between nodes, to which we apply
a modulated graph convolutional network [Zou and Tang 2021].
More specifically, we first normalize inter-sensor distance by the

Figure 3: Architecture details for the Distance Attention
Graph Convolutional Network (DA-GCN). Given node ori-
entation 𝑅𝑡 and edge distance 𝐷𝑡 , DA-GCN estimates sensor
positions conforming to the distance measurements. The
model consists of a distance attention branch with learnable
matrices𝐴𝑙 and 𝐵𝑙 to represent the correlation between nodes
and a weight-modulation branch 𝑀𝑙 to learn disentangled
transformation for different nodes.
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distance between the head and pelvis to rule out differences in hu-
man shape. Building on the success of channel attention in image
processing [Jiang et al. 2021; Woo et al. 2018], we then compute the
correlation matrix as in Equation 6, where elements in matrix 𝐴𝑙

and 𝐵𝑙 are learnable.

𝑪𝑙 = 𝑨𝒍 ⊙ 𝑫 ⊕ 𝑩𝒍 (6)

The correlation matrix is then applied as a weight to aggregate
modulated node features, which can be denoted as:

𝑯𝑙+1 = (𝑴𝑙 ⊙ (𝑾𝑙𝑯𝑙 ))𝑪𝒕 (7)

, where 𝐻𝑙 represents the node feature at layer 𝑙 and𝑀 represents
the modulation for weight𝑊𝑙 to learn disentangled transformation
for node feature. By leveraging orientation and distance constraints,
our DA-GCN outputs spatial sensor position estimation P𝑠 ∈ R𝑆×3.

Similarly to TransPose [Yi et al. 2021], we use linear interpolation
to fuse the two relative sensor position estimates. We compute a
weighted sum of P𝑡 and P𝑠 based on the magnitude of acceleration
estimates in𝐴𝑡 . This is driven by the fact that in scenarios with little
movement IMUs have a low signal-to-noise ratio, and distinguishing
between poses solely from inertial data becomes challenging.

Therefore, the fusion algorithm can be formulated as:

P𝑖 =


P𝑖𝑠 ∥â𝑖 ∥ ≤ a
∥ â𝑖 ∥−a

a−a P𝑖𝑡 +
a−∥ â𝑖 ∥

a−a P𝑖𝑠 a < ∥â𝑖 ∥ < a

P𝑖𝑡 ∥â𝑖 ∥ ≥ a

(8)

We set the thresholds a and a to 8.0 and 2.0m/s2, respectively, which
we determined via grid search to minimize position error.

This fusion approach accommodates different update rates be-
tween the inertial (100Hz) and distance (25Hz) measurements,
eliminating the need for resampling or interpolation.

The rest of the pipeline processes the combined position esti-
mates, acceleration, orientation, and distance measurements. These
inputs are passed to a kinematics decoder, which estimates local
orientation, local velocity, and foot contact, followed by a dynamics
optimizer, based on previous work [Yi et al. 2022]. The pipeline
outputs SMPL pose parameters Θ𝑡 global translation 𝑇𝑡 .

3.3.2 Loss Functions. To supervise our sensor position estimator,
we design a loss function that incorporates distance constraints.
From the estimated sensor positions P𝑠 or P𝑡 , which we denote as P̂,
we compute inter-sensor distances 𝑑 (P̂) ∈ R𝑆×𝑆 and the L1 recon-
struction loss ∥𝑑 (P̂) − D∥1. We also pose additional constraints on
its direction by computing the cosine similarity between estimated
sensor positions and nearest joint positions. We can then formulate
the full distance-aware loss as:

L𝑑 =
P̂ · P̃

∥P̂∥∥P̃∥
+ 𝜆∥𝑑 (P̂) − D∥1 (9)

where P̃ is the approximate sensor position from nearest joints. We
select 𝜆 as 0.01 and leverage this distance aware loss as the objective
function for sensor position estimation.

For other modules, we apply L2 loss for the rotation estimator,
binary cross entropy loss for the contact estimator, and accumulated
loss [Yi et al. 2021] for the velocity estimator.

3.3.3 Data Synthesis. Because training our pose estimation pipeline
requires a large-scale dataset with IMU+UWB measurements and
SMPL references, we first appropriate AMASS as an existing motion
capture dataset [Mahmood et al. 2019] to synthesize sensor data.

Similarly to previous research [Yi et al. 2021], we synthesize
global acceleration and orientation data by placing virtual sensors
on SMPL mesh vertices. We deduce the rotation matrix from SMPL
joint rotations and derive world-frame acceleration vectors using
finite differences in vertex positions,

a𝑖𝑡 =
𝑛p𝑖𝑡+𝑛 − 2p𝑖𝑡 + p𝑖𝑡−𝑛

(𝑛∆𝑡)2
(10)

where 𝑝𝑖𝑡 is the position of vertices 𝑖 at time step 𝑡 . To synthesize
UWB data, we first compute the Euclidian distance from the virtual
sensors’ positions and then apply a time-varying noise model that
reflects observations on real data. We conducted NLOS noise mod-
eling experiments, in which we varied distances and obstacle sizes
between sensors. We observed a noise standard deviation similar
to LOS for obstacle-to-distance ratio smaller than 0.2, and larger
for ratios above 0.2. As such, we model noise as dynamic Gaussian
noise with standard deviation 𝜎 (𝑡)𝑖 𝑗 given by:

𝜎 (𝑡)𝑖 𝑗 =
{
𝜎0 𝑐 (𝑡)𝑖 𝑗 < 0.2
𝜎1 𝑐 (𝑡)𝑖 𝑗 ≥ 0.2

(11)

where 𝑐 (𝑡)𝑖 𝑗 is the proportion of occlusion on the line between
devices 𝑖 and 𝑗 . To compute this occlusion, we leverage the im-
plicit human body model COAP [Mihajlovic et al. 2022] and query
sampled points along the line segment at a constant resolution
between devices. The values of 𝜎0 and 𝜎1 are determined em-
pirically, by running our sensing pipeline with two devices first
in LOS (𝜎0 = 0.051 m) then in NLOS with a person as obstacle
(𝜎1 = 0.083 m).

3.3.4 Training Details. We adopt the Adam solver [Kingma and Ba
2015] with batch size 256 to optimize the parameters of model. We
train each module separately with the learning rate at 1× 10−3 and
decays by a factor of 0.33 every 20 epochs. We train our model with
PyTorch on one NVIDIA GeForce GTX 3090 GPU. It takes about 4
hours in total to train our model.

4 DATASET
To evaluate our method and to spur further work, we collected
a motion capture dataset of a large variety of movement types,
capturing the raw IMU+UWB measurements of our tracker nodes
alongside those from an optical tracking system. We recorded more
than 25 different movements from 10 participants (6 male, 4 female),
with heights between 155 cm and 187 cm.

Our recording study comprised two sessions. The first focused
on everyday movements that participants performed standing up,
such as walking, jumping, squats, etc. The second session involves
interactions with a chair andmovements in various seated positions.
For each participant, we recorded two takes of each session and a
final freestyle session, where they acted as desired for 4–6min.

As shown in Figure 10, participants wore a suit with 57 reflective
markers and 6 of our wearable devices on the back of the head,
lower back, wrists, and knees. The wearable sensors continuously
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Table 1: Comparison with state-of-the-art methods on existing datasets augmented with simulated, ideal inter-sensor distances
original TIP/PIP training set (TotalCapture ground truth included) AMASS without TotalCapture

Dataset DanceDB DIP-IMU TotalCapture DanceDB DIP-IMU TotalCapture

Method SIP Err Pos Err Jitter SIP Err Pos Err Jitter SIP Err Pos Err Jitter SIP Err Pos Err Jitter SIP Err Pos Err Jitter SIP Err Pos Err Jitter

TIP 18.705 8.500 1.438 17.068 5.822 0.882 11.361 5.145 0.751 18.740 8.501 2.252 17.011 5.710 1.162 13.588 5.967 1.015
PIP 20.007 8.877 2.234 15.020 6.020 0.240 12.930 7.025 0.204 20.007 8.997 2.334 15.977 6.209 0.260 15.930 7.046 0.292
with synthesized perfect distances:
TIP-D 16.243 7.624 2.220 15.910 5.442 0.863 10.762 5.142 0.722 16.225 7.648 2.221 15.914 5.259 1.128 12.183 5.507 1.004
PIP-D 16.205 8.042 2.124 13.762 5.336 0.281 11.408 5.560 0.201 16.815 8.063 2.166 13.788 5.355 0.297 13.161 6.317 0.273
UIP (ours) 15.280 7.450 0.430 13.200 5.050 0.240 10.707 5.108 0.206 15.321 7.612 0.430 13.210 5.053 0.248 11.321 5.490 0.257

Table 2: Comparisons on UIP-DB with acceleration, orientation
and inter-sensor distances from real off-the-shelf sensors.
UIP-DB overall ∥a∥ ≤ 1.0m/s2 ∥a∥ > 1.0m/s2

Method SIP Err Pos Err Jitter SIP Err Pos Err Jitter SIP Err Pos Err Jitter

TIP 33.01 14.82 1.86 36.90 16.55 1.79 28.83 12.95 1.95
PIP 30.47 13.62 1.57 36.18 15.87 1.33 23.18 10.80 1.82
with distances estimated from UWB recordings:
TIP-D 30.34 13.96 1.84 33.11 15.52 1.79 27.17 12.19 1.88
PIP-D 30.33 13.27 1.39 35.47 15.25 1.29 24.13 10.80 1.51
UIP (ours) 24.12 10.65 0.05 24.72 11.84 0.051 22.64 10.02 0.06
UIP finetuned 23.85 10.55 0.08 24.51 11.18 0.078 22.43 9.79 0.08

Table 3: Results of our ablation studies.

Method SIP Err Pos Err Jitter

UIP (ours) 24.115 10.648 0.055
w/o inter-sensor distances 31.008 13.749 1.556
w/o IMU 27.005 14.086 0.098
w/o DA-GCN 27.529 12.136 0.092
w/o UWB noise 27.006 12.440 2.125
w/ Gaussian UWB noise 26.068 12.159 2.005
w/o Distance-guided loss 25.830 11.777 1.966

collected raw 3D accelerometer, 3D gyroscope, and 3D magnetome-
ter readings at 100Hz as well as raw UWB ranges at 25Hz. We
extended the recordings with the filtered estimates of global accel-
eration, orientation, and inter-sensor distances, estimated using
our processing pipeline as described above.

We obtained ground truth for the poses of wearable sensors and
body joints from a 20-camera Optitrack system across a capture area
of 4 × 5m. To extract SMPL references and global translation, we
labeled the point cloud from the marker suit with SOMA [Ghorbani
and Black 2021], and then used MoSh++ [Mahmood et al. 2019].
Since each of our trackers rigidly mounted a reflective marker, our
dataset also includes their reference positions and orientations.

Each recording session started and ended with a T-pose to cali-
brate IMU readings and initialize the inter-sensor distances EKF. A
jump then synchronized all sensors with the extracted SMPL poses.

5 EXPERIMENTS
We analyze our pipeline’s accuracy, visually and quantitatively
compare it to existing baselines, and discuss ablation studies.

5.1 Sensing Pipeline Evaluation
From the ground-truth sensor orientations and positions recorded
in our dataset, we derive reference inter-sensor distances and ac-
celerations. We use these values to evaluate our sensing pipeline
and quantify the error it introduces at the input of pose estimation.

Our orientation estimate drifts at a rate of 3.21°/min, 0.42°/min
and 0.31°/min for roll, pitch, and yaw angles respectively, in line
with results obtained from similar commodity IMUs in previous
work [Laidig and Seel 2023]. As this estimate is also used to trans-
form sensor-frame acceleration into the global frame and filter
UWB ranges, our dataset provides less accurate model inputs than

those in existing datasets [Huang et al. 2018; Trumble et al. 2017]
that rely on proprietary drift-free estimators in high-end sensors.

Figure 4 shows the distribution of the RMSE of the pairwise
distances estimated by our filtering pipeline. The average error is
largest for wrist–wrist and head–knees sensor pairs, as the body
frequently occludes the line of sight between sensors.

5.2 Pose Estimation Evaluation
5.2.1 Evaluation protocol. We compare our approach against state-
of-the-art IMU-based pose estimation methods: PIP [Yi et al. 2022]
and TIP [Jiang et al. 2022b]. For fair comparison, we also augment
both TIP and PIP by concatenating pairwise distances to their orig-
inal inputs and retrain them using publicly available resources.

Our first experiment shows the benefits of adding pairwise dis-
tances, evaluating all methods on existing datasets. We form a test
set from DIP-IMU [Huang et al. 2018], TotalCapture [Trumble et al.
2017], and DanceDB—held out from the AMASS training set. The
acceleration and orientation measurements in TotalCapture and
DIP-IMU were captured from XSens suits, while DanceDB has syn-
thetic values. We add ideal synthetic inter-sensor distances to our
test set to study their contribution independent of noise.

We first train all methods on AMASS, as originally done in TIP
and PIP, with synthetic acceleration, orientation, and inter-sensor
distances with our time-varying noise model. However, because
this training set includes synthesized sensor readings from Total-
Capture’s ground truth, we additionally run these experiments with
models trained on AMASS without TotalCapture.

A second experiment evaluates performance on our collected
dataset UIP-DB, examining results both overall and for a mean
acceleration split: slow movements (mean acceleration below 1
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Figure 4: Inter-sensor distance RMSE in our dataset.

m/s2) and fast movements (mean acceleration above 1 m/s2). All
inputs are from actual measurements processed by our pipeline.

5.2.2 Metrics. We evaluate model performance on three metrics.
SIP Error measures the mean orientation error of the upper arms
and legs in the global space in degrees. Joint position error measures
the mean joint distance between the reconstructed and ground-
truth joints with both root position and orientation aligned in cm.
Jitter is the mean jerk (time derivative of acceleration) of all body
joints in the global space in 𝑘𝑚/𝑠3, reflecting motion smoothness.

5.2.3 Results. Table 1 lists the evaluation results on DanceDB,
TotalCapture, and DIP-IMU datasets with perfect synthetic inter-
sensor distances. Table 2 has the results on our captured dataset.

Methods with distance constraints perform consistently better
than inertial-only pipelines, with the most significant improve-
ments in the SIP angle error. Within distance-augmented methods,
our approach shows a moderate advantage when evaluated on ex-
isting datasets. However, its performance is markedly better on real
data from our dataset, with 20% lower SIP and position errors, and
an 80% reduction in jitter compared to distance-augmented PIP.

This disparity is due to two main factors. First, our evaluation
uses inexpensive off-the-shelf sensors, such that the acceleration,
orientation, and inter-sensor distance estimates from our dataset
exhibit more noise and drift than synthetic datasets or those from
high-end sensors. This also partially explains the larger error ob-
tained by TIP and PIP on our dataset. In contrast, our fusion pipeline
and proposed loss function actively enforces distance constraints
while adaptively introducing constraints from inertial data, show-
ing better results in all presented datasets. Figure 9 compares how
varying levels of noise in the distance estimate influence SIP error.

Second, our dataset contains many sequences that are difficult
to disambiguate from inertial data, such as motions with low speed.
Table 2 shows that TIP and PIP—based solely on IMUs—perform
significantly worse for small accelerations, whereas performance
improves for quick motions. Our method effectively captures sitting

UIP (Ours)PIPTIP GT

Figure 5: Qualitative comparison of pose estimates from the
recordings in our dataset. Figure 6 shows more examples.

poses and interactions with objects (Figure 5). Figure 7 plots the SIP
error over a long sequence while a participant alternated between
standing and sitting. Our method consistently tracks these state
changes, whereas TIP and PIP incorrectly revert to a standing pose.

5.2.4 Ablations. We perform ablation studies on our dataset to
understand the impact of each of the components we propose in
our method, with results summarized in Table 3. We first assess the
individual contribution of each of the inertial and distance inputs to
the pose estimation pipeline, by excluding them in turn. We observe
that distance constraints play a more important role in reducing SIP
angle error and jitter, while inertial inputs have a more significant
impact on the joint position error metric.

Next, we determine the effectiveness of our DA-GCN module.
Our ablation discards DA-GCN and directly concatenates inter-
sensor distances to the inertial data as input to the LSTM. This
variant only considers temporal information and ignores the spatial
correlation between nodes, leading to higher SIP and position errors.
Investigating the effect of our collision-aware UWB noise model
for training, we first train with ideal synthesized distances, then
with simple additive Gaussian noise (𝜎 = 0.12). SIP error and jitter
metrics are impacted most by this ablation, showing the importance
of a representative noise model in training our method.

Our final ablation study discards the pairwise distance recon-
struction term from our loss function and substitutes cosine simi-
larity with an L2 loss. This affects jitter most, indicating that the
loss primarily contributes to stabilizing our predictions.

6 LIMITATIONS AND FUTUREWORK
By incorporating pairwise distances with inertial measurements,
our system adds a requirement for sensing input that is UWB. Our
results indicate that adding UWB to future motion sensors is worth-
while, though at the cost of requiring calibration across operating
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temperatures. UWB is becoming increasingly available as part of
location trackers (e.g., Airtags, Tile Ultra, Samsung SmartTag+).

Similar to other learning-basedmethods, our graph-based pipeline
has limits predicting out-of-distribution poses. Our evaluation as-
sumed a flat terrain and covered simple interaction with objects in
the environment. A more robust method will require a dataset that
captures a wider variety of motions and interactions.

Our method marginally improves global translation estimates,
with a 0.318m and 0.422m error for ground-truth root movements
of 2m and 5m, respectively. This is close to PIP’s 0.333m and
0.440m error. While distances constrain cross-joint motion, global
translation benefits from better pose prediction. Distance constraint-
based translation estimation could be interesting in future work.

Finally, our state and distance estimates from real data are error-
prone, whereas our evaluation on synthetic datasets with drift-free
orientations and perfect distances shows our method’s potential.

7 CONCLUSION
We have proposed a novel method for sparse, wearable sensor-
based full-body pose tracking that is independent of visual input. It
leverages a novel source of tracking input: inter-sensor distances
estimated from UWB-based ranging, which we use to stabilize the
raw signals from IMUs. We have demonstrated that based on six
tracking nodes, our method affords training on existing motion
capture datasets with simulated distances to robustly estimate full-
body poses. Our tracking nodes integrate off-the-shelf components
found in emerging UWB location trackers, and our pose estimation
operates without the need for 3D state estimation from proprietary
sensors or tracking systems, making Ultra Inertial Poser a scalable
approach for sparse human motion tracking in the wild.
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Figure 6: Qualitative comparisons among different methods on our test set.
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Figure 7: Visualization of SIP Error over time on a test sequence from UIP-DB.

Responder 2 Reply

Initiator Request

Responder 1 Reply

Initiator

ID 0

Responder

ID 1

t1 Sent

t0 Received 1

t0 Sent t1 Received 0

t1 Received 2

t2 Received 1

t2 Sent 

t2 Received 0

Responder

ID 2

t0 Received 2

Figure 8: Ranging transaction with three devices. Timestamps
to resolve time-of-flight are included in the UWB message
payload and thus broadcast to all network participants.
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Figure 9: SIP error of UIP on our dataset at different levels of
synthetic Gaussian noise on inter-sensor distances.
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Figure 10: (a) Our embedded sensor nodes and (b) a person
wearing six of them inside a 20-camera Optitrack motion
capture setup for reference poses.

Figure 11: Example of motion tracking using our method of a
person exercising outdoors, where no tracking infrastructure
is needed for reference or anchoring.
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