
npj | digital medicine Article
Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-024-01025-8

Modeling multiple sclerosis using mobile
and wearable sensor data

Check for updates

Shkurta Gashi 1,2 , Pietro Oldrati 3, Max Moebus 1, Marc Hilty 4, Liliana Barrios 1,
Firat Ozdemir 5, PHRT Consortium, Veronika Kana4, Andreas Lutterotti4, Gunnar Rätsch 1,2 &
Christian Holz 1,2

Multiple sclerosis (MS) is a neurological disease of the central nervous system that is the leading cause
of non-traumatic disability in young adults. Clinical laboratory tests and neuroimaging studies are the
standard methods to diagnose and monitor MS. However, due to infrequent clinic visits, it is
fundamental to identify remote and frequent approaches for monitoring MS, which enable timely
diagnosis, early access to treatment, and slowing down disease progression. In this work, we
investigate themost reliable, clinically useful, and available features derived frommobile andwearable
devices as well as their ability to distinguish people with MS (PwMS) from healthy controls, recognize
MS disability and fatigue levels. To this end, we formalize clinical knowledge and derive behavioral
markers to characterize MS. We evaluate our approach on a dataset we collected from 55 PwMS and
24 healthy controls for a total of 489 days conducted in free-living conditions. The dataset contains
wearable sensor data – e.g., heart rate – collected using an arm-worn device, smartphone data – e.g.,
phone locks – collected through amobile application, patient health records – e.g.,MS type –obtained
from the hospital, and self-reports – e.g., fatigue level – collected using validated questionnaires
administered via the mobile application. Our results demonstrate the feasibility of using features
derived from mobile and wearable sensors to monitor MS. Our findings open up opportunities for
continuous monitoring of MS in free-living conditions and can be used to evaluate and guide the
effectiveness of treatments, manage the disease, and identify participants for clinical trials.

Multiple sclerosis (MS) is a chronic neurological disease that affects the
central nervous system (CNS), which was discovered by Jean-Martin
Charcot in 18681.Over 2.8million people globally have beendiagnosedwith
MS2. It can affect several parts of the CNS leading to a wide range of
symptoms, including, pain,mood changes, vision andmovement problems,
speech difficulties, and balance impairment. MS is a chronic disease, with
symptoms often worsening over time. The most occurring and troubling
symptom of MS is fatigue, which refers to the “subjective sensations of
weariness, increasing sense of effort, mismatch between effort expended and
actual performance, or exhaustion”3–5. Recurring fatigue leads to low pro-
ductivity, sick leave, and work disability6,7. It interferes with an individual’s
daily activities and reduces the quality of life3,8. Considering that currently
no cure for MS exists, it is essential to provide treatments to reduce the
impact of such symptoms.

Tomonitor the disease and its symptoms, clinicians largely rely on
magnetic resonance imaging (MRI)9, clinical rating scales, e.g.,
Expanded Disability Status Scale (EDSS)10 – that assess the disease
disability level – and validated self-reports, e.g., Fatigue Scale for Motor
andCognitive function (FSMC)11 orVisual Analog Scale (VAS)12 –which
measure motor and cognitive fatigue. While MRI and clinical rating
scales are effective and adequate to approximate a patient’s status at the
time of the clinical visit, they can only be performed by trained physi-
cians at clinical centers. In addition, they require frequent MRI scan-
ning and doctor visits to reflect longitudinal changes ofMS impairment,
which is cumbersome and time-consuming. Self-reports could in
principle be deployed for longitudinal monitoring of MS. However, it is
difficult to maintain users’ adherence to them over time. Additionally,
they are unreliable due to recall and social biases13. Due to the
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aforementioned reasons, there is a need to explore novel techniques to
help patients and clinicians monitor MS in natural environments.

Thanks to advancements in mobile and wearable technology, con-
tinuous and unobtrusive monitoring of several health aspects has become
possible (e.g., sleep14, physical activity15, and cognitive impairment16). These
devices, equipped with a wide range of sensors, canmeasure behavioral and
physiological parameters, offering newopportunities for continuous disease
monitoring in natural settings.A recent study shows the evolution of the use
of digital health technologies inneurology trials, includingMS17.Computing
systems able to model different aspects of MS would help patients and
clinicians to effectively and efficiently understand,monitor, andmanage the
disease. For instance, continuous monitoring of physiological and beha-
vioral signals of PwMS in free-living conditions would allow clinicians to
maintain a history of events and behaviors preceding the transient wor-
sening of neurological symptoms. To develop such systems, it is first
necessary to understand the reliability, clinical utility, and availability of
mobile and wearable devices for monitoring MS, and this is the goal of
this study.

Such devices have already been used to monitor the fatigability5,18,
fatigue4, EDSS level19–22 and other outcomes of PwMS23. For instance, Motl
et al. use a two-minute walk test19 and the timed 25-foot walk test20, which
reflect the walking disability level, to approximate the EDSS level. These
approaches require the user to manually perform a task and then use the
data collected during the task to infer MS symptoms, which might be
cumbersome and time-consuming. In addition, they focus only on one
aspect of the disease, the motor performance, and neglect the other aspects,
which may lead to incomplete approximation. Indeed, a recent analysis of
119 clinical trials related to MS registered in ClinicalTrials.gov shows that
77.31% of the studies focus on motor function tracking and only 5.88% on
more novel digital measures (e.g., sleep and cognition tracking)17, showing
the need for more comprehensive analysis. Other studies use data collected
in a specific context, e.g., during the COVID-19 pandemic23 or at home24,
which are difficult to generalize to natural settings. The majority of these
studies use simple statistical analysis to show a correlation between disease
and objective measures5,25–27, which are not meant for automated predic-
tions. Other studies use black-box algorithms28, which might be difficult to
interpret by patients and clinicians. Considering the complexity of the
disease and the heterogeneity of real-world behavior, there is a need for
multimodal approaches that consider different aspects of MS.

In this paper, we investigate whether data from wearable devices and
smartphones can be used for monitoring different aspects of MS disease.
The objectives of the paper are: 1) to identify the most reliable features
derived frommobile and wearable devices formonitoringMS; 2) to explore
the clinical utility of the features derived frommobile and wearable data for
monitoring MS; 3) to evaluate the feasibility of using machine learning for
automatic assessment of clinical measurements; and 4) to investigate the
availability of such data in MS population. To achieve these goals, we use
statistical analysis and machine learning to analyze passive sensor data
collected using wearable devices, motor performance tests collected via
smartphones, and patient information obtained from the hospital to dis-
tinguish between PwMS and controls as well as to recognize the disease
disability and fatigue levels. We refer to all these aspects asMSmodeling. In
collaboration with clinicians and from theMS disease literature, we identify
and combine four phenomena observable through mobile and wearable
devices, namely, physiological, behavioral, motor performance and sleep
routine, anduse themtomodelMS.Accordingly,we then identify the sensor
types that could be used to reflect these phenomena and derive a set of
features from raw sensor data to represent them. In particular, we explore
the effectiveness of each phenomenon alone and their combination thereof
to accurately model MS. Considering aspects such as physiological condi-
tions, reflected by heart rate variability or skin temperature, and sleep
behavior changes in addition to motor performance tests provides a more
comprehensive view of the disease. Fig. 1 presents an overview of the study
design, data modeling steps, and MS disease aspects investigated in
this study.

Results
Demographics
Table 1 presents the demographics and disease-related information of
subjects in our dataset. The dataset contains data from 79 participants, 31
males, and 48 females with an average age of 34 years. Out of the 79
participants, 55 were PwMS, and 24 were healthy controls. Themean EDSS
level was 2.58, with a range of values from 0 to 6. The EDSS scores were
measured during two clinic visits, and they were consistent across the two
visits.

Reliability of features derived frommobile andwearable sensors
for MS monitoring
We investigate the reliability of features derived from mobile and wearable
devices. Reliability, defined as the extent to which measurements can be
replicated, reflects both the level of correlation and degree of agreement
betweenmeasurements29. To identify the reliable features, we first extracted
features from sensor data and then performed the test-retest reliability
analysis30. The term features refer to statistical featuresderived from the time
and frequency domain of the signals, which we explain in detail in Section
Feature Extraction. We consider the features with an intraclass correlation
coefficient (ICC)ofmore thanor equal to 0.6 as reliable, similar toWoelfle et
al.31. Table 2 presents a summary of the ICC and confidence intervals (CIs)
for both daily and weekly-aggregated features. Overall, 18 out of 47 features
extracted and aggregated daily met the ICC criteria. Features aggregated
weekly, which refers to two average values per participant over the two
weeks, resulted in higher ICCs. Themajority ofweekly features, 41 out of 47,
met the ICC criteria. Features collected daily show higher variability with
lower test-retest reliability in comparison to weekly-aggregated features.
This is expected because daily features are highly impacted by people’s
behavior during the day. For instance, thephysical activity of the userduring
a daymight be very different from another day, i.e., a usermight go running
onMondayandwork fromhomeall dayonTuesday. Suchbehaviors cause a
larger difference in the ICC of themean physical activity between these two
days. On the weekly level, however, users might follow the same weekly
routine.Webelieve that this is the reasonwhy the ICCvalues for someof the
features e.g., mean physical activity, have a large difference on the daily and
weekly level.

Clinical utility of features derived frommobile and wearable
sensors for MSmonitoring
In this section, we explore the clinical utility of the features derived from
mobile and wearable sensor data by analyzing their relationship to patient
health information (e.g., MS diagnosis, EDSS, and FSMC levels). Table 2
shows a summary of the correlation analysis performed using Pearson
correlation or Spearman rank correlation coefficients. We observe a sig-
nificant correlation between several features derived from sensor data and
clinical measures. In particular, we find a significant, negative correlation
between EDSS and at least one feature related to participants’ physical
activity, number of steps, heart rate (HR), heart rate variability (HRV),
phoneusage, andperformance test. These results indicate that thehigher the
participants’ EDSS level, the lower their physical activity, variability in the
number of steps, heart rate, the number of phone locks/unlocks, and the
average tapping frequency. Similarly, at least one feature related to HR,
HRV, blood pulse wave (BPW), phone usage, and performance test is sig-
nificantly correlated to the FSMC. The majority of features show a sig-
nificant, negative correlation with FSMC. This indicates that the higher the
participants’FSMC level, the lower their averageBPW,maximumHRvalue,
HRV, phone usage, and tapping frequency. Supplementary Fig. 1 shows
examples of the distribution and correlation between physiological data and
clinical measures.

We then applied statistical tests to understand the ability of digital
features to discriminate between PwMS and healthy controls (HC). The
features that were significantly different between the two groups are related
to physical activity, number of steps, blood perfusion (BP), BPW,HR,HRV,
skin temperature (TEMP), and phone usage. We found no significant

https://doi.org/10.1038/s41746-024-01025-8 Article

npj Digital Medicine |            (2024) 7:64 2



difference in sleep duration and performance tests between the two groups.
Fig. 2 presents the distribution of some of the features for HC, people with
Relapsing Remitting MS (RRMS) and people with Primary or Secondary
Progressive MS (PMS). We observe higher HRV, shown by the standard
deviation of the interbeat intervals feature (SDNN), in HC compared to
PwMS (p < 0.001 according to Mann-Whitney U test), which is consistent
with previous findings that PwMS have a reduced HRV32 and HC higher
HRV33,34. The number of steps feature provides also interesting insights. HC
and people with RRMS perform more steps in comparison to people with
PMS suggesting that people with PMS are physically less active than the
other two groups, confirming previous findings35. HC group has overall
lower TEMP in comparison to PwMS, which is in line with the findings of
Eggenberger et al.36 for patients with mild cognitive impairments. We
investigated the possibility of this result being confounded with the time of
the year the data was collected and did not observe any evidence this might
be the case. Overall, these results indicate that the variation in physiological
data such as HR, HRV, TEMP, and physical activity levels between PwMS
and HC can be observed even during daily activities through wearable
technology. These findings serve as a compelling reason for conducting
further research in this direction.

Table 1 | Demographics data – Mean (standard deviation) of
the demographics of the participants in our dataset

All Control PwMS
Participants 79 24 55

Demographics Age, mean (std) 35.15
(10.05)

33.5 (10.6) 36.8 (9.5)

Gender 31 M & 48 F 11 M & 13 F 20 M & 35 F

Asian 3 3 –

Caucasian 69 18 51

Hispanic 1 1 –

Middle-Eastern 5 2 3

Health Information EDSS,
mean (std)

– – 2.58 (1.6)

FSMC,
mean (std)

– – 55.0 (23.2)

MS Type RRMS – – 46 (83.6%)

PMS – – 9 (16.4%)

Fig. 1 | Study design and datamodeling setup.We ran the experiments on a dataset
we collected from 55 PwMS and 24 healthy controls over two weeks. Our data
analysis objectives are to identify the most reliable, clinically useful, and available
features derived from mobile and wearable sensor data. Our machine learning

pipeline identifies the best-performing features for four tasks 1) PwMS and healthy
controls classification, 2) MS type classification into none, RRMS and PPMS-SPMS,
3) predict the disability and fatigue levels using wearable sensor data, smartphone
usage, and demographics. [Illustrations by Storyset (https://storyset.com/)].
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Table 2 | Reliability and clinical utility of the features derived from mobile and wearable sensors explored in this work

Sensor Feature Daily average Weekly average EDSS FSMC PwMS vs HC

Coefficient ICC CI ICC CI CORR CORR P value

Physical Max 0.55 [0.19 0.98] 0.72 [0.49 0.86] −0.24* −0.13 <0.001

Activity Mean 0.03 [−0.06 0.82] 0.80 [0.62 0.9] −0.35* −0.32 <0.001

Min 0.00 [0.1 0.37] 0.01 [−0.37 0.37] 0.18 0.22 >0.01

Skew 0.17 [−0.01 0.92] 0.85 [0.71 0.93] 0.07 0.03 <0.001

Std 0.02 [−0.06 0.81] 0.81 [0.63 0.91] −0.31 −0.32 <0.001

Steps Max 0.09 [−0.02 0.87] 0.24 [−0.15 0.56] −0.04 −0.19 <0.001

Mean 0.06 [−0.04 0.85] 0.83 [0.67 0.92] −0.41* −0.28 <0.01

Skew 0.14 [−0.01 0.91] 0.46 [0.11 0.71] 0.40* 0.20 <0.001

Std 0.18 [−0. 0.92] 0.84 [0.69 0.92] −0.44** −0.30 <0.001

Sum 0.13 [−0.01 0.9] 0.84 [0.68 0.92] −0.40* −0.28 <0.01

Blood Max −0.02 [−0.06 0.6] 0.45 [0.1 0.7] −0.04 0.10 <0.001

Perfusion Mean 0.69 [0.33 0.99] 0.76 [0.55 0.88] 0.11 0.12 >0.01

(BP) Min 0.00 [0.01, 0.92] 0.00 [0.05, 0.22] −0.05 0.04 >0.01

Skew 0.17 [0. 0.91] 0.57 [0.27 0.78] −0.02 0.01 <0.01

Std 0.26 [0.05 0.94] 0.67 [0.4 0.83] 0.15 0.28 <0.001

Blood Max −0.02 [−0.03 0.5] 0.35 [0.1 0.6] −0.18 −0.22 >0.01

Pulse Mean −0.03 [−0.05 0.43] 0.79 [0.61 0.9] 0.31 0.38* <0.001

Wave Min 0.00 [0.02 0.64] 0.02 [−0.05 0.78] −0.05 0.04 >0.01

(BPW) Skew 0.53 [0.17 0.98] 0.85 [0.71 0.93] −0.32 −0.24 <0.001

Std 0.15 [0.01 0.9] 0.77 [0.56 0.89] −0.23 −0.05 >0.01

Heart Max 0.26 [0.03 0.95] 0.66 [0.39 0.83] −0.41* −0.48** <0.001

Rate Mean 0.23 [0.03 0.93] 0.79 [0.61 0.9] −0.01 0.09 >0.01

(HR) Min 0.58 [0.23 0.98] 0.69 [0.45 0.85] 0.33 0.44** <0.001

Skew 0.44 [0.12 0.97] 0.37 [0.01 0.65] −0.00 0.07 >0.01

std 0.43 [0.11 0.97] 0.77 [0.56 0.89] −0.43** −0.44** <0.001

Heart SD1 0.88 [0.64 1.0] 0.96 [0.93 0.99] −0.26 −0.32 <0.001

Rate SD2 0.91 [0.71 1.0] 0.96 [0.93 0.99] −0.38* −0.47** <0.001

Variability nn20 0.91 [0.72 1.0] 0.95 [0.9 0.98] −0.46** −0.50** <0.001

(HRV) nn50 0.91 [0.74 1.0] 0.96 [0.93 0.98] −0.36* −0.41* <0.001

pnn20 0.71 [0.36 0.99] 0.95 [0.9 0.98] −0.44** −0.48** <0.001

pnn50 0.88 [0.64 1.0] 0.96 [0.93 0.99] −0.35* −0.40** <0.001

rmssd 0.88 [0.64 1.0] 0.96 [0.93 0.99] −0.26 −0.32 <0.001

sdnn 0.90 [0.71 1.0] 0.97 [0.94 0.99] −0.36* −0.45** <0.001

HF 0.87 [0.64 1.0] 0.93 [0.86 0.97] −0.16 −0.07 <0.01

LF 0.95 [0.84 1.0] 0.88 [0.76 0.94] −0.14 −0.26 <0.001

LF/HF 0.23 [0.03 0.94] 0.95 [0.91 0.98] 0.29 0.26 <0.001

Skin Max 0.45 [0.14 0.97] 0.28 [−0.1 0.6] 0.10 0.19 <0.001

Temperature Mean 0.02 [−0.05 0.78] 0.89 [0.79 0.95] 0.26 0.17 <0.001

(TEMP) Min 0.14 [−0.01 0.9] 0.96 [0.92 0.98] 0.12 0.10 <0.001

Skew 0.65 [0.28 0.99] 0.74 [0.52 0.87] −0.05 0.07 >0.01

Std 0.12 [−0.01 0.89] 0.87 [0.75 0.94] −0.18 −0.07 <0.01

Phone Locks 0.89 [0.68 1.0] 0.93 [0.86 0.97] −0.36* −0.49** <0.001

Unlocks 0.91 [0.73 1.0] 0.91 [0.73 1.0] −0.35* −0.46** <0.001

Sleep Hours 0.10 [0.01 0.84] 0.64 [0.32 0.82] 0.09 0.06 >0.01

Tapping Mean tapping frequency (tfm) 0.06 [−0.04 0.84] 0.71 [0.47 0.85] −0.68** −0.64** >0.01

task Tapping count 0.02 [−0.05 0.79] 0.71 [0.47 0.86] −0.65** −0.62** >0.01

Δtfm 0.02 [−0.05 0.79] 0.74 [0.5 0.87] −0.45** −0.34* >0.01

ICCrefers to the intraclasscorrelationcoefficient,CI totheconfidence interval,andCORRtoPearsonorSpearmanrankcorrelation.Reliable featureswith ICCmore thanorequal to0.6aremarked inbold.* indicate
p < 0.01, and ** values indicate p < 0.001 with Bonferroni correction. PwMS refers to PwMS and HC refers to healthy controls.
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Performance of features derived frommobile and wearable
sensor for MSmodeling
We developed several models to distinguish between PwMS andHC and to
recognize the type ofMS a participant is diagnosedwith as well as to predict
the fatigue severity and the disease disability level. We framed the first two
tasks as binary andmulti-class classification problems, respectively, and the
latter as regression problems. We then trained models in a supervised
learning fashion. We used groups of features as input to the explored
models. The groups of features we derived are 1) behavioral referring to
individual’s behavior such as physical activity, and phone usage; 2) motor
performance, which pertains to the results of the tapping frequency test
conducted through a smartphone application; 3) physiological, which refer
to physiological aspects (e.g., the average value of heart rate); 4) sleep routine,
which reflects information regarding sleep duration; and 5) demographics,
including age andgender, described in detail in SectionMethods. The goal of
these experiments is to investigate whether data collected unobtrusively
through mobile and wearable devices could complement traditional tech-
niques to distinguish between PwMS and HC as well as to predict disease
disability and fatigue levels. For classification tasks, we investigated the
performance of shallow classifiers, such as logistic regression (LR), random
forest (RF), extreme gradient boosting (XGB) and fully-connected neural
network (FCNN), and compared them to random guess (RG) – which pre-
dicts the outcome uniformly at random –, biased random guess (BRG) –
which predicts the majority class in training set –, and demographics – that
refers to a classifier with gender and age as features – baselines. For
regression problems, we explored the performance of linear regression (LR),
random forest regressor (RFR), extreme gradient boosting regressor (XGBR),
and FCNNwithmean squared error (MSE) loss function.We compared the
regression results to random – that predicts a random number within the
expected range – and average – that always predicts the average score in the
dataset – baselines. To evaluate models’ performance, we calculate the F1-
score (F1) for classification tasks and mean absolute error (MAE) for
regression tasks over stratified group 5-fold cross-validation (SG5FCV),
similar to22,23. We split the data into non-overlapping participant training
and test sets to investigate theperformanceof our approach to anew,unseen
group of subjects.

PwMS vsHC. Table 3 (left) reports the mean (standard deviation) of the
F1-score computed over 50 iterations of the SG5FCV for each classifier.
We report the F1-scores for each group of features, namely, behavioral,

physiological, sleep routine, and motor performance and their combina-
tions. Our results show that using all feature groups explored in this work
as input to the classifiers provides the best performance in terms of the
F1-score and outperforms the three baselines for distinguishing PwMS
and HC. In particular, using the features that represent a participant’s
behavior, physiology, sleep routine and motor performance reaches the
highest F1-score of 82% to distinguish between PwMS and HC, which is
26, 31, and 16 percentage points higher than BRG, RG, and demo-
graphics, respectively. We observe that most of the feature categories
alone or combined outperform both baselines. This is however not the
case for sleep routine, which seems to not be sufficient for this task.
Behavioral features alone or in combination with sleep routine infor-
mation achieve an F1-score of 78%using the LR classifier, which is 22 and
27 percentage points higher than BRG and RG. These results imply that
in case information related to other physiological markers is not avail-
able, behavioral markers alone could be used for this task. This is pro-
mising because behavioral features can be tracked continuously without
effort or discomfort for both patients and clinicians as opposed to, for
example, the motor performance tests. Fig. 3 (left) shows the confusion
matrix of the best classifier (LR with all feature groups as input) for
distinguishing between PwMS and HC. We observe that our approach
misclassifies HC only 18% of the time. The majority of the mis-
classifications occur for MS patients, where in 24% of the cases they are
misclassified as HC. This is expected because PwMS in the early stages of
the disease can have similar behavior to HC.

MS type. Table 3 (right) presents the mean (standard deviation) of the
F1-score for each classifier to distinguish three classes of MS type. We
observe that the majority of classifiers outperform both the RG and BRG
baselines, except the ones using only sleep routine or performance fea-
tures in input. In particular, LR achieves the highest performance with an
F1-score of 62%,which is 26, 28, and 19 percentage points higher than the
BRG, RG, and demographics. These results demonstrate the capability of
our approach to not only provide a high-level classification of individuals
into PwMS and HC, but also to distinguish between HC, people with
RRMS, and people with PPMS/SPMS. Similar to the previous task, the
information related to an individual’s behavior (e.g., physical activity,
phone locks/unlocks) plays the most significant role in recognizing MS
type. Fig. 3 (right) shows the confusion matrix of the best classifier
(FCNN with all feature groups as input) for MS type recognition. We

Fig. 2 | Mobile and wearable sensor data distribution. Distribution of a subset of
features forMSType (None, RRMS andPMS). The horizontal linewithin the boxplot
displays the median of the data, the box limits refer to the interquartile range (IQR),

and the whiskers extend to the minimum and maximum values. The data points
falling outside the whiskers are outliers.
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observe that our approachmisclassifies HC as RRMS 24% of the time and
5% as PMS. The misclassifications occur mainly between people with
PMS and RRMS, which could be due to the few data samples in the
PMS group.

Disability level. Table 4 (left) reports the MAE for each regressor for
predicting theMS disability levelmeasured using EDSS10, which is a score
from 0 to 6 in our dataset. From the table, we observe that the XGBR
achieves the highest performance for predicting the EDSS level, with an
MAE of 0.76, which is 0.72, 0.71, and 0.11 points lower than the random,
average, and demographics baselines. These results imply that the fea-
tures related to motor performance alone or in combination with beha-
vioral data or sleep could be used to predict EDSS. These results further
confirm the correlation analysis discussed before.

Fatigue level. Table 4 (right) shows themean (standard deviation) of the
MAE for each regressor to predict the level of fatigue measured using
FSMC11, which is a score from20 to 97 in our dataset. The XGBR achieves
the lowest error with anMAE of 15.13%, which is 15.48, 11.09, and 10.39
percentage points lower than the random, average, and demographics
baselines, using the performance test features as input to the classifier.

This is expected because performance-related features were among the
highly correlated features with FSMC, which were indeed developed to
measure motor fatigability as discussed in the previous section.

Feasibility of collecting mobile and wearable device data from
PwMS and HC
To evaluate the feasibility of collecting physiological, behavioral, and per-
formance data, we investigated the quantity of collected data for each device
type concerning the expected amount of data, similar to Antikainen et al.34.
Fig. 4 (left) shows the percentage of collected data from the wearable device
and smartphone application for each groupof participants (e.g., peoplewith
PMS,RRMS, orHC).Wearable device datawas available for 79 participants,
and performance tests for 60 participants. The reduction of the number of
participants from 79 to 60 for performance tests is because 19 participants
had incomplete data. From the figure, we further observe that the wearable
device has a higher compliance rate (on average around82%) in comparison
to performance tests (on average around 74%). These results imply that
participants wore the wearable device for the majority of the day. In addi-
tion, there is no difference in the compliance rate across groups of partici-
pants for wearable devices. However, HC did not complete as many
performance tests as PwMS.

Discussion
Taken together, the results showed that 16 out of 47 daily-aggregated fea-
tures and 38 out of 47 weekly-aggregated features demonstrated good-to-
excellent test-retest reliability. The correlation analysis revealed that a
smaller group of features, including at least one feature related to physical
activity, number of steps, HR, HRV, phone usage, and tapping task sig-
nificantly correlated to EDSS and FSMC. Statistical tests demonstrated that
several features can discriminate between PwMS and HC. These results
indicate the clinical utility of features derived from mobile and wearable
sensor data for monitoring MS disability and fatigue aspects as well as
distinguishing between PwMS and HC. The machine learning approach
achieved an F1-score of 82% in distinguishing between PwMS andHC, 62%
in recognizing the MS type, an MAE score of 0.76 in predicting the EDSS
levels, and 15.13 in estimating the FSMC level. Study participants showed a

Table 3 | Weighted F1-scores (F1) for each classifier to distinguish PwMS from HC and the MS type (none, RRMS and PMS)

PwMS vs Healthy (Binary) MS Type (3-class)

Group LR FCNN RF XGB LR FCNN RF XGB

Behavioral 0.78 (0.10) 0.75 (0.12) 0.72 (0.12) 0.72 (0.11) 0.62 (0.22) 0.58 (0.18) 0.55 (0.22) 0.54 (0.20)

Physiological 0.73 (0.12) 0.70 (0.12) 0.68 (0.14) 0.68 (0.11) 0.51 (0.15) 0.49 (0.15) 0.47 (0.15) 0.48 (0.15)

Sleep routine 0.37 (0.21) 0.35 (0.20) 0.45 (0.11) 0.46 (0.14) 0.29 (0.12) 0.29 (0.12) 0.30 (0.12) 0.33 (0.12)

Performance 0.76 (0.14) 0.76 (0.15) 0.73 (0.12) 0.70 (0.13) 0.39 (0.13) 0.44 (0.14) 0.44 (0.15) 0.42 (0.15)

Beh+Phys 0.73 (0.12) 0.70 (0.13) 0.69 (0.14) 0.68 (0.12) 0.50 (0.16) 0.48 (0.16) 0.47 (0.15) 0.48 (0.16)

Beh+Sle 0.79 (0.11) 0.74 (0.12) 0.72 (0.12) 0.72 (0.11) 0.62 (0.22) 0.59 (0.19) 0.56 (0.22) 0.54 (0.21)

Beh+Per 0.77 (0.15) 0.77 (0.14) 0.73 (0.12) 0.70 (0.13) 0.40 (0.13) 0.44 (0.14) 0.43 (0.15) 0.41 (0.14)

Phy+Sle 0.73 (0.12) 0.69 (0.13) 0.69 (0.13) 0.69 (0.11) 0.50 (0.16) 0.48 (0.16) 0.45 (0.16) 0.49 (0.16)

Phy+Per 0.74 (0.11) 0.70 (0.12) 0.70 (0.13) 0.67 (0.13) 0.51 (0.16) 0.48 (0.16) 0.44 (0.15) 0.48 (0.16)

Per+Sle 0.76 (0.15) 0.76 (0.15) 0.73 (0.13) 0.70 (0.13) 0.39 (0.13) 0.44 (0.12) 0.44 (0.13) 0.43 (0.14)

Beh+Per+Phy 0.74 (0.12) 0.70 (0.13) 0.69 (0.13) 0.68 (0.11) 0.51 (0.16) 0.47 (0.16) 0.43 (0.15) 0.46 (0.17)

Per+Phy+Sle 0.74 (0.13) 0.70 (0.13) 0.68 (0.13) 0.69 (0.11) 0.50 (0.15) 0.46 (0.15) 0.45 (0.14) 0.46 (0.16)

Beh+Phy+Sle 0.73 (0.12) 0.70 (0.12) 0.68 (0.12) 0.68 (0.11) 0.50 (0.16) 0.48 (0.16) 0.45 (0.16) 0.47 (0.16)

All 0.82 (0.11) 0.82 (0.11) 0.78 (0.10) 0.78 (0.12) 0.60 (0.18) 0.60 (0.17) 0.55 (0.20) 0.51 (0.19)

BRG 0.56 (0.01) 0.36 (0.01)

RG 0.51 (0.04) 0.34 (0.16)

Demographics 0.66 (0.12) 0.43 (0.16)

The classification metrics are reported asmean (standard deviation) of the stratified group five-fold cross-validation iterations and 50 runs. The bold values denote the highest F1-score for each classifier.

Fig. 3 | Confusion matrix for classification results. Summed and normalized (per
row) confusion matrix of the Stratified Group 5-fold Cross-Validation (left).
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higher compliance rate to wearable devices in comparison to smartphone-
based performance tests.

Our findings build upon a small body of previous work that explored
the feasibility of using wearable sensors and smartphones to distinguish
betweenPwMSandHCaswell as topredictMSdiseasedisability and fatigue
levels. They highlight themost reliable, clinically useful, and available digital
features for MS monitoring. These findings serve as guidelines for both
medical researchers and clinicians to identify the type of data to be used for
MS monitoring in real-world scenarios.

Several authors investigated the feasibility of using smartphone data to
predict the EDSS level21,22,25,37. Chitnis et al.25, for instance, found significant
correlations between several biosensor-derived features with EDSS. We

build upon this work and compare the performance of smartphone-based
approaches with passive, wearable sensing techniques and find that these
behavioral markers perform comparably well to smartphone-based, motor
performance tasks. In addition, we investigate the relationship of sensor-
derived features to FSMC and their ability to discriminate between
PwMS and HC.

Very few studies examined fatigue assessment using smartphone
and wearable sensor data4,38–40. These approaches focus on healthy
individuals (e.g., refs. 38–40), which might not generalize to PwMS.
Only a few researchers investigated the feasibility of using mobile and
wearable sensor data to distinguish between PwMS and HC. Schwab
et al.28, for instance, use smartphone-based performance tests – that

Table 4 | Average MAE scores for each classifier to distinguish the overall fatigue level measured with FSMC (no fatigue,
moderate and severe), and MS disability level quantified using EDSS (none, mild and severe)

EDSS Level –MIN=0, MAX=6, STD=1.46 FSMC Level –MIN=20, MAX=97, STD=20

Group LR FCNN RFR XGBR LR FCNN RFR XGBR

Behavioral 1.56 (0.58) 0.86 (0.12) 0.89 (0.11) 0.94 (0.15) 21.24 (7.87) 26.69 (6.77) 17.66 (3.91) 19.30 (4.27)

Physiological 1.65 (0.29) 1.01 (0.11) 0.96 (0.14) 0.87 (0.09) 30.36 (2.37) 26.12 (6.96) 17.52 (2.55) 19.00 (3.86)

Sleep routine 0.89 (0.24) 0.85 (0.21) 0.91 (0.18) 1.03 (0.30) 15.67 (3.39) 30.06 (10.1) 15.25 (2.67) 17.26 (4.75)

Performance 0.89 (0.25) 0.79 (0.16) 0.79 (0.22) 0.76 (0.21) 20.20 (9.15) 28.38 (10.3) 15.42 (2.96) 15.13 (3.35)

Beh+Phy 1.65 (0.29) 1.01 (0.12) 0.96 (0.14) 0.87 (0.09) 30.36 (2.37) 26.12 (6.96) 17.52 (2.50) 19.00 (3.86)

Beh+Sle 1.56 (0.58) 0.86 (0.12) 0.89 (0.10) 0.94 (0.15) 21.24 (7.87) 26.75 (6.84) 17.63 (3.88) 19.30 (4.27)

Beh+Perf 0.89 (0.25) 0.79 (0.16) 0.78 (0.22) 0.76 (0.21) 20.20 (9.15) 28.35 (10.2) 15.43 (2.96) 15.13 (3.35)

Phy+Sle 1.65 (0.29) 1.02 (0.12) 0.96 (0.14) 0.87 (0.09) 30.36 (2.37) 26.09 (6.97) 17.52 (2.52) 19.00 (3.86)

Phy+Perf 1.65 (0.29) 1.02 (0.13) 0.96 (0.14) 0.87 (0.09) 30.36 (2.37) 26.12 (6.91) 17.53 (2.58) 19.00 (3.86)

Perf+Sle 0.89 (0.25) 0.79 (0.16) 0.78 (0.21) 0.76 (0.21) 20.20 (9.15) 28.44 (10.3) 15.45 (3.05) 15.10 (3.35)

Beh+Perf+Phy 1.65 (0.29) 1.02 (0.12) 0.96 (0.14) 0.87 (0.09) 30.36 (2.37) 26.10 (6.93) 17.52 (2.55) 19.0 (3.86)

Perf+Phy+Sle 1.65 (0.29) 1.02 (0.12) 0.96 (0.14) 0.87 (0.09) 30.36 (2.37) 26.12 (6.96) 17.53 (2.57) 19.0 (3.86)

Beh+Phy+Sle 1.65 (0.29) 1.01 (0.11) 0.96 (0.14) 0.87 (0.09) 30.36 (2.37) 26.11 (6.95) 17.52 (2.55) 19.0 (3.86)

All 1.59 (0.49) 0.88 (0.12) 0.96 (0.20) 1.03 (0.24) 53.48 (13.3) 25.81 (6.20) 17.41 (4.65) 18.0 (5.60)

Random 1.48 30.58

Average 1.47 26.19

Demographics 0.87 25.49

The classificationmetrics are reported asmean (standard deviation) of the stratified group five-fold cross-validation iterations and 50 runs. The bold values denote the lowestMAE score for each regressor.

Fig. 4 | Feasibility to collect smartphone and wearable data.Overview of the amount of data collected with wearable sensors and smartphones (right). The error bars show
the difference in the amount of collected data for 14 days.
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assess cognitive, movement, and finger dexterity – and inertial sensor
data to distinguish PwMS from HC. Their approach achieves an F1-
score of 80% for recognizing whether a subject is diagnosed with MS
using performance-based tests. We build upon this work and show the
feasibility of using passively sensed information related to individuals’
physical activity, cardiac activity, and more.

Theworkmost closely related to ours is the one presented byChikersal
et al.23. TheymeasureMS symptom burden and binary fatigue (e.g., high or
low) using smartphone (e.g., calls, location, and screen activity) and Fitbit
(e.g., heart rate, steps, and sleep) data.We extend thiswork by evaluating the
feasibility of MS monitoring in less controlled settings where participants
move freely. We further explore the impact of behavioral markers in dis-
tinguishing betweenPwMS andHC, recognizing the threeMS subtypes and
predicting the MS disability level.

While in most tasks, the performance of classifiers and regressors
using objective features are higher than baselines, the combination of
three or more feature groups did not lead to better performance for
predicting EDSS and FSMC.We believe this behavior is due to the small
data size. In addition, the performance of demographics data alone is
quite high, indicating that age and gender can effectively be predictors
of disease disability and fatigue levels. While demographics can be good
indicators, they are not a definitive diagnostic criterion. People of any
age can develop MS, and there can be considerable variability in age at
diagnosis. In addition, age is static, but digital readouts provide infor-
mation over longer periods and eventually could be used to spot
changes in behavior and their impact on disease progression. Collecting
more data and investigating such hypotheses is an interesting direction
for future research.

Our findings present exciting possibilities for monitoring MS in real-
life situations. These findings have the potential to be used by medical
researchers and clinicians for the design and development of wearable-
based tools forMS diseasemonitoring, which have the potential to enhance
disease management and monitoring.

Methods
To investigate the feasibility of using wearable devices and smartphones
forMS disease modeling, we use a dataset we collected in natural settings,
where participants behaved freely. In this section, we explain the study
protocol and participants’ recruitment procedure, the type of collected
data, and the data analysis approach we followed. Our method includes
steps from conventional statistical analysis and machine learning pipe-
lines such as data cleaning and preprocessing, feature extraction, and
classification described as follows.

Study protocol and participants
We ran a data collection study in November 2019. Fig. 1 provides an
overviewof the study setup. The study lasted for twoweeks andwe recruited
55 people diagnosed with multiple sclerosis (MS) and 24 healthy controls.
The inclusion criteria for the participantswere to ownor bewilling to use an
Android or iOS phone. The exclusion criteria for healthy controls were:
being diagnosed with a chronic illness, taking medications regularly, and
experiencing fatigue or autonomic dysfunction symptoms. All participants
followed the same protocol. The participants were asked to continuously
wear the Everion smart armband developed by Biofurmis (previously
known as Biovotion) for thewhole duration of the study. Also, they used the
Querum mobile application to answer surveys and perform tests related to
their motor impairment and fatigability. In addition, participants used the
app to fill sleep diaries upon waking up and before going to sleep. The
surveys were sent daily. Participants were recruited at the University Hos-
pital of Zurich, Switzerland, from the neuroimmunology outpatient clinic.
The Cantonal Ethics Committee of Zurich reviewed and approved the
study. All participants signed an informed consent form. We removed
identifiable information, such as names and contact information, from the
collected data before analysis to preserve participants’ privacy and
confidentiality.

Dataset description
The dataset contains smartphone data collected using the Querum appli-
cation, wearable sensor data collected using the Everion device, self-reports
collected via validated questionnaires sent through the mobile application,
and patient health information obtained from the hospital records. This
represents oneof the very fewdatasets available to investigate theproblemof
continuous MS modeling.

Wearable sensor data. The wearable sensor data was collected using
the Biovotion Everion armband (https://biofourmis.com/), which is a
medically approved armband, that has shown higher accuracy for heart
rate measurement in comparison to other devices26. Fig. 5 depicts the
Everion wearable device. It contains five sensors, namely, an accel-
erometer (ACC), barometer (BAR), electrodermal activity (EDA),
temperature (TEMP), and photoplethysmography (PPG). In addition,
the dataset also contains data streams derived from the raw sensor data
(e.g., number of steps). Table 5 describes the data extracted from the
sensors of the Everion device, their measurement unit, and the sensor
from which the data was derived. In particular, our dataset consists of
heart rate (HR), heart rate variability (HRV), respiration rate (RR),
electrodermal activity (EDA), skin temperature (TEMP), blood pulse
wave (BPW), oxygen saturation (SpO2), activity class (AC), steps,
energy expenditure (EE), barometer (BAR). HR reflects the number of
times the heart beats per minute; HRV shows the beat-to-beat varia-
tions; EDA the sympathetic nervous system arousal during an activity;
RR is the number of breaths a person takes per minute; BPWmeasures
the shape and rhythmicity of the pulse wave generated by the heart
contractions which travels through the circulatory system; steps refers
to the number of steps per day; EE the amount of energy a user con-
sumes for bodily function (e.g., moving, respiration, digestion); BAR
reflects the altitude changes of the user while wearing the device; AC
refers to resting, walking, running, cycling and biking. HR, HRV, and
EDA provide information about an individual’s physiological arousal
and have been widely used to detect people’s cognitive load, affect, and
engagement41.

Smartphone data. The smartphone data were collected using Querum
application developed byBarrios et al.5. It captures information regarding
users’ lock and unlock interactions with the phone, acceleration of the
phone, steps and physical activities performed by the user, and places
visited. Additionally, participants used the application to complete a
finger-tapping task, and the tapping frequency derived from this task has
been proposed as an objective measure of fatigue or performance
fatigability5. Kluger et al.3 define fatigability as the “magnitude or rate of
change in a performance criterion relative to a reference value over a given
time of task performance." Fig. 6 shows a screenshot of the Querum
mobile application during the tapping task.

Fig. 5 | Wearable device. The Biovotion Everion wearable device we used to collect
physiological and behavioral sensor data over the day. [Image: Infinity Design].
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Patient Health Information. The metadata obtained from the hospital
includes demographic information, disease state, and history. In parti-
cular, from the hospital, we obtained the gender, age, the MS disability
level quantified using theExpandedDisability Status Scale (EDSS), theMS
type, when the person had the first symptom andwas first diagnosedwith
MS and disease duration in years. EDSS is a commonly used measure of
long-term MS disability as annotated by a clinician. It is a scale that
ranges from 0 to 10 with 0.5 increments. Even though MS is a highly
heterogeneous and subject-specific disease, PwMS can be grouped into
three clinical phenotypes depending on the disease progression, namely,
relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and
primary-progressive MS (PPMS)42,43. RRMS is the most common and
initial form of the disease characterized by sudden acute symptoms
developing over days before plateauing over weeks or months44. RRMS
affects the majority (85%) of PwMS.

Self-reported data. Before and after the study participants completed
the Fatigue Scale forMotor andCognitive Functions (FSMC)11, Nine-Hole
Peg Test (9-HPT)45 and handgrip dynamometer. In this study, we used
only the FSMC score, which is a validated and reliable measure of cog-
nitive and motor fatigue for PwMS. It consists of 20 items, ten items
corresponding to cognitive, and the remaining ten to motor fatigue.
Given that the participants completed the FSMC questionnaire before
and after the study, we derive a final score as the mean of the two ques-
tionnaires. During the study, participants completed daily questionnaires
regarding their fatigue level during the day. Participants reported their
perceived fatigue level using the Visual Analog Scale (VAS)12. VAS was

sent three times per day at random times of the day. Participants reported
the fatigue level on a scale from 1 ("Not at all tired") to 10 ("Extremely
tired") representing how they currently feel. Fig. 7 presents an overview of
the VAS questionnaire that was completed by participants on a daily
level. The Querum application sent daily notifications to remind the user
to complete the questionnaires and the tapping task.

Data cleaning
With 79 participants enrolled in our study for two weeks, we could expect
1106 days of data available for our analysis. However, aftermerging the data
from all data sources (e.g., smartphone, wearable device), we are left with 60
participants. To prevent discarding data further, we did not consider some
data sources for further analysis. In particular, we discarded the steps,
acceleration, physical activities, and places collected using the smartphone
application because they were present only for a few participants. In

Table 5 | Sensor-derived data – description of the data derived from sensors collected using the Everion wearable device

Sensor Data Type Description Unit

PPG Heart Rate Number of heartbeats per minute (bpm). bpm

Blood Perfusion Process of a body delivering blood to a capillary bed in its biological tissue. –

Blood Pulse Wave Indicator of shape and rhythmicity of the blood pulse wave. –

Heart Rate Variability Time between heartbeats. ms

Respiration Rate Number of breaths per minute (BPM). BPM

ACC Steps Number of steps per day. steps

Activity The intensity of motion. –

Energy Expenditure Amount of energy a person uses to complete bodily functions, from moving, breathing, digestion, and respiration. kCal

TEMP Skin Temperature Temperature measured on the surface of the skin. Degrees Celcius

BAR Barometric pressure Altitude changes of the user while wearing the device. Mbar

EDA Electrodermal activity Describes changes in electrical conductivity of the skin. It is a measure of physiological arousal of the sympathetic
nervous system.

kOhm

Activity refers to resting, biking, walking, running.

Fig. 6 | Smartphone application. The Querum Android application we used to
collect data related to motor performance during the tapping task.

Fig. 7 | Daily self-reports.TheVisual Analog Scale (VAS)we used for rating fatigue.
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addition, the respiration rate and electrodermal activity data collected from
thewearable devicewereofpoorquality. For this reason,wedidnot consider
them for further analysis. This amount of discarded data during the data
cleaning highlights a general challenge when participants are monitored in
real-world settings46. Nevertheless, the size of our data set is comparable and
in some cases even larger than data sets used in similar studies, e.g., 107
participants for 7 days in Antar et al.24, 56 participants for 12 weeks in
Chikersal et al.23, and 27 participants for 405 days in Luo et al.38.

Data labeling
We use metadata collected by the clinicians to derive labels regarding par-
ticipants’MS type, overall disability and fatigue level. These labels were then
assigned to the sensor data of each day.
• PwMS and Healthy Controls: We define the problem of PwMS and

healthy controls recognition as a binary problem. To derive the labels,
we divide theparticipants into two groups, PwMSandhealthy controls,
similar to Schwab et al.28. We label all the sensor data of a participant
with the corresponding group.

• MS Type: We define the problem of MS type recognition as a three-
class classification problem. To derive the labels regardingMS type, we
divide the participants into three groups – no MS, RRMS, and PMS –,
consulting with domain experts. The characterization ofMS into three
groups has also been suggested in the literature24,27. There are very few
participants diagnosedwith SPMSandPPMS, for this reason,we group
people with SPMS and PPMS in PMS. Indeed in the MS population,
RRMS is themost common subtype is RRMS (85%) and only very few
are diagnosed with PMS (15%)24,47. Thus, most of the participants in
our dataset hadRRMS (32) and a fewPMS (9), the remaining (19)were
19 healthy controls.

• Disability Level: We set up the problem of disease disability level
recognition as a regression problem. We derive the MS disability label
from the EDSS questionnaire.We assign a 0 EDSS score to the healthy
controls.

• Fatigue Level: We define the problem of fatigue recognition as a
regression task and we label the sensor data of participants using the
answers to the FSMC questionnaire. We assign a 0 FSMC score to the
healthy controls.

Feature extraction
Existing measurement methods for fatigue, which is one of the main
symptoms of MS, can be grouped in subjective, performance-based, sleep
routine, behavioral and physiological48. Following this categorization, we

extract 74 features from thewearable and smartphone data, whichwe divide
into four categories and investigate their capability to recognize MS type,
disability, and fatigue level. Table 6 presents a detailed overview of the
relationship of each feature to MS disease and presents the theoretical
foundation of our work. We extracted all the features daily.

Motor performance features. Performance-based measurements con-
sist of conducting tests that assess subjects’ motor and cognitive per-
formance on a task48. These include tests that quantify walking ability,
balance, cognition, and dexterity21. Performance on such tests is then
used to assess, for instance, subjects’ level of fatigue5,49, disability level21

and to distinguish between PwMS and HC28. Barrios et al.5, for example,
propose using tapping frequency as an objective smartphone-based
measure of self-reported motor fatigability. In a follow-up study, the
authors introduced cFAST49, a smartphone-based test that quantifies
cognitive fatigue. Schwab et al.28 use performance-based tests to distin-
guish between people with and without MS. We build upon this work by
further recognizing not only the presence ofMS but also theMS sub-type.
Roy et al.21 suggest using smartphone-based performance measures in
conjunction with demographics data. In this work, we use tapping task-
related features proposed by Barrios et al.5 along with other features to
understand its capability for MS modeling. In particular, we extract the
number of taps for the whole task (count), the average tapping frequency
(tfm), and the difference in the tapping frequency at the beginning and
end of the task (Δtfm). We hypothesize that the tapping features in
combination with passively collected sensor data will play a dis-
criminative role in recognizing disease disability level and fatigue
severity. A limitation of such techniques is however that they require
active input from the user, which might be difficult to obtain over long
periods in free-living settings.

Physiological features. Changes in physiological signals that reflect
brain and cardiac activity have been used to detect symptoms of
PwMS27,33 and other neurodegenerative diseases36. For instance, Escor-
ihuela et al.33 found that increased fatigue is associated with increased
heart rate and reduced heart rate variability. For these reasons, we extract
features fromphysiological signals, whichwe hypothesize to be indicative
of MS outcomes and symptoms. To characterize changes in physiology,
we extracted 42 features from the physiological signals collected with the
wearable device. In particular, we extracted time-domain statistical fea-
tures such as minimum, maximum, mean, standard deviation, and
skewness from HR, ST, BP, and BPW. To preprocess the PPG signal, we

Table 6 | Summary of mobile and wearable sensor data changes for PwMS and healthy controls

Domain Data stream Hypothesis for PwMS and healthy controls Frequency

Physiological Heart Rate (HR) Increased fatigue is associated with increased HR and reduced HRV33. Continuous

Heart Rate Varia-
bility (HRV)

Continuous

Blood Pulse Wave (BPW) Continuous

Blood Perfusion (BP) Continuous

Skin Temperature (ST) Healthy adults have lower skin temperature than people with mild cognitive impairments36. Continuous

Behavioral Physical Activity PwMS have problems with balance and feeling dizzy, which can have knock-on effects on their
walking. PwMS are less physically active than healthy controls35.

Continuous

Steps People’s activity influences MS symptoms (e.g., fatigue), which in turn impact the MS disability level54. Continuous

Phone locks/unlocks These features could reflect smartphone usage, which might inform the ability to concentrate and the
extend of sedentary behavior.

Event-based

Motor performance Tapping Task Decline in performance during a tapping task, or fatigability, has been previously shown as a promising
objective marker of fatigue3.

Daily

Sleep routine Sleep Duration Sleep disturbances are significantly higher in PwMS than in the general population. They may affect
women with MS more than men63.

Daily

Patient Age Age is positively related to disease severity53 and functioning of PwMS. Once

information Gender Females are more prone to MS than males52. Once
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followed procedures suggested in the literature,27,50. In particular, we first
extracted the inter-beat interval (IBI) from the PPG signal. We then
detected and removed artifacts in IBIs and linearly interpolated the
missing data, similar to27. We then segment the data into 5-minute seg-
ments and discard the segments with more than four interpolated IBIs
andwith excessivemovement. From the remaining IBIs, we extracted two
groups of features: time- and frequency-domain. In the time domain, we
derive the standard deviation of the IBI (SDNN), the square root of the
mean squared differences of successive IBI (RMSSD), the number of
interval differences of successive IBI greater than 50 ms (NN50) and 20
ms (NN20) and the proportion derived by dividing NN50 and NN20 by
the total number of IBI (pNN50 and pNN20, respectively). Such features
capture high-frequency variations in heart rate. To obtain the frequency-
domain features, we first apply the Fast Fourier Transform algorithm,
then extract the high frequency (HF) and low frequency (LF) aswell as the
ratio between the two (LF/HF). HF and LF are approximations of para-
sympathetic and sympathetic activity, respectively.

Behavioral features. In healthy controls, behavioral-based methods use
behavioral cues – such as yawning, eye closure, sighing – to detect
fatigue48. In this work, we consider physical activity and the number of
steps as behavioral cues of individuals’MS outcomes and fatigue. This is
because it is expected that PwMSmove less in general to healthy controls.
Dalla et al. 201737 proposed to objectively estimate EDSS using GPS data.
Their results show the GPS measurements had a higher level of agree-
ment with neurologists’ reports (intra-class correlation coefficient of
0.68) rather than patients’ (intra-class correlation coefficient of 0.29)
showing first the capability of passively sensed data to be used for disease
diagnosis. Creagh et al. 202222 used inertial sensor data collected during a
two-minute walking test to predict three levels of participants’ EDSS.
They used a dataset collected with the Floodlight application from 24
healthy controls, 52mildly disabled, and 21moderately disabled patients.
Their results show a correlation between the EDSS score and the inertial
sensor data collected during the test. Building upon these findings, we
investigate whether physical activity-related features could inform the
recognition of not only disease disability level, but also distinguish PwMS
from the control group and recognize the fatigue severity level. To
quantify changes in behavior, we extract features from the physical
activity type and intensity as well as the number of steps. In particular, we
extract time-domain statistical features (e.g., minimum, maximum,
mean, standard deviation, and skewness) from the number of steps and
physical activity intensity. We also compute the total number of steps
per day. In addition, we compute the total number of locks/unlocks that
could inform about the overall interactionwith the phone during the day.

Sleep routine features. Another type of information that could be
indicative of MS symptoms is sleeping behavior, such as sleep and wake-
up patterns, circadian cycle, and work-rest patterns48. We labeled the
sleep and wake events manually by inspecting the movement and HR
data similar to Hilty et al.27. From the sleep and wake-up time, we then
derive the total hours slept and use it as a feature to recognize MS out-
comes and fatigue. A limitation of this technique is that it is based on the
findings on an overall population level, however, sleep needs and patterns
differ among individuals14,48.

Demographics information. Studies have also shown that demographic
information, e.g., age and gender, can be predictive of MS and its
symptoms28,51. This might be because women are three times more at risk
of MS than men52. In addition, age is positively related to disease
severity53. Therefore, we consider gender and age as additional infor-
mation and use them as features of the model.

Patient health information. Research has shown that MS conditions
(e.g., MS type) influence symptom changes and the overall functional
ability (the inverse of disability) of PwMS24,53,54. Thus, we used the MS

type (e.g., none, RRMS and PPMS/SPMS) as a feature to predict the
disease disability level (EDSS) and fatigue level (FSMC).

Classification & regression
To investigate whether MS type, disability, severity, and fatigue could be
linked to physiological and behavioral data collected from smartphones and
wearable sensors, we train machine learning classifiers and regressors on
different groups of features. We implement our approach using machine
learning classifiers and regressors that allow the interpretation of the
model’s predictions. Although representation-based learning techniques
that directly model a task from raw time series are increasingly being
employed in the medical domain, interpretability of the findings, model
diagnostics and complexity remain largely unsolved issues55. We also
implement a simple version of deep neural networks and compare its results
with the other classifiers.

Given a number of feature groups fi where i∈ {0, 1, 2, 3, 4}, a one-hot
encoded representation of participants’ gender g∈ {0, 1} and a scalar value
representing participants’ age a∈N, our goal is to train a predictivemodelP
that produces a score y that indicates the likelihood of the given set of
features belonging to 1) a participant with or without MS (y∈ {0, 1}), 2) a
participant without MS, or with RRMS or PMS (y∈ {0, 1, 2}), 3) partici-
pant’s disability level (y∈ [0, 6]), and 4) participant’s overall fatigue
level (y∈ [20, 97]).

As predictive model P, we explore logistic regression or linear regres-
sion (LR), random forests (RF)56, extreme gradient boosting (XGB)57 and
fully connected neural network (FCNN)58. We initialize the classifiers and
regressors using the default parameters of the sklearn Python library. To
account for class imbalance for classification tasks, in the training set, we
applied the random undersampling (RUS) algorithm59. Additionally, we
scaled the features using the minimum-maximum scaler, as a common
procedure in machine learning58.

Evaluation. To evaluate our approach, we use common validation
techniques, metrics, and baselines described as follows.

Evaluation procedure. We use stratified group 5-fold cross-valida-
tion (SG5FCV) to evaluate the performance of our approach for each
task. This technique splits the dataset into five folds of approximately
equal size, each set containing only the data of a group of subjects while
trying to preserve the ratio of different labels in each split. It uses four
folds as the train set and the remaining fold as a test set. The split was
stratified by preserving the number of samples for each class (e.g., MS
type) and grouped by participants to ensure that the data of the same
participant is not present both in the train and test sets simultaneously.
This technique ensures that each group will appear exactly once in the
test set across all the folds, which allows for testing the generalizability
of our approach to new users. SG5FCV has also been used in the lit-
erature for similar problems22,23.

Evaluation metrics. To test the ability of the classifiers to distinguish
between healthy controls and PwMS as well as to recognize theMS type, we
report the weighted F1-score, which is the harmonic mean of precision and
recall58. To evaluate the ability of regressors to predict the disease disability
and fatigue levels, we use the mean absolute error (MAE) metric, which is
the average absolute difference between the actual and the predicted scores.
We compute the above metrics in the left-out fold and aggregate the results
across the folds.

Baselines. To compare the performance of machine learning clas-
sifiers, we implement three baselines including a random guess (RG),
and a biased randomguess (BRG). RG, irrespective of the input, classifies
each data sample as either a positive or negative class uniformly at
random. BRG always predicts a constant label for the test data according
to the majority class in the training set. In addition, we compare the
performance of single data groups (e.g., physiological, behavioral) and
their combination to understand the impact of each of the considered
groups and their combination. For regression tasks, we use two base-
lines, random, which randomly generate a value from the distribution of
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disability and fatigue levels and regard it as a predicted value, and
average, which always predicts the average disability or fatigue score. For
both classification and regression tasks, we used a demographics base-
line, which uses only demographic data such as age and gender as input
to the model.

Statistical analysis
To evaluate the technical validity of the dataset, we investigated the rela-
tionship between physiological signals collected with wearable devices. We
computed the Pearson product-moment correlation when the data samples
conformed to a Gaussian distribution and Spearman’s rank correlation
otherwise, as a common procedure in the literature60. To verify whether the
data conforms to a Gaussian distribution, we used the Shapiro-Wilk test61.
We compare the p-values against the corrected threshold of p = 0.001, to
account for the Bonferroni correction for multiple comparisons62. We then
investigated the difference in the distribution of sensor data for each
population type (e.g., PwMS and healthy controls) using the Mann-
Whitney U statistical test. This test is commonly used for independent and
non-parametric samples as is the case in our dataset. To evaluate test-retest
reliability, we aggregated the features derived from mobile and wearable
devices on a daily (up to 14 values per participant) and weekly (two values
per participant) basis. We then derived the intraclass correlation coefficient
(ICC) of each feature. ICC values range from 0 to 1, with 0 being the lowest
reliability and 1 being the highest reliability. We considered reliable the
features with an ICC more than or equal to 0.6, similar to Woelfle et al.31.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The de-identified data is available for download at https://zenodo.org/
records/10497826.

Code availability
The data analysis was carried out in Python using open-source libraries,
such as TensorFlow (https://github.com/tensorflow) and scikit-learn
(https://scikit-learn.org).
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