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Abstract

Understanding a person’s perceived quality of sleep is an important problem, but hard due to

its poor definition and high intra- as well as inter-individual variation. In the short term, sleep

quality has an established impact on cognitive function during the following day as well as on

fatigue. In the long term, good quality sleep is essential for mental and physical health and

contributes to quality of life. Despite the need to better understand sleep quality as an early

indicator for sleep disorders, perceived sleep quality has been rarely modeled for multiple

consecutive days using biosignals. In this paper, we present novel insights on the associa-

tion of cardiac activity and perceived sleep quality using an interpretable modeling approach

utilizing the publicly available intensive-longitudinal study M2Sleep. Our method takes as

input signals from commodity wearable devices, including motion and blood volume pulses.

Despite processing only simple and clearly interpretable features, we achieve an accuracy of

up to 70% with an AUC of 0.76 and reduce the error by up to 36% compared to related work.

We further argue that collected biosignals and sleep quality labels should be normalized per-

participant to enable a medically insightful analysis. Coupled with explainable models, this

allows for the interpretations of effects on perceived sleep quality. Analysis revealed that

besides higher skin temperature and sufficient sleep duration, especially higher average

heart rate while awake and lower minimal activity of the parasympathetic and sympathetic

nervous system while asleep increased the chances of higher sleep quality.

1. Introduction

Sleep quality drives the quality of life and affects productivity, mood and physical strength on

the following day [1–3]. For individuals suffering from chronic diseases such as multiple scle-

rosis or Parkinson’s disease, sleep quality plays an even greater role as it can affect recovery

after relapses [4, 5], pain management [6] and day-time fatigue [7]. Even in healthy people,

sleep quality is an indicator for many sleep disorders and medical conditions [8–10]. Unde-

tected and untreated sleep disorders significantly increase the chances of developing medical

and psychiatric illness [11–14]. With potentially more than 40% of the population affected by
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sleep disorders [14], understanding the drivers of sleep quality and detecting sleep disorders

early has become an ever more pressing issue.

To quantify characteristics of a person’s sleep, polysomnography (PSG) is the gold standard

for measurements in controlled sleep studies, commonly conducted in specialized sleep labo-

ratories [15]. During a PSG assessment, participants stay overnight, and a large array of high-

quality signals is recorded [16]. Evaluated by trained medical personnel, PSG provides the

most reliable data for research in the field of sleep science.

Due to the costs of PSG assessments, researchers have sought alternatives to laboratory envi-

ronments to extend the quality assessment of sleep to a broader audience. Previous work has

investigated the use of signals obtained from wearable devices to compensate for the expensive

operation of sleep studies [16, 17], which are limited to few participants, often single-night

recordings only [16, 18], and have unintended consequences for participants’ sleep behavior

[15, 18, 19]. In contrast, running sleep studies during participants’ daily lives outside sleep labo-

ratories without a study conductor being present at all times (in-the-wild) allows for cheaper

and more representative assessments [20], allowing recordings from more participants [15]

over longer periods of time [15, 20]. While signal quality and modalities are limited, the use of

commodity wearable devices allows studies to be unobtrusive, allowing study participants to

pursue their daily lives without much interference and follow their typical sleep routines.

In this paper, we introduce a novel method for estimating a person’s perceived quality of sleep

based on signals obtained from today’s commodity wrist wearable devices, including smartwatches

and fitness trackers. We demonstrate that by incorporating cardiovascular activity into the analy-

sis, our method outperforms current estimators of sleep quality on in-the-wild recordings. Impor-

tantly, we restrict the input of features into our method to interpretable variables as well as our

models themselves to post-hoc explainable techniques. By performing per-participant normaliza-

tion, we maximize the interpretability of results and conclude with a medically insightful analysis.

1.1 Estimating perceived sleep quality based on smartwatch signals

Much previous work has focused on classifying sleep-wake states [15, 21–23] as well as sleep-

stage classification [18, 24] based on wearable sensors. Using a wrist-worn accelerometer

alone, actigraphy devices have emerged as reliable sleep-wake classifiers [25]. Sleep staging is

the arguably more difficult problem and previous work has often utilized multiple sensors

such as photoplethysmography in addition to an accelerometer [26, 27].

While clearly complementary, few prior efforts attempted to model perceived sleep quality

using wearable sensors [9, 28–30]. Past longitudinal studies concerned with perceived sleep

quality are mainly smartphone-based and have used information about smartphone usage [29,

30], social interaction and physical activity [28]. A study utilizing a wrist-worn wearable used

skin temperature and electrodermal activity in addition to wrist movement to model perceived

sleep quality [9]. However, prediction accuracies for personalized models were rather unsatis-

factory with 57.3–61.5% in a binary setting [9]. Without any previous knowledge about partici-

pants, prediction accuracies were particularly low with a balanced accuracy of 46.8–52.7%.

Modeling sleep quality based on the characteristics of a person’s cardiovascular physiology

has been curiously absent, despite the availability of corresponding sensors in most wrist-worn

wearables. In addition to heart rate, heart rate variability especially has been found to vary

greatly between different sleep stages [31–33]. Heart rate variability is an indicator of the auto-

nomic nervous system (ANS), which is impacted by an individual’s response to stress [34] and

whose activity considerably impacts next-day mental performance [35]. Further, heart rate

and heart rate variability are also significantly affected by physical exercise, diet, and emotional

states such as excitement or anxiety [36].
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We introduce a novel method that estimates perceived sleep quality from aggregated sensor

recordings collected while asleep and during the previous day. As input into our estimation

model, we extract simple and interpretable features from the wearable sensor streams, includ-

ing sleep duration, cardiovascular activity (heart rate and heart rate variability), actigraphy

counts (derived from wrist movement), skin temperature and electrodermal activity. We uti-

lize the M2Sleep dataset [9], which comprises continuous smartwatch recordings from 16 par-

ticipants over 30 days. To the best of our understanding, the M2Sleep dataset is unique in

combining perceived sleep quality responses and continuous blood volume pulse recordings

in an intensive longitudinal study. Specifically, participants wore an E4 watch that recorded

activity data from an accelerometer (IMU), body skin temperature (TEMP), blood volume

pulses (BVP), and electrodermal activity (EDA). Our evaluation demonstrates that in combi-

nation with features about skin temperature and actigraphy, features from heart rate and heart

rate variability boost model performance to up to 70% accuracy and reduce the error in direct

comparison with related work by 36%. We conclude with a discussion of our results and their

implications for medical use.

Taken together, we contribute a new approach to model perceived sleep quality using inter-

pretable features that we normalize per-participant highlighting the importance of cardiac

activity to model perceived sleep quality and outperforming previous work. Due to the sim-

plicity of the used features, a transformation of the modeling problem, and the post-hoc

interpretability of our used model, our approach allows us to interpret the results. We believe

that our approach generalizes to other use-cases where subjective responses are modeled in in-

the-wild studies involving wearable sensor data.

2. Related work

While sleep phases are clearly defined [37–39], sleep quality is defined rather poorly [40, 41]

and subject to high inter- as well as intra-individual variation [42]. Objectively, sleep quality is

often assessed using sensor recordings from inside sleep laboratories, for instance the propor-

tion of time spent in different sleep stages [43]. Perceived (aka. subjective) sleep quality is

assessed via questionnaires and the Pittsburgh sleep quality index [44] (PSQI) has emerged as

a widely used questionnaire for perceived sleep quality [45]. Wearable devices, especially when

coupled with frequent questionnaires, combine the advantages of objective and subjective

assessments and allow to link objective sensor measurements to subjective assessments of sleep

quality during longitudinal studies [38, 39].

2.1 Sleep laboratories

Over recent decades, sleep experiments and studies have been conducted mainly inside sleep

laboratories [39]. The setting inside sleep laboratories referred to as polysomnography (PSG)

has become the gold standard of sleep science [41]. PSG allows to utilize a broad array of sen-

sors at high quality, including electroencephalograms (EEG), electrocardiograms (ECG),

microphones, cameras, electromyography (EMG), breathing belts, sphygmomanometers, and

more [41]. Due to the array of equipment involved, needed space and personnel, PSG-based

studies are expensive [17].

2.2 Objective sleep quality

Objective sleep quality often refers to factors that enable a ‘healthy night’ of sleep [46]. This

includes sleep duration, sleep continuity, time spent in different sleep stages, sleep efficiency

and sleep latency [43, 47, 48]. Sleep disorders refer to the case when sleep is chronically wors-

ened, such as insomnia [49], sleep apnea [50] or periodic limb movement disorder [51]. The
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diagnosis of sleep disorders such as sleep apnea, for instance, is conducted in sleep laboratories

[17]. While PSG might be used for the final assessment of sleep disorders, questionnaires mea-

suring subjective sleep quality are often sufficient for initial screening [52]. At-home assess-

ments using validated (wearable) sensor setups have also become increasingly commonplace

to detect sleep disorders, which further demonstrates the value of wearable sensors in decreas-

ing patient burden and costs at the same time [53].

2.3 Questionnaires & perceived sleep quality

Sleep studies conducted using questionnaires assess perceived sleep quality and reconstruct

information collected in sleep laboratories. Developed in 1989, the Pittsburgh sleep quality

index [44] (PSQI) is one of the most widely used sleep quality questionnaires [45]. In addition

to answering questions about perceived sleep quality on a Likert scale, users are also asked

about objective sleep quality metrics such as sleep duration, sleep continuity, or sleep onset.

While a subjective assessment of sleep duration was found to better predict perceived sleep

quality than actual sleep duration [54], subjective assessments of sleep duration were found to

differ on average by 29 minutes compared to actual sleep duration [55]. Variables collected

using questionnaires, thus, must be treated carefully. This highlights the advantage of a combi-

nation of wearable sensors and questionnaires to model perceived sleep quality using objec-

tively recorded data.

2.4 Wearable devices

2.4.1 Sleep staging & sleep-wake classification. Sleep staging aims to approximate the

time spent in different sleep stages. Using wearable devices, past literature has attempted to

match the performance of PSG-based methods [21, 38]. Solely using the wrist’s movement,

actigraphy constructs an activity count to distinguish between wakefulness and sleep [56] and

has emerged as a commonly used tool in sleep science [22]. Some commercially available acti-

graphy devices include the Actiwatch2, Actiwatch Spectrum and Actiwatch Spectrum Plus by

Phillips, as well as the wGT3X-BT by Actigraph, all of which were found to produce results

correlating strongly with PSG-derived measurements [25].

Smartphone-based approaches for sleep-wake classification and sleep staging include work

by Gu et al. [34], Saeb et al. [57] and Cuttone et al. [23]. While Cuttone et al. [23] base their

sleep-wake predictions solely on smartphone usage, Saeb et al. [57] further include data about

location, motion, light and sound. The sleep stage detection system Sleep Hunter [24] utilizes a

smartphone lying next to users’ heads while asleep to extract body motion and acoustic events

while asleep based on the smartphone’s microphone and accelerometer. Coupled with demo-

graphic information, Gu et al. [24] thus distinguish between light, deep and REM sleep.

More recently, wrist-worn devices that collect information about biosignals such as heart

rate have been used more frequently for sleep-wake classification and sleep staging [21, 38].

On consumer-grade devices from Fitbit or Apple Inc., Walch et al. [26] and Beattie et al. [27]

distinguish between different sleep phases using heart rate, heart rate variability and wrist

movement. Gashi et al. [9] distinguish between periods of sleep and wakefulness using the clin-

ical-grade Empatica E4. In contrast to the two previously mentioned methods, Gashi et al. [9]

did not make use of heart rate and heart rate variability, but of wrist movement, electrodermal

activity and skin temperature.

2.4.2 Perceived sleep quality modeling. Perceived sleep quality has been modeled using a

broad array of data including activity, social interactions, mood, smartphone usage, light expo-

sure, skin temperature and electrodermal activity. We identified four papers that have

attempted to model perceived sleep quality for consecutive days using variations of wrist-worn
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wearable sensor data or aggregates thereof [9, 54, 58, 59]. A further three papers attempted the

same only using data collected from smartphones [28–30].

Niemeijer et al. [30] modeled the perceived sleep quality of 60 participants for two weeks

using a smartphone recording acceleration, activity, charging status and WIFI status. Bai

et al. [28] modeled the perceived sleep quality of 15 participants across 30 days using infor-

mation about previous nights’ sleep quality as well as features related to social and physical

activity throughout the day derived from a smartphone. Using data about participants’

smartphone app usage, the physical environment and social interactions, Jayarajah et al.

[29] modeled the perceived sleep quality of 400 students for on average 66 days per

participant.

For modeling perceived sleep quality, Goelema et al. [54] compared the information

content of subjective assessments of sleep duration and sleep continuity to objective assess-

ments based on actigraphy data. SleepGuard (developed by Chang et al. [58]) tracks sleep

stages and models daily perceived sleep quality responses using a single smartwatch. The

collected information includes body posture and movements, acoustic events, and illumi-

nation conditions. To analyze potentially bidirectional relationships between symptoms of

multiple sclerosis patients, Guo et al. [59] analyze subjective sleep quality based on infor-

mation about activities of daily living as well as objective sleep quality metrics derived

through a wrist-worn fitness tracker. Daskalova et al. [60] assess how recommendations

about sleep and exercise affect daily perceived sleep quality and objective sleep quality met-

rics derived using a fitness tracker. On the M2Sleep dataset, Gashi et al. [9] collected data

about participants’ wrist movement, electrodermal activity and skin temperature to model

sleep quality as a binary response. While all of the related work mentioned above includes

a broad array of signals to model perceived sleep quality, an analysis based on cardiac activ-

ity is absent.

2.5 Explainability & interpretability

For applications in the medical domain, the trade-off between performance and interpretabil-

ity as well as explainability must be evaluated carefully. So called ‘black-box’ models such as

neural networks tend to outperform linear techniques such as logistic regression at binary clas-

sification [61]. However, to assess risks, establish confidence in predictions and validate meth-

ods, explainability and interpretability of computational methods play a great role in the

medical domain [62]. Despite growing interest in deep learning techniques over recent years,

so called ‘glass-box models’ such as linear regression or shallow decision trees have also experi-

enced growing interest as part of the growing field around explainable AI (XAI) [63]. For mod-

els that are inherently explainable, such as tree ensemble methods [64], methods for post-hoc

feature analysis have been proposed such as individual conditional expectation (ICE) and par-

tial dependence plots [63] (PDPs).

3. Dataset, signal processing, and interpretable feature extraction

We now describe the dataset we incorporate in the design and evaluation of our estimation

method for perceived sleep quality. We build on an existing dataset, process signals and extract

novel features, and compare our method’s performance using the original features with the

prediction performance using our novel features. We place particular importance on deriving

simple and physiologically interpretable features, which allows us to better understand their

importance as drivers of sleep quality. Thus, we aim to further enhance the understanding of

sleep and sleep quality.
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3.1 Source dataset

We first process the signals recorded in the M2Sleep dataset [9]. All ethical and experimental

procedures and protocols of this study were reviewed and approved by the ethics committee of

the Faculty of Informatics at the Università della Svizzera italiana (ID: 2021-04-20-INF-A). All

participants provided written informed consent. We gained access to the anonymized data on

13th of April 2022. The corpus comprises recordings over 30 days from 16 participants (5

female, 11 male), ages 19–35 years (avg = 26.4, sd = 4.5). Study participants wore an Empatica

E4 watch, a wearable collection apparatus for biosignals. The Empatica E4 was validated in var-

ious studies for its heart rate, heart rate variability and electrodermal activity measurements

[65–67]. In addition, participants rated their perceived sleep quality each morning after wak-

ing up on a five-point Likert scale as shown in Table 1. Fig 1 shows the distribution of sleep

Table 1. Sleep quality Likert scale.

Score Answer

5 Excellent

4 Good

3 Normal

2 Poor

1 Very poor

The 16 participants rated their perceived sleep quality on this five-point Likert scale each morning of the 30-day

period.

https://doi.org/10.1371/journal.pone.0305258.t001

Fig 1. Distribution of the sleep quality response (Table 1).

https://doi.org/10.1371/journal.pone.0305258.g001
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quality across the 30 days. The average response was 3.25. Participants did not record whether

they had any sleep disorders. Participants did, however, fill out the Pittsburgh Sleep Quality

Index (PSQI) questionnaire [44]. Participant S13 recorded that they had trouble falling asleep

within 30 minutes at least three times a week. As outlined in Section 3.3, participant S13 had to

be excluded for the modeling process due to too many observations with missing data.

No other participant indicated potential sleep disorders in their response to the PSQI. With

16 participants, the dataset is not representative of a broad population. While we use it to

establish the importance of cardiac features for perceived sleep quality prediction and to show-

case the predictive performance of an approach generating interpretable results, the results are

unlikely to be robust towards individuals suffering from sleep disorders, or who differ too

much to the study population.

Participants wore the E4 watch on the non-dominant wrist during the entire night. They

put on the watch at least 4 hours before going to sleep and took it off not before at least 4 hours

after waking up had passed. The watch continuously recorded participants’ blood volume

pulse (BVP, 64 Hz), their electrodermal activity (EDA, 4 Hz), the 3-axis acceleration of the

wrist (IMU, 32 Hz), as well as participants’ skin temperature (TEMP, 4 Hz).

3.2 Data processing and feature extraction

From each participant’s recordings, we extracted several features from the E4’s logs of BVP,

EDA, IMU, and TEMP in addition to the duration of participants’ sleep and their sleep onset.

We selected interpretable and simple features from the time domain in order to increase the

interpretability of the results and enable an analysis regarding the drivers of sleep quality.

3.2.1 Cardiac activity from the blood volume pulse (BVP). Based on the BVP signal, fea-

tures about the cardiovascular activity can be inferred such as heart rate (HR) and heart rate

variability (HRV) [68]. HR and HRV vary between different sleep stages and are affected by

factors such as stress, arousal, activity levels, or anxiety [69–72]. All of these were found to

affect sleep quality [73–77]. HRV further measures the activity of the autonomic nervous sys-

tem, which varies between different stages of sleep. The autonomic nervous system affects

many of the body’s involuntary functions and its activity was found to be a predictor of general

mortality [78]. Some parts of the autonomic nervous system are more active while asleep than

at any time during wakefulness [70]. Sajjadieh et al. [35] further found evidence for a bi-direc-

tional relationship between sleep quality and HRV.

We processed BVP for HR and HRV computation from the E4’s recordings in two separate

ways to compare prediction performances. In the E4 condition, we directly used the inter-beat

intervals (IBIs) between heartbeats as calculated by the Empatica E4. The Empatica E4 auto-

matically removes IBIs where it detects evidence of motion artifacts [79]. We therefore main-

tained all HR and HRV values from 5-minute windows without any missing IBIs. We did not

interpolate IBIs for missing windows, because interpolation has been found to significantly

affect HRV metrics [80].

In the processed condition, we derived cardiac features from the raw BVP signal recorded by

the E4 to increase the number of 5-minute windows with information about HR and HRV. We

first filtered the raw BVP signal using a Chebychev Type 2 4th order bandpass filter with cutoff

frequencies of 0.5 and 10 Hz as common for short BVP signals [81]. We then extracted features

from every 5-minute window with 2.5-minute overlap. Using HeartPy [82], we derived the IBI

values for each window. We discarded all windows where HeartPy reported low signal quality,

retaining only 5-minute windows of valid HR and HRV values as in the previous condition.

In both conditions and for each retained 5-minute window of IBIs, we extracted partici-

pants’ heart rate (HR) as well as heart rate variability (HRV) expressed through the following
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features: root mean square of successive differences of heartbeat (RMSSD), the standard devia-

tion of the inter-beat-intervals (SDNN), and the standard deviation of distance from −45˚ line

of points-caré plot of consecutive IBI (SD2). We adjusted all HRV metrics to participants’ gen-

der, age, and the respective time-of-day since these factors were found to significantly affect

HRV making a comparison of different values difficult [83]. For each of these metrics, we com-

puted 6 simple features: mean, maximum, and minimum, each while during the awake phase

and during the asleep phase.

3.2.2 Autonomic function from electrodermal activity (EDA). EDA is a measure for

activity of the sympathetic part of the autonomic nervous system, which varies during different

sleep stages—similar to HRV [84]. Sano et al. [84] found an increased number of spikes of

EDA and the highest overall amplitude during deep sleep. EDA might thus be an indicator for

intensity of deep sleep potentially linked to sleep quality.

We used multiple conditions to validate the EDA signal as proposed by Nasseri et al. [85].

We removed any interval where the amplitude of the EDA signal was below 0.05 μS, since this

usually implies that the sensor did not have skin contact [85]. Additionally, we removed any

second where the amplitude of the EDA signal did not change by more than 0.01μS, since this

implies that the EDA sensor did not measure at all [85]. The naturally possible range of change

of skin conductivity lies within [−0.1Δtx, 0.2Δtx] across any interval of length Δt starting at t0,

if the signal had amplitude x at t0 [86, 87]. Hence, we also removed any interval where the

amplitude increased by more than 20% or decreased by more than 10% per second. Based on

the remaining data, we extracted the overall mean, maximum and minimum while awake and

asleep as well as the average, maximal and minimal slope while awake and while asleep.

3.2.3 Wrist motion from the accelerometer (IMU). Movement while asleep can be an

indicator of reduced sleep continuity or potentially also sleep disorders such as periodic limb

movement disorder [51]. Sleep continuity, in particular, was found to predict also subjective

sleep quality by Della Monica et al. [88]. Based on the signal of the accelerometer, we followed

past literature to calculate activity counts [89]. Using Sadeh’s and the Cole-Kripke algorithm

[22, 90], we estimated the participants’ sleep and wake times. We estimated the beginning of

the sleep phase as the first minute of a 10-minute window where participants were estimated

to be asleep after the time they reported they went to bed. We calculated the sleep onset as the

difference between the participants reporting that they went to bed and their estimated falling-

asleep time. Similarly, we calculated when participants woke up, looking in a one-hour win-

dow around the time they reported they woke up. Generally, we averaged the results we got

when applying Sadeh’s and the Cole-Kripke algorithm. We aggregated the actigraphy counts

while participants were awake and asleep as a measure of physical activity throughout the day

and sleep continuity during the night. Both Sadeh’s and the Cole-Kripke algorithm have

shown acceptable performance in past studies but are not exact [91, 92].

3.2.4 Skin temperature (TEMP). Skin temperature is affected by body temperature as

well as room temperature [93]. It thus provides information about the circadian rhythm since

body temperature has to drop to enable sleep, which causes skin temperature to rise to enable

the cooling of the body’s core temperature [94]. As the interface between the body and the

environment, the skin’s temperature also provides information about the room’s temperature

that the participant is sleeping in, which was found to affect sleep quality and lead to disrupted

sleep in the summer [95, 96].

We used features calculated on the raw temperature signal as input for our modeling pro-

cess as proposed in previous literature [9]. We calculated the mean, maximum and minimum

temperature while awake and while asleep as well as the slopes across 5-minute windows with

2.5-minute overlap, and computed the mean, maximum and minimum slope while awake and

asleep. This resulted in a total of 12 features based on the recorded temperature signal.
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3.3 Data set construction & removed observations

We constructed 2 datasets: dataset A and dataset B. The difference between the two datasets

lies in the way we calculated features related to HR and HRV. All other features are identical.

For dataset A, we used the IBIs supplied by the E4 to calculate HR and HRV (E4 condition).

We removed any observations with missing values. This led to 241 out of 463 observations

being removed due to IBIs not being recorded for any 5-minute interval while the participants

were awake or asleep and, thus, no HR and HRV data being available for the awake phase.

This fully removed participant S13 from the dataset. This left a total of 222 observations for 15

users, leading to an average of 14.8 data points per user.

We constructed dataset B by calculating HR and HRV features based on 5-minute intervals

where we calculated the IBIs based on the filtered BVP signal using HeartPy (Processed condi-

tion). Again, we removed participant S13 from the dataset since no information about HR and

HRV was available. After we removed any observation with missing values, dataset B was of

size 330 and consisted of 15 users. The number of observations included in the two datasets

per participant is displayed in Fig 2.

4. An interpretable method for estimating perceived sleep quality

Due to the imbalance of the 5 levels of responses (Fig 1), we modeled perceived sleep quality as

a binary response. We grouped together responses 4 and 5, as well as 1–3. This resulted in a

nearly balanced dataset with a split of 53% versus 47%. We refer to this as modeling absolute

perceived sleep quality. Even though the mean response of 3.25 was higher than the ‘normal’

response, using� 4 as a cut-off point corresponds to modeling whether an individual reported

high sleep quality.

Due to the differences in the distribution of the response and input features per participant

as we discuss in detail in Section 4.2.2, we normalized the perceived sleep quality responses as

well as the features per participant in a second modeling step. We then transformed the now

normalized response again into the binary setting, based on the participants’ average sleep

quality. Thus, we modeled if a participant slept at least as well as their average. We will refer to

this as modeling normalized perceived sleep quality.

4.1 Explainable machine learning methods

To enable an analysis of the drivers of perceived sleep quality while keeping predictive perfor-

mances high, we required an at least post-hoc explainable machine learning technique to be

used on interpretable features. We modeled perceived sleep quality on each of the 2 datasets

using a tree ensemble method [97]. Tree-based methods inherit the interpretability and

explainability of decision trees [64] and have demonstrated high predictive performances for

medical applications [63, 98, 99]. However, they are less interpretable than so-called ‘glass-

box models,’ such as linear modeling techniques or a single shallow decision tree, and require

post-hoc visualization to interpret features and reconstruct the decision function [63, 98].

Fig 2. Number of observations per participant after removing missing data. In dataset A, we calculated heart rate

variability and heart rate based on 5-minute windows of consecutive IBIs as supplied by the Empatica E4. For dataset

B, we computed IBIs based on the filtered BVP signal using HeartPy [82].

https://doi.org/10.1371/journal.pone.0305258.g002
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Thus, we conducted our analysis of the drivers of perceived sleep quality based on partial

dependence plots (PDPs). The audience who can interpret the results of our approach is still

restricted. Primarily, the approach is designed so that we ourselves, the authors of this paper,

can interpret its results.

To adequately assess the performance of our classifier, we cross-validated the performance of

all models using leave-one-out cross-validation (LOO-CV). At each iteration of the LOO-CV,

we left one participant out of the training set and, thus, were able to evaluate the model on a pre-

viously unseen individual. We repeated each LOO-CV ten times. Thus, to evaluate any model

each user was left out 10 times, totaling 150 cross-validation splits. Each test and train dataset

was balanced by randomly removing from the over-represented class. We evaluated models

using prediction accuracy, micro-F1 score and the area under the receiver-operating curve

(AUC). For the full modeling and evaluation process, we used Python version 3.8.8 [82].

When modeling absolute perceived sleep quality, we evaluated the performance of our

model in comparison to a baseline set by Gashi et al. [9] When modeling normalized perceived

sleep quality (see Section 4.2.2 for further detail), with a focus on interpretability, we compare

our model against ‘glass-box models’ that are fully interpretable and explainable, namely a gen-

eralized linear model (GLM) and a generalized additive model (GAM). For logistic regression,

GLMs and GAMs both naturally model the odds ratio of observing higher than average sleep

quality per participant. Due to their high interpretability, GLMs and GAMs are commonly

used in the medical domain as well as the environmental sciences [100].

4.2 Models: As recorded and per-person normalization

In addition to modeling sleep quality responses as reported by participants each morning, we

separately adjusted responses and signals in order to analyze how relative changes in signals

per participant can predict relative changes in perceived sleep quality. Through this procedure,

we obtained two versions of each of the two datasets: one version corresponding to the sce-

nario where we modeled perceived sleep quality as recorded (referred to as absolute perceived
sleep quality from now on) using the features as recorded and a second version where we mod-

eled perceived sleep quality normalized per participant (normalized perceived sleep quality)

using adjusted features as outlined below in Section 4.2.2. As we outline in more detail in Sec-

tions 4.2.3–4.3.4, this results in greater interpretability and increases the information content

of predictions. A visualization of the constructed datasets is displayed in Fig 3.

Fig 3. Visualization of the data processing and modeling process. We analyzed absolute perceived and normalized

perceived sleep quality based on two datasets each. Dataset A and B differ in the way we calculated inter-beat-intervals

based on the Blood Volume Pulse (BVP) signal. Both datasets consist of simple and interpretable features related to

cardiac activity, skin temperature, electrodermal activity and physical activity.

https://doi.org/10.1371/journal.pone.0305258.g003
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4.2.1 Reported sleep quality modeled through signals as recorded. For absolute per-

ceived sleep quality, similar to the work of Gashi et al. [9], we modeled absolute perceived

sleep quality as a binary response, using� 4 as a cut-off point between high and low sleep qual-

ity (see Table 1). The respective results for this scenario are listed in Section 5.1

4.2.2 Normalized sleep quality modeled using features normalized per participant. In

the second scenario, we modeled normalized perceived sleep quality as a binary response

using normalized input features. To normalize input features and the response, we subtracted

the average value per participant and divided by the standard deviation. We transformed the

response into the binary setting based on whether a participant slept at least as well as their

personal average. The results of this scenario are described in Section 5.2. In Section 4.2.3–

4.3.4, we outline why normalizing the response per participant provides more value for partici-

pants and why the per-participant normalization of features allows for better medical

interpretation.

4.2.3 Problematic per-user distributions of the response. While the dataset overall is

nearly balanced between high and low sleep quality when using� 4 as the sleep quality threshold

(47% versus 53%), the two sleep quality labels are less balanced per individual participant. When

splitting based on� 4 for the whole population, the under-represented labels make up 4.0–

46.7% of observations, depending on the participant. Imbalanced classes not only make training

more difficult but also provide less value to users since in the case of participant S06, for instance,

only 4.0% of predictions would differ from the mode of predictions (if the model achieved per-

fect accuracy). Fig 4 highlights the imbalance between the two different labels per participant.

Using the participants’ average responses as the sleep quality threshold to decide between

low- and high-quality sleep, decreases the imbalance in 7 out of 16 cases, and results in the

same level of imbalance otherwise. In the case of participant S09, the proportion of the under-

represented label only increases to 9.3%, which is due to the mode response of participant S09

making up 86.7% of their responses.

4.2.4 Problematic per-user distributions of the input features. In addition to a problem-

atic distribution of the absolute perceived sleep quality response per participant, input features

that relate to biosignals such as heart rate also require per-participant normalization to become

more interpretable. Resting heart rate, for instance, was found to differ by up to 70 BPM between

individuals and differs due to age as well as gender [101]. However, per individual, the resting

heart rate showed to be very consistent and only differed slightly on a day-to-day basis [101].

Fig 5 highlights between- and within-participant standard deviation for HR-, HRV- and

TEMP-related features. In 18 out of 25 cases, including all HR-related features, we found a

higher between-participant standard deviation than the within-participant standard deviation.

Fig 4. Proportions of the under-represented label per participant. Personalized cut-off points to distinguish between high and

low perceived sleep quality reduce the imbalance of the two sleep quality labels compared to a population-based cut-off point.

https://doi.org/10.1371/journal.pone.0305258.g004
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When the between-participant standard deviation is higher than the within-participant stan-

dard deviation, this translates to the mean value of the feature per participant varying on aver-

age greater than the feature per individual participant. Per-participant normalization is thus

required to detect more subtle changes in features such as minimum, mean and maximum

heart rate collected during the awake- and the asleep-phase and model their effect on perceived

sleep quality.

5. Results

The metrics we report in this section are based on perfectly balanced test sets. We obtained

these from the datasets described above by removing the over-represented class via downsam-

pling. For each dataset, we modeled absolute perceived sleep quality using the recorded feature

values and normalized perceived sleep quality using normalized features.

5.1 Binary classification of absolute sleep quality

Table 2 lists the results of different modeling techniques for absolute perceived sleep quality.

Using dataset B, we observed the highest balanced accuracy of 64% and the highest F1 score of

63% outperforming the work by Gashi et al. [9] by 23% and 14%, respectively. On dataset A,

we observe the highest AUC of 0.70 for absolute perceived sleep quality.

5.2 Binary classification of normalized sleep quality

After normalizing perceived sleep quality and input features, we achieved similar accuracies

and AUC values. However, with a balanced accuracy of 0.70 and an AUC of 0.76, the accuracy

and F1-score achieved by the best performing model was higher than what we previously

observed for any model for absolute perceived sleep quality. We evaluated three different mod-

els across different subsets of all available features as listed in Table 3: a tree ensemble method

(TE) and two ‘glass-box models’ in form of a GLM and a GAM.

5.2.1 Performance based on different datasets. We observe the highest performances on

dataset A. There are a few cases, however, where the TE, GAM, or GLM perform better on

dataset B than dataset.

Fig 5. Between- and within-participant variation of input signals. The majority of features related to cardiac activity as well as skin temperature vary more

between participant than within the same participant. For each feature, we compare the variation in the average value per participant to the average variation

per participant. Higher between-participant variation that within-participant variation makes interpretation difficult.

https://doi.org/10.1371/journal.pone.0305258.g005
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5.2.2 Performance using different models. To analyze how features about cardiac activ-

ity, TEMP and EDA can improve model performance in addition to features derived based on

actigraphy alone, we conducted an ablation study across all subsets of EDA, TEMP and cardiac

activity features. Features based on actigraphy have been used extensively to also model objec-

tive sleep quality metrics and are included in all models.

We observed the highest overall balanced accuracy of 0.70 when including features about

cardiac activity and TEMP in addition to actigraphy-based features but excluding EDA-related

features. This was achieved using the tree ensemble (TE). The GAM and GLM outperformed

the TE when all features regarding EDA, TEMP, and cardiac activity were removed. For the

tree-ensemble, using TEMP-related features in combination with cardiac activity features or

EDA-features, or using TEMP-related features alone performed better than using EDA-related

features alone, cardiac activity features alone, a combination of the cardiac activity and EDA

features or all features together.

5.3 Feature importance & partial dependence plots

To analyze how single features relate to normalized perceived sleep quality, we calculated fea-

ture importances (average change in probability of high sleep quality due to change in input

Table 2. Results for modeling absolute perceived sleep quality.

method model dataset BA F1 AUC

Gashi et al. [9] GB - 0.53 0.57 -

ours TE A 0.63 0.59 0.70

ours TE B 0.64 0.63 0.67

Without prior knowledge about the participants, Gashi et al. [9] achieve the highest performance (in terms of F1

score) using a gradient boosting (GB) classifier only using features related to wrist movement. Including features

about electrodermal activity and skin temperature decreases their model’s performance. They do not consider

features about cardiac activity. We use a tree ensemble (TE) classifier on the two dataset we constructed (dataset A

and B) with features containing information about cardiac activity, electrodermal activity, skin temperature and wrist

movement. We compare model performance in terms of balanced accuracy (BA), F1 score, and area under the curve

(AUC).

https://doi.org/10.1371/journal.pone.0305258.t002

Table 3. Ablation study for modeling normalized perceived sleep quality.

CAR CAR CAR CAR

features: TEMP TEMP TEMP TEMP

EDA EDA EDA EDA

model dataset BA AUC BA AUC BA AUC BA AUC BA AUC BA AUC BA AUC BA AUC

TE A 0.6 0.61 0.7 0.76 0.56 0.57 0.61 0.61 0.56 0.55 0.66 0.67 0.58 0.61 0.58 0.62

TE B 0.62 0.6 0.61 0.62 0.57 0.6 0.58 0.59 0.54 0.55 0.61 0.6 0.59 0.58 0.55 0.58

GAM A 0.6 0.61 0.58 0.62 0.58 0.6 0.59 0.61 0.61 0.64 0.62 0.61 0.58 0.61 0.62 0.64

GAM B 0.59 0.6 0.59 0.61 0.56 0.59 0.56 0.58 0.55 0.6 0.57 0.6 0.56 0.6 0.58 0.63

GLM A 0.63 0.69 0.59 0.6 0.61 0.59 0.62 0.62 0.61 0.63 0.62 0.6 0.59 0.61 0.62 0.65

GLM B 0.56 0.6 0.58 0.62 0.59 0.61 0.56 0.58 0.57 0.59 0.56 0.6 0.57 0.62 0.59 0.62

On dataset A and B, we performed an ablation study comparing a generalized additive model (GAM), a generalized linear model (GLM) and a tree ensemble (TE) across

different combinations of features. Features derived based on wrist movement were included in any model. In the model on the very left the three feature groups related

cardiac activity (CAR), skin temperature (TEMP) and electrodermal activity (EDA) were included. On the very right, all three feature groups are removed. We compare

model performance in terms of balanced accuracy (BA), and area under the curve (AUC).

https://doi.org/10.1371/journal.pone.0305258.t003
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feature) using the best-performing model in Table 3. We thus included all features apart from

EDA-related features. Furthermore, we constructed partial dependence plots (PDPs) for the

12 most important features (Fig 6). We bootstrapped the classifier 100 times to derive the sta-

bility of the partial dependence plots.

Sleep duration was the feature with the highest importance, followed by minimum skin

temperature while awake and mean skin temperature while asleep. In total, 6 out of the 12

most important features are related to skin temperature. In addition to sleep onset and actigra-

phy counts while awake, three features related to cardiac activity were among the 12 most

important features.

All of the PDPs show a clear trend. The classifier associates higher sleep duration and

shorter sleep onset with a higher chance of observing high normalized perceived sleep quality.

The PDPs for skin temperature indicate that the classifier calculates increased chances of

Fig 6. Partial dependence plots (PDPs) for the 12 most import features of the tree ensemble classifier for normalized perceived sleep quality.

The plots were calculated on dataset A, using the optimal performing classifier from Table 3. We bootstrapped the partial dependence plots 100

times. Gray lines correspond to one partial dependence plot centered around 0. The bright blue line corresponds to the average across all

bootstrapped samples. The x-axis reflects the variable normalized per participant. The y-axis reflects the calculated increase in the probability of

observing sleep quality higher than the participants’ averages.

https://doi.org/10.1371/journal.pone.0305258.g006
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observing higher normalized perceived sleep quality when average skin temperature while

awake and minimal skin temperature while asleep is increased, and when minimal skin tem-

perature while asleep is close to an individual’s average. An increase in the average change in

skin temperature over 5-minute windows while awake is calculated to increase the chances of

higher normalized perceived sleep quality, while an increase in the maximum change of skin

temperature over any 5-minute interval is calculated to decrease the chances of observing high

normalized perceived sleep quality. The classifier further associates higher minimal RMSSD

and SDNN while asleep with decreased chances of observing high normalized perceived sleep

quality. An average heart rate while awake that deviates from an individual’s mean is calculated

to lower the chances high normalized perceived sleep quality by the tree-ensemble classifier.

Furthermore, an increased number of activity counts is associated with lower chances of

observing high normalized perceived sleep quality.

5.4 Analysis of misclassified observation

The highest balanced accuracy we observed was 70%. On a perfectly balanced test set, 30% of

observations this get predicted incorrectly. To better understand what observations the classi-

fier predicts incorrectly, we plotted the proportion of misclassified observations per feature

value in Fig 7. We focused on the 12 most important features as calculated for Fig 6. While the

proportions seem stable across different values for normalized sleep duration, minimal skin

temperature while awake, minimal skin temperature while asleep and sleep onset, the other

plots show clearer trends. The proportion of incorrectly classified observations, for instance,

increases with decreasing average change in temperature while awake, or decreasing minimal

temperature change while asleep. This indicates incorrectly calculated decision functions of

the classifier based on these features.

Fig 8 displays similar plots for the three most important EDA-related features when the

tree-ensemble is trained on all available features. All three plots show a clear trend, indicating

potential overfitting on EDA-related features and a miscalculation of the effect of change in

these features on the chances of observing high normalized perceived sleep quality.

6. Discussion

In this paper we proposed a novel approach to model perceived sleep quality for consecutive

days based on wearable sensor data. We outperform previous work using simple and interpret-

able features and demonstrated the need to normalize the response as well as input features.

Further, our approach highlights the importance of features related to cardiac activity such as

HR and HRV.

6.1 Comparison to prior work

In comparison to related work, our models for absolute perceived sleep quality achieved higher

predictive performances independent of whether we used dataset A or B. Our tree ensemble

on dataset A reduced error rates by 36%.

6.2 Performance on different datasets

We constructed 2 different datasets based on the M2Sleep dataset: dataset A, and dataset B.

When modeling normalized perceived sleep quality, the performance of models trained on

dataset A was generally higher. When modeling absolute perceived sleep quality, however, the

performance was very higher on dataset B (differences in balanced accuracy of 1%). Since the

dataset B contains nearly 50% more observations than dataset A, our approach utilizing the
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raw BVP output of the Empatica E4 has much greater real-world applicability for modeling

absolute perceived sleep quality than relying on the IBIs derived by the Empatica E4. The

higher performance when modeling normalized perceived sleep quality, however, shows that

the features related to cardiac activity are likely to be more informative when derived based on

the IBIs supplied by the Empatica E4. Few erroneously-detected heart beats can already affect

computed HRV metrics [80]. Accurate detection of motion artifacts is thus of great impor-

tance and should be included into the processing stage of future work.

6.3 Sleep quality: As recorded vs. normalized

With modeling normalized perceived sleep quality, we have proposed a novel approach to

model perceived sleep quality in intensive longitudinal studies that generates more useful pre-

dictions for users since the sleep quality threshold is chosen for each individual rather than for

Fig 7. Misclassification error plots for the 12 most important features of the tree ensemble classifier for normalized perceived sleep quality.

To assess errors in the calculated decision functions per feature, we calculated the error rate per feature value for the 12 most important features.

Blue lines are smoothed misclassification rates. A clear trend indicates that the decision function of the classifier is not properly adjusted for new

unseen observations but might be overfitting on noise. Grey lines show the bootstrapped partial dependence plots as in Fig 6.

https://doi.org/10.1371/journal.pone.0305258.g007
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the whole population. This leads to more balanced per-participant distributions of the

response labels as shown in Section 4.1.2. The entropy and information content for the partici-

pant is thus higher when the binary label of perceived sleep quality is chosen based on the aver-

age response of each participant. By normalizing features per participant when modeling

normalized perceived sleep quality, we increased the interpretability of the results and gener-

ated more medically relevant features. Even though we achieved a higher balanced accuracy

and AUC when modeling normalized perceived sleep quality and selection the best perform-

ing feature subset, the overall performance seems similar.

6.4 Feature-dependent performance for normalized perceived sleep quality

While assessing what performances different feature combinations achieved on dataset A

modeling normalized perceived sleep quality, we observed the highest accuracies and AUC

values when excluding one of the features. Removing features either related to EDA, to cardiac

activity, or both groups of features, resulted in higher performance than including all available

features, indicating potential overfitting to noise. We achieved the highest performance in

terms of F1-score and accuracy when excluding EDA-related features. We analyzed the pro-

portion of misclassified observations per feature and noticed a clear trend in the plots about

the most important features related to EDA when all features were used to model normalized

perceived sleep quality. This offers a potential explanation as to why dropping a group of fea-

tures boosts performance rather than harm it. Since the proportions of misclassified observa-

tions changed across different values of the EDA features, decision functions were calculated

incorrectly—likely due to overfitting on these features. The accuracy of the tree ensemble

when excluding EDA-related features increased from 60% to 70%. Similarly, the AUC

increased from 0.61 to 0.76. This also indicates a lower value of EDA-related features to ana-

lyze sleep, despite differences in EDA between different sleep stages [84] and its potential to

collect information about periods of arousal [102]. Since we only focused on simple features,

more complex EDA-related features might prove more informative when modeling perceived

sleep quality.

6.5 Feature importance and interpretation

Through multiple restrictions, we have ensured that the results of our approach remain inter-

pretable. We have only used simple features, a model that is explainable through partial

Fig 8. Misclassification error plots for the three most important features related to electrodermal activity (EDA). Blue lanes show the

smoothed misclassification rate per feature value. Removing EDA-related features from the feature set improved model performance. We show the

misclassification error plots for the three most important EDA-features when the classifier is trained on all available features including EDA-related

features. The clear trends in the error plots indicate overfitting to noise and offer an explanation why their removal was beneficial for performance.

https://doi.org/10.1371/journal.pone.0305258.g008
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dependence plots even though it is not a ‘glass-box model,’ and through feature normalization

we have also proposed an approach that generates medically interpretable results. While the

approach allows the authors of the paper to infer about potential effects of variables on per-

ceived sleep quality, this must not hold true for medical practitioners. The following Section

outlines insights generated from the PDPs based on 100 bootstrapped classifiers for normal-

ized perceived sleep quality on the feature subset where we observed the highest performance

(dataset A when excluding EDA-related features).

6.5.1 Actigraphy. Using actigraphy, we derived sleep duration, sleep onset and actigraphy

counts while participants were awake and asleep. Sleep duration was the most important feature

used by our classifier. The bootstrapped PDPs show a clear trend indicating that short sleep dura-

tion was associated with lower perceived sleep quality. Shorter sleep onset, on the other hand, was

calculated to increase the chances of high perceived sleep quality. Even though actigraphy is in

common use in sleep studies, it is not exact at estimating sleep and was shown to differ on average

up to 20 minutes from the ground truth [91, 92]. The calculated sleep and wake periods are thus

noisy. This is consistent with existing literature and results obtained in sleep laboratories [3].

6.5.2 Cardiac activity. Adding heart rate and heart rate variability to the modeling pro-

cess improved the accuracy of our approach compared to existing work from Gashi et al. [9]

(from 53% to 63%). This highlights the importance of information about heart rate and heart

rate variability to model perceived sleep quality. However, if only features derived from acti-

graphy are included in the model, adding TEMP-related features results in higher model per-

formance than adding features related to cardiac activity indicating that cardiac features are

less crucial for model performance than TEMP-related features. We found average heart rate

while awake to be the most import feature about cardiac activity for our classifier. The chances

of high perceived sleep quality were calculated to decrease the further the average heart rate

per day deviates from other day’s averages, which might be caused by increase physical activity,

stress or very low physical activity throughout the day.

6.5.3 Skin temperature. Features related to TEMP represented the majority of the 12

most important features. This is in accordance with the tree ensemble performing generally

best if TEMP-related features were included. When only including one subset of features, the

tree ensemble performed best on the subset including only TEMP-related features. An

increased minimal skin temperature while awake and increased average skin temperature

while asleep are calculated to increase the chances of observing high perceived sleep quality.

For other TEMP-related features, we observe a clear trend when plotting the proportion of

misclassified observations per feature value. The classifier might thus be in danger of overfit-

ting on these features. This trend is especially strong for features related to the changes of skin

temperature over 5-minute windows.

7. Limitations & future work

Our approach to model normalized perceived sleep quality is mainly limited by the required

amount of labeled data in order to normalize perceived sleep quality. To normalize features

and perceived sleep quality, at least two unique values have to be recorded for each feature as

well as the response. Since perceived sleep quality responses are often recorded on Likert scales

with a relatively small number of possible answers, for some participants this might result in a

relatively high minimum number of days with data recordings. On the M2Sleep dataset [9],

for instance, participant S09 reported the same perceived sleep quality response in nearly 87%

of the cases. Our approach requires a minimum of two days per potential user to provide any

predictions at all. A population model for absolute perceived sleep quality (for instance trained

on the M2Sleep dataset), can be used from day-one for unknown individuals.
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Our analysis of the drivers of perceived sleep quality on the M2Sleep dataset is limited by

the limitations of the dataset and the Empatica E4 itself for our use-case. The Empatica has

been validated in various studies [65–67]. However, its accuracy has been shown to be slightly

below gold-standard ECG devices. Thus, heart rate and heart rate variability metrics supplied

by the Empatica E4 to be treated with caution. While we disregard 5-minute windows with

low signal quality, there is no absolute certainty about whether all noise introduced for

instance by motion artifacts, incorrect sensor placement or possible synchronization issues is

removed. When we used IBIs supplied directly by the E4, we had to remove a large proportion

of data points due to no consecutive IBIs being provided across any 5-minute interval while

participants were awake. This left us with only 222 observations out of a possible 463. The size

of the dataset might have been increased for our use-case if participants had worn a wearable

sensor for the full day rather than 4 hours before going to bed and 4 hours after waking up.

This would have left more opportunities for 5-minute intervals with consecutive IBIs without

motion artifacts during the awake phase and would have captured the full variability of heart

rate dynamics. However, even without removing any data the M2Sleep dataset has limited gen-

eralizability to the broader population due to its small number of participants and a non-repre-

sentative age distribution of 19 to 35 years. It also remains unclear if 30 days are long enough

to capture the full phenomenon of perceived sleep quality. Future research will benefit from

additional datasets that combine perceived sleep quality with continuously recorded biosignal

(exceeding actigraphy) across multiple days or even months. Diverse, large scale longitudinal

studies will be required to assess any effects calculated by our approach.

For future work, the improvement in accuracy achieved by including features related to car-

diac activity highlights two points worth noting regarding the use of features about cardiac

activity to model perceived sleep quality. First, as touched upon above, wearable sensors such

as the Empatica E4 still struggle to record IBIs reliably enough to collect HRV data while users

are awake and live their daily lives. This issue could be addressed by using different data pro-

cessing techniques for the BVP signal of the Empatica E4 to manually detect the IBIs as we

have shown with dataset B. However, data quality seems to have dropped due to this approach.

Second, heart rate and heart rate variability data recorded while awake and asleep can greatly

improve performance, which highlights their importance towards a better understanding of

perceived sleep quality. In future analysis, they should thus be included.

8. Conclusion

In this paper we have proposed a new approach for modeling perceived sleep quality. Specifi-

cally, our addition of heart rate and heart rate variability features showed considerable

improvement in predicting users’ perceived sleep quality over previous work. In our evalua-

tion, we also showcased that a normalization of features and perceived sleep quality increases

medical interpretability and the information content of predictions for participants. Due to

simplistic features used in our post-hoc explainable model, our approach allows interpreting

results and reveals the impact of sleep duration, previous-day activity, minimal activity of the

sympathetic nervous system and minimal heart rate while asleep on normalized perceived

sleep quality.

Our results highlight the benefit of modeling measures of subjective well-being, such as per-

ceived sleep quality, using data obtained using today’s wrist-worn wearable sensors across

multiple days. We believe our approach generalizes to other use-cases exceeding the modeling

of perceived sleep quality. While features from users’ cardiac activity were a key enabler of our

method, we also observed a drawback in their use, which was data quality and resulting useful-

ness. In our approach, extracting heart rate and, especially, heart rate variability led to portions
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of data that could not be processed—both in the metrics reported by vendor algorithms that

ship on the Empatica E4 watch (241 out of 463) as well as using our processing of the device’s

PPG recordings, though at much smaller dropout rates (133 of 463). Nonetheless, we believe

that our method shows a promising path for the estimation of perceived sleep quality and that

ongoing advancements in sensing technology and signal processing will increase the quality

and availability of features in the future.

Supporting information

S1 Graphical abstract. We present a novel approach to model perceived sleep quality over

consecutive nights using only simplistic and interpretable features. Our approach achieves

an accuracy of 70% with an AUC of 0.76 and reduces error rates by up to 21% compared to

previous work. The explainability of our model coupled with interpretable features allows us

to analyze the drivers of perceived sleep quality, which revealed the impact of sleep duration,

sleep onset, minimal skin temperature while awake, average skin temperature while asleep and

average heart rate while awake on perceived sleep quality.
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