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Abstract

Reflective photoplethysmography (PPG) has become the default sensing technique
in wearable devices to monitor cardiac activity via a person’s heart rate (HR).
However, PPG-based HR estimates can be substantially impacted by factors such
as the wearer’s activities, sensor placement and resulting motion artifacts, as well
as environmental characteristics such as temperature and ambient light. These and
other factors can significantly impact and decrease HR prediction reliability.
In this paper, we show that state-of-the-art HR estimation methods struggle when
processing representative data from everyday activities in outdoor environments,
likely because they rely on existing datasets that captured controlled conditions.
We introduce a novel multimodal dataset and benchmark results for continuous
PPG recordings during outdoor activities from 16 participants over 13.5 hours,
captured from four wearable sensors, each worn at a different location on the body,
totaling 216 hours. Our recordings include accelerometer, temperature, and altitude
data, as well as a synchronized Lead I-based electrocardiogram for ground-truth
HR references. Participants completed a round trip from Zurich to Jungfraujoch, a
tall mountain in Switzerland over the course of one day. The trip included outdoor
and indoor activities such as walking, hiking, stair climbing, eating, drinking, and
resting at various temperatures and altitudes (up to 3,571 m above sea level) as
well as using cars, trains, cable cars, and lifts for transport—all of which impacted
participants’ physiological dynamics. We also present a novel method that estimates
HR values more robustly in such real-world scenarios than existing baselines.
Dataset & code for HR estimation: https://siplab.org/projects/WildPPG

1 Introduction

Today’s wearable devices such as smartwatches and fitness trackers commonly monitor a person’s
cardiac health by continuously assessing their heart rate (HR). For estimating this metric, wearable
devices predominantly use reflective photoplethysmography (PPG), which has become ubiquitous
during ambulatory assessments due to its non-invasive nature and ease of use [1]. The HR mea-
surements devices obtained from real-life conditions can supplement health assessments including
exercise intensity, stress, fatigue, or sleep quality [2–4].

However, obtaining reliable HR estimations from PPG signals in real-world conditions and during
real-world activities is challenging. Several external factors negatively impact accurate estimation,
such as motion artifacts [5] that arise from a person’s movements and performed activities [6, 7],
sensor misplacement [8] or slippage during wear, and environmental conditions that change over
time such as low temperatures [9] or high levels of ambient light [10]. Basic implementations of
HR detection have been validated on comparably clean reference datasets, which do not adequately
represent the variability and noise introduced by everyday activities and conditions. Even for simple
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Figure 1: WildPPG comprises multi-modal signals from wearable devices at four sites on the body.
Each device continuously recorded synchronized signals from a 3-channel reflective photoplethysmo-
gram (red, green, infrared PPG), 3-axis inertial sensor (accelerometer), temperature, and barometric
altitude sensor. For reference, the sternum device continuously recorded a Lead-I electrocardiogram
(ECG) from body-mounted gel electrodes to provide ground-truth heart rate (HR) estimates.

activities such as walking and running [11], recent studies have provided evidence for the resulting
detrimental effects on signal quality and, thus, the performance of HR tracking implementations.

To combat the effects of motions and activity on HR detection, prior work has proposed data-driven
methods that learn to recover meaningful estimates under noisy conditions, including supervised
methods [12–15], and rule-based techniques [5, 16–19]. While these and other methods estimate HR
with high accuracy, their robustness to real-world effects is limited by the diversity of the datasets
they were trained on. Because existing datasets were dominantly captured in controlled conditions,
they may not adequately represent the noisy nature under which today’s wearables obtain PPG
measurements in daily life and “in the wild.”

In this paper, we introduce WildPPG, a novel dataset of reflective PPG measurements from four
locations across the wearer’s body and reference recordings from an electrode-based Lead-I electro-
cardiogram (ECG) for HR estimation tasks from everyday activity outside controlled environments.
Our dataset comprises continuous and synchronized recordings from 16 participants with an av-
erage duration of 13.5 hours during a round-trip to a tall mountain in Europe, including various
daytime activities and modes of transport. As shown in Figure 1, our dataset additionally includes the
continuous measurements from a 3-axis inertial sensor (accelerometer), barometric altitude sensor,
and temperature sensor. Our data collection simultaneously recorded all these signals from four
devices across the wearer’s body (wrist, ankle, sternum, head), totaling 216 hours of synchronized
multi-modal recordings that can enable a wide variety of future analyses.

We also contribute the implementation of multiple baseline methods for HR estimation and evaluate
them on our dataset to identify weaknesses. Based on our analysis, we introduce a learning-based
method that takes temperature as input in addition to the raw PPG signal and show that its temperature
awareness allows it to produce more robust HR estimates.

Collectively, we make the following contributions in this dataset paper:

• a multi-modal real-world dataset of continuous, noisy, and synchronized PPG signals (raw red,
green, infrared) from 4 body locations (forehead, sternum, wrist, ankle) and ECG recordings for
reference, continuously collected from 16 participants over an average duration of 13.5 hours
(minimum duration: 12.3 hours),

• a data collection study that covered everyday outdoor activities outside controlled (laboratory)
conditions: During collection, participants completed a round-trip to a mountain station at over
3500 meters above sea level using various modes of transportation (car, train, cable car, elevator)
and engaging in various outdoor and indoor activities (walking, hiking, stair climbing, eating,
drinking, social interactions, restroom breaks, and resting in varying conditions), including
environmental conditions of low and medium temperatures and various degrees of solar radiation,

• an accuracy analysis of baseline methods that estimate HR on WildPPG based on environmental
characteristics. We also contribute a learning-based method for HR estimation that takes a raw
PPG signal and temperature as input and show that it produces more robust estimates, and
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• additionally recorded and synchronized modalities in our dataset as the basis for future algorithm
developments, including 3-axis inertial measurements (accelerometer), barometric altitude, and
temperature data from each of the 4 body locations (some exposed, some covered by clothing).

2 Related Work

2.1 PPG Datasets

Monitoring the cardiac activity of people using blood volume pulse signals, i.e., photoplethysmog-
raphy, has a long history in continuous mobile health monitoring [26]. Robust HR estimation in
real-world situations remains challenging due to the noisy nature of the PPG signals [5]. In order to
develop, evaluate, and compare novel approaches, publicly available datasets are essential. However,
existing public datasets are limited in terms of data size and applicability to wearable devices in
real-world scenarios. For example the IEEE Signal Processing Challenge (SPC) 2015 dataset [16],
includes 5-minute PPG recordings from 12 participants while the participants were controlled in the
lab environments. This dataset is divided into two sets: a set with less motion artifacts from 12 partic-
ipants (IEEE SPC12) and a set with heavy motions from 10 participants (IEEE SPC10). The BAMI
dataset [22] was collected from 24 participants and includes resting, walking, and running activities.
The experiments consisted of 2 minutes of walking as a warm-up, 3 minutes of running, 2 minutes
of walking, 3 minutes of running, and 2 minutes of walking to cool down, all on a treadmill inside
lab environments where even the speed was controlled (6.0 to 7.0 km/h). Similarly, the PPGMotion
dataset contains walking, running, and cycling activities of 8 participants with an average recording
duration of 17 minutes [25]. Meanwhile, the WESAD dataset [16] consists of approximately 1.6
hours of recordings for each of its 15 participants while they were seated and/or standing in a lab
environment. It does not contain any physical activities but includes stress and amusement stimuli as
well as meditation. All aforementioned datasets were recorded in controlled indoor conditions.

To record data that is more representative of real-world conditions, i.e., outside of lab environments,
the DaLiA dataset [7] includes not only indoor but also outdoor activities such as cycling, walking,
and driving. It contains recordings of 15 participants with a total of 26 hours of PPG data. Although
this dataset is the largest among existing datasets, it is approximately eight times smaller than our
presented dataset. Moreover, while the activities in DaLiA are controlled outside of lab environments,
our experiments were conducted in completely free-living conditions, offering a more realistic
representation of everyday activities. In other words, our dataset was collected "in the wild" —
participants were not controlled and were free to move or engage in activities of their choice (within
the framework of the experimental protocol) outside of the lab environment. It includes 216 hours of
data, making it the largest dataset of its kind while including signals from multiple body locations
with multiple wavelengths. Moreover, it is multi-modal. Covering the varying altitude-temperature
changes, ensuring comprehensive and complete coverage of real-life conditions. Table 1 qualitatively
compares WildPPG with the existing PPG datasets.

Table 1: Qualitative comparison of WildPPG with previous datasets for HR estimation.

Dataset
(year)

Collection
methodology

Hours
(total)

Body-worn
locations *

Wavelengths
(PPG)

Multi-
modal

In-the-wild**

dataset
Altitude/Temperature

changes

Ours (2024) In the wild 216
{Head, Chest,

{Red, Green, Infra} ✔ ✔ ✔
Wrist, Ankle}

Ear-PPG [20] (2023) Very controlled 17 {Ear} {Red, Green, Infra} ✔ ✖ ✖

Welltory [21] (2021) Very controlled 1 {Wrist} {Red, Green, Blue} ✖ ✖ ✖

DaLiA [7] (2019) Controlled 36 {Wrist} {Green} ✔ ✔ ✖

BAMI [22] (2019) Very controlled 10 {Wrist} {Red, Green, Infra} ✖ ✖ ✖

WESAD [23] (2018) Controlled 25 {Finger} {Green} ✔ ✖ ✖

BIDMC [24] (2017) Very controlled 7 {Wrist} — ✖ ✖ ✖

PPGMotion [25] (2017) Very controlled 1.5 {Wrist} {Green} ✖ ✖ ✖

IEEE SPC [16] (2015) Very controlled 2 {Wrist} {Red, Green} ✖ ✖ ✖

* Body-worn locations refer to the sites on the body where PPG signals are measured.
** In-the-wild recording is defined if the data were collected outside of (controlled) lab environments.

3



minivan train

cable car transitions

exhibition ice cave 100m elevator relaxing

lunch outdoor walk platform exercise

minivan train

cable car transitions

travel 4 hours indoor & outdoor activities 5 hours travel 4 hours

Figure 2: WildPPG participants engaged in multiple forms of travel as well as indoor and outdoor
activities with changing environmental conditions. No strict study protocol was enforced and
participants completed the activities at their own preferred speed.

2.2 HR estimation methods

Numerous efforts have investigated HR estimation from wearable devices using PPG signals during
everyday motion and activity [18,27–29], given its crucial role in mobile health monitoring [3]. Most
of these studies employed Fourier transformation to observe how the frequency changes over time for
estimating HR value [5,27,30]. While this approach works for less contaminated PPG signals, motion
artifacts hinder the measurement of heart rate in spectral density. As a result, many approaches have
been proposed to obtain the heart rate using the power spectral densities of PPG and accelerometer
signals to differentiate the frequency of heartbeats from motion artifacts [14, 19, 27, 31, 32]. However,
if the dominant frequencies in accelerometer signals overlap with the true heart rate, it becomes
challenging to distinguish signals in the frequency domain [33]. In our previous work, we have shown
that the combination of PPG signals from multiple body locations [17, 34] and the use of multiple
PPG signals recorded at different wavelengths [13, 35] improves HR estimations, though motion
artifacts often manifest across body locations and affect all PPG sensors. Our previous method
BeliefPPG thus explicitly models uncertainties associated with PPG and IMU readings as well as
estimated HR distribution, incorporating the statistical distribution of HR changes to refine estimates
in a temporal context [36].

To enhance estimations based solely on PPG signals, recent works have proposed deep learning-based
approaches [37, 38]. However, these models lack information about the degree of motion artifacts
(MAs), leading to significant errors in heart rate estimation when inputs deviate from the training data
distributions [31]. Even methods that combine input from a PPG sensor and an accelerometer struggle
to learn the intricate relationship between motion artifacts and blood volume flow signals, resulting in
unreliable heart rate predictions [18]. Thus, to address the limitations of existing PPG-based heart rate
estimation methods, we introduce WildPPG which includes temperature as an additional modality
alongside PPG recordings, resulting in improved heart rate estimation accuracy.

3 WildPPG Dataset

The purpose of WildPPG is to enable the development of more reliable PPG-based algorithms that
improve the robustness of estimating HR as well as potential other cardiovascular metrics that are of
interest on wearable devices such as smartwatches or fitness trackers. Our data recording methodology
was designed to capture real-world data under less-than-optimal conditions during representative
outdoor activities and everyday conditions. To achieve this, WildPPG contains long and uninterrupted
recordings that our apparatus recorded from participants outside controlled environments or proce-
dures. While our primary focus was on recording the signals crucial for HR estimation—PPG time
series from a reflective green light-based sensing design across multiple body locations as well as
chest ECG-based cardiac activity measurements for reference—our apparatus additionally recorded
motion data from an inertial measurement unit at each body site, supplementary PPG signals from
red and infrared reflections, as well as temperature readings and barometric altitude measurements
throughout the recording for each participant.

Table 1 qualitatively compares our dataset’s characteristics with commonly used datasets for HR
prediction from blood volume pulse signals. We specifically focus on comparing our dataset with
those collected under conditions similar to real-world conditions, where participants moved freely.
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BIDMC is an exception, as it was collected with critically ill adults (a subset of the MIMIC-II dataset),
and we include it because of its use in learning-based HR prediction in previous work (e.g., [12]). As
shown in Table 1, our dataset is ∼ 8× bigger than existing datasets for HR prediction and includes
multi-modal data collected under real-world conditions. Below, we detail the experimental protocol
and the design of our data capture apparatus for WildPPG.

3.1 Dataset Design

3.1.1 Experimental Protocol

Participants gathered in the morning to start the study. An experimenter outfitted each participant
with four recording devices and ensured PPG and ECG signal quality (20 min). The participants then
took a minivan from Zurich to Grindelwald (140 min) and transitioned to a cable car and train to
Jungfraujoch railway station at 3460 m above sea level (80 min). Subsequently, they spent 5 hours
in public places in and around the station and engaged in various activities. While the stay at the
station included the same main activities for all participants, no strict study protocol was enforced in
an effort to capture real-world data while participants completed the activities at their own speed of
preference. Participants were encouraged to not constrain themselves due to the study protocol and
engage in social interactions, take pictures, buy and consume snacks and beverages, take restroom
breaks as needed, or sit down throughout the stay.

As shown in Figure 2, the main activities included walking through the museum and exhibition area
including an ice cave with below-freezing temperatures (≈ 60 min), taking a 110-meter-high elevator
and walking the remaining stairs up to the observatory and outside viewing platform (≈ 60 min),
sitting down for lunch (≈ 60 min), walking through the snow-covered outside area (≈ 60 min), and
resting inside (≈ 60 min). Spread out throughout the stay at Jungfraujoch, the participants additionally
climbed and descended a set of stairs across four floors at maximum endurable pace on three to four
occasions. After the stay at the station, participants took the train and cable car back to Grindelwald
(80 min) and returned to Zurich on the minivan (140 min). Upon arrival, the experimenter removed
the recording devices from each participant. Throughout the study, participants were instructed to
remove the device on the wrist when washing their hands. All other devices were worn continuously.

3.1.2 Sensors

The signals collected in WildPPG were acquired using miniaturized, custom-built low-power wearable
devices. As shown in Fig. 3, the devices are encased in a 3D-printed body and have an adjustable,
stretchable strap with which they were attached at the forehead, sternum, ankle (supramalleolar),
and wrist (dorsal). PPG measurements were obtained using an optical analog front-end at 128 Hz
(MAX86141, Analog Devices) that connected to an optical module (SFH7072, ams-OSRAM) with a
green (530 nm), a red (660 nm), and an infrared (950 nm) LED as well as a broadband photodiode
(410 – 1100 nm), and an infrared-cut photodiode (402 – 694 nm). Green and red PPG were acquired
in combination with the infrared-cut photodiode and infrared PPG with the broadband photodiode.
Accelerometer data was acquired at a sampling rate of 200 Hz using a MEMS digital motion sensor
(LIS2DH, STMicroelectronics). For ground truth, the sternum device additionally collected the
Lead I ECG at 128 Hz through a biopotential sensor (MAX30003, Analog Devices) that connected to
gel electrodes placed on the chest. Temperature and barometric altitude measurements were collected
at a sampling rate of 10 Hz within the device (BME280, Bosch Sensortec).

Raw sensor data was continuously read from the sensors’ FIFOs in batches by a System-on-a-Chip
(DA14695, Dialog Semi), timestamped, stored in NAND memory (TH58CYG3S0HRAIJ, Kioxia
Corp.), and downloaded after the recording was completed. Checksums were used to guarantee
correct data download. Each device was powered by a CR2032 coin cell battery.

3.1.3 Synchronization

Since proper synchronization between sensors and devices is critical for this dataset, we collected
the measurements “as synchronized as possible” on an electronics level and ensured proper trace
alignment beyond the timing tolerances of the sensors. The most important measurements for this
dataset, PPG and ECG, were triggered by an external clock derived from the real-time clock (RTC)
of the System-on-a-Chip and thus perfectly synchronized with the system time of the device. This
reduced the sample rate tolerance from ±2% of the internal sensor clock [39] by a factor of 100 to the
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Figure 3: The wearable devices used for the data recording were custom-built and are centered around
a SoC to read and store all synchronized sensor data in on-board flash memory. (a) Devices were
powered by a CR2032 coin cell batteries (runtime: 18 hours) inside a 3D-printed case with (b) a
flexible and adjustable strap. (c) The sternum unit additionally connected to 3 gel-electrodes to obtain
a continuous ECG recording for reference.

tolerance of the used quartz (ECS-.327-7-16-C-TR, ECS Inc., ±20ppm tolerance [40]). Temperature
and barometric pressure measurements were triggered based on the same RTC and therefore also
perfectly synchronized to the PPG and ECG measurements. The accelerometer sampled based
on its own internal clock. Deviations in sampling rate due to clock tolerances were corrected in
post-processing based on the RTC timestamps of the FIFO readouts of the sensor.

This setup guarantees synchronization for the different sensing modalities acquired by a single device.
However, measurements across devices are still participant to clock skew and drift effects – most
notably when comparing PPG measurements from the wrist, ankle, and head devices with ground
truth ECG measurements acquired on the chest. With the given quartz tolerance, although low, two
devices may experience sampling shifts of up to 2 seconds across a 14-hour continuous recording
session. Therefore, sensor data across devices was synchronized by aligning recorded signals offline
following the approach described by Meier and Holz (33 ms accuracy) [41].

3.2 Recruitment and Recording

WildPPG’s participants were 16 healthy adults, recruited on a voluntary basis without compensation
beyond the coverage of all expenses incurred throughout the recording of the data and the visit of
the mountain station. 7 female and 9 male participants took part, with ages ranging between 22
and 69 (mean age: 39). All participants’ skin tones were within 1–3 on the Fitzpatrick scale [42].
All participants signed a consent form prior to participation. The experimenters conducted the data
collection with groups of 3–5 participants, and the protocol was identical for all participant groups.

At the beginning of the recording, participants were introduced to the experimental protocol and the
goal of the study. An experimenter was always with the participants throughout the recording. The
recording devices worked without requiring user input, operating in a completely passive manner.
The apparatus provided no feedback of any sort to participants either.

3.2.1 Risks

Participants were informed about the risk of developing symptoms of Acute Mountain Sickness
(AMS) during the visit to Jungfraujoch station due to its altitude. Trains leaving to lower altitudes
were available every 30 minutes in case a participant was feeling unwell. Additionally, a professional
first aid station is available at Jungfraujoch alongside trained personnel and medical assistance if
needed. The study protocol and risk assessment were approved by the ethics committee of ETH
Zürich (EK 2022-N-44).
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Table 2: The synchronized time series captured in WildPPG.

Time Series Description depth fps head sternum wrist ankle[bits] [Hz]

ppg_g Green PPG 19 128 × × × ×
ppg_ir Infrared PPG 19 128 × × × ×
ppg_r Red PPG 19 128 × × × ×
ecg Lead I ECG 18 128 ×
accel_x Accelerometer X-axis 10 128 × × × ×
accel_y Accelerometer Y-axis 10 128 × × × ×
accel_z Accelerometer Z-axis 10 128 × × × ×
altitude Barometric altitude 23 0.5 × × × ×
temp Temperature (inside case) 16 0.5 × × × ×

3.3 Dataset Composition

Participants’ recordings are limited to the time they actually wore the sensor devices. PPG and ECG
recordings are available as continuous recordings of raw sensor data. Accelerometer recordings were
downsampled and synchronized to match the 128 Hz of the PPG and ECG signals. Device temperature
measurements were averaged with an 8-second sliding window (2-second step size). The conversion
from barometric pressure measurements to altitude above sea level was calculated following the
conversion formula in the sensor’s datasheet and a normed barometric pressure measurement from
the same day acquired by a weather station at Jungfraujoch station run by the Swiss Federal Office
of Meteorology and Climatology [43]. Barometric altitude measurements were averaged across all
4 devices worn by a participant and averaged with an 8-second sliding window and 2-second step size.
Overall, WildPPG contains 216 hours of synchronized recordings. Accounting for the four separate
device locations, this corresponds to 864 hours of PPG recordings at 3 different wavelengths. An
overview of all captured data is shown in Table 2.

3.3.1 Ground Truth

As manual annotation of a dataset of this size is impractical and unreliable, the dataset contains Lead
I-based ECG recordings for ground truth reference. For baseline analysis, we detected R-peaks in
the ECG signal, using Pan-Tompkins [44]. To reduce the risk of corrupt ground truth values, peaks
with inter-beat intervals (IBI) corresponding to HR values greater than 185 bpm or less than 35 bpm
were removed, and for HR calculation, only IBIs that were part of a sequence of 4 IBIs for which
IBImin/IBImax < 0.75 were considered. In data windows with less than two remaining IBI, no
ground truth HR is computed and the window is omitted from baseline methods. Across the whole
dataset, this applies to 2640 8-second windows (2.7% of total) mainly due to three participants with
partially noisy ECG recordings which are responsible for 2164 of the rejected windows.

4 Baselines

We computed 6 heuristic and 5 supervised baseline algorithms as well as our own method on WildPPG.
To improve comparability, all baselines were computed on data recorded by wrist-worn devices.
All results are shown in Table 3 and the methods are described in more detail in the following two
subsections.

4.1 Heuristic Methods

MSPTD is a peak detection method suited for PPG signals that computes a local maxima scalogram
(LMS), a matrix that contains information about local maxima computed at different scales by
comparing samples to neighbors at varying distances in the signal. The concept was first published
by Scholkmann et al [45] and expanded upon by Bishop and Ercole by combining maxima detection
with minima detection and improvements in algorithm efficiency [46]. The algorithm does not require
any parameter tuning and works for any periodic or quasi-periodic signal. qppg is another peak
detection algorithm built specifically for PPG signals and works by integrating the positive slope
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between diastolic and systolic points in the signal. Peaks are detected using adaptive thresholding [47].
HeartPy detects peaks in the PPG signal where it crosses its own moving average plus a variable
offset. Multiple such offsets are dynamically tested and the one chosen which produces the most
regularly spaced detected beats [48]. PWD is another PPG-specific method that relies on the detection
of beats based on zero-crossings in the first derivative of the signal [49]. MSPTD, HeartPy, qppg,
and PWD methods were computed using the MATLAB implementation by Charlton et al. which is
released under GPL-3.0 open-source license [50]. We also included traditional Fourier transformation
and autocorrelation functions, where both are used to detect periodicity [51].

4.2 Supervised Methods

For each supervised baseline, we follow the original implementation of the architectures. Additionally,
we search for the best hyperparameters (learning rate and its scheduler, batch size, weight decay).
Specifically, we compared our method with 1D ResNet [52] which is a modified version of ResNet
architecture [53] for time series with 1D filters. DCL [54] is a widely used network that combines
convolutional and long-short-term memory units for HR prediction from PPG signals [54, 55]. Fully
convolutional neural networks (FCN) which only include convolutional blocks with ReLU non-
linearities. LSTM [56] model which is designed to capture temporal dependencies in time series data
through its memory cell architecture. Transformer [57] is a widely adopted deep learning model that
employs self-attention mechanisms to capture long-range dependencies.

4.2.1 Proposed Method: Temp-ResNet

Considering the relation between the temperature of the measurement site and the SNR of PPG signals,
we modified the 1D ResNet model by incorporating a small branch that inputs the temperature value
of the segment to the overall architecture for HR estimation. Specifically, we use a multilayer percep-
tron with one hidden layer to obtain the representation for temperature ztemp = W(2)σ(W(1)xtemp)
where σ and xtemp are a ReLU nonlinearity and temperature value of the specific segment, re-
spectively. The weight matrices W(1) and W(2) are learnable parameters of the MLP, responsible
for mapping the input temperature value to a higher-dimensional space. Initially, the temperature
value xtemp is expanded to a 5-dimensional vector through the first layer, W(1) ∈ R5×1. This
5-dimensional representation is then further expanded to a 10-dimensional vector by the second
layer, W(2) ∈ R5×10. Then, the obtained representation is concatenated with the extracted PPG

Table 3: Performance comparison of baselines with prior works in datasets

Method WildPPG SPC12* DaLiA

MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑

Heuristic
FFT 17.62 28.68 12.11 14.83 25.81 35.15 34.98 47.13 2.72
Autocorrelation 28.43 35.23 -3.06 41.16 49.81 3.945 30.59 39.09 9.18
HeartPy 18.49 30.15 14.7 19.89 24.81 20.19 12.25 18.15 74.97
MSPTD 13.30 21.19 21.37 20.35 25.31 18.22 17.20 25.11 53.95
PWD 11.72 19.57 25.19 21.16 26.32 18.75 28.26 37.48 29.51
qppgfast 19.32 29.94 21.27 17.97 21.99 32.72 13.31 20.35 66.58

Self-supervised
SimCLR 15.75±1.81 19.81±1.17 8.12±2.51 12.42±0.05 20.96±0.30 60.41±0.52 12.01±0.14 19.46±0.14 58.31±0.39
NNCLR 14.46±0.13 18.43±0.05 11.54±0.56 13.14±0.49 18.86±0.49 69.82±0.06 12.94±0.31 20.02±0.49 51.12±2.54
BYOL 14.11±0.12 18.42±0.15 12.50±0.50 18.71±0.93 25.01±1.50 48.82±4.36 11.67±0.32 17.57±0.23 63.96±0.97
TS-TCC 12.64±0.03 17.72±0.04 18.71±0.41 11.56±0.41 18.04±0.66 68.38±1.41 8.12±0.30 14.89±0.21 67.13±0.53
TS2Vec 10.55±0.37 16.52±0.39 26.31±0.25 9.75±0.08 17.82±0.43 75.43±0.33 10.83±0.13 17.89±0.19 60.10±0.62
VICReg 15.37±0.60 19.20±0.33 9.30±1.57 13.17±0.82 20.38±1.27 59.76±4.16 14.90±0.16 21.94±0.11 45.38±0.07
Barlow Twins 16.14±0.92 20.21±0.90 9.13±1.20 13.22±0.34 20.42±0.88 64.51±4.01 18.26±0.57 23.41±0.29 23.42±7.30

Unsupervised
UPD 23.12±1.10 25.10±0.56 7.39±1.83 9.30±0.10 16.50±0.20 77.60±0.43 27.41±4.73 31.26±4.55 18.12±3.86

Supervised
1D ResNet 8.62±0.06 15.00±0.06 42.41±0.24 5.50±0.29 11.16±0.64 84.86±0.51 4.47±0.03 10.03±0.10 85.87±0.25
DCL 8.64±0.01 14.73±0.05 41.39±0.11 16.50±1.42 21.61±1.56 19.90±1.10 26.34±1.10 25.53±4.2 80.57±0.09
FCN 9.79±0.23 15.62±0.26 35.68±0.94 27.55±0.55 31.18±0.81 40.41±1.81 6.55±0.28 11.24±0.32 83.21±0.04
LSTM 9.28±0.22 15.14±0.11 36.96±1.21 18.66±3.49 25.02±3.45 56.23±4.84 5.30±0.05 11.10±0.15 78.99±0.44
Transformer 10.06±0.16 16.23±0.20 32.07±1.60 22.00±0.23 27.30±0.29 52.86±0.10 7.84±0.11 15.06±0.17 68.62±0.53
Temp-ResNet 8.37±0.02 14.72±0.01 45.50±0.14 — — — 4.40±0.02 9.87±0.11 85.90±0.17

* The dataset has no temperature value from the measurement site.
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Figure 4: Architecture of Temp-ResNet. The ResNet includes batch normalization and ReLU
activations after each convolution.

representations and fed to the final linear layer for HR estimation. The architecture of Temp-ResNet
is shown in Figure 4.

5 Limitations

Regarding skin pigmentation, all participants were within 1–3 on the Fitzpatrick scale, and no
participants rated themselves 4–6 (darker skin tones). Considering the more challenging nature of
PPG measurements among people with darker skin tones [58,59], it will be important to broaden data
collection in future efforts. More generally, including 16 participants is a limitation of our dataset,
and including more would allow covering as many participant-specific effects as possible. Lastly, as
described in Section 3.3.1, 2.7% of the total dataset is affected by noisy ground truth measurements.

6 Ethical Considerations

Working with real-world physiological and activity data from humans requires ethical considerations.
All participants were informed regarding safety and privacy both verbally and in writing. They signed
a consent form that they received prior to the study for careful reading. No personal information is
released with the dataset, the data is fully anonymous and does not contain personally identifiable
information or offensive content. To the best of our knowledge, no potential harm or malicious use is
possible using the WildPPG dataset and the provided methods. The study was approved by the ethics
committee of ETH Zürich.

7 Conclusion

We have presented WildPPG, a real-world dataset of long and continuous multimodal motion and
physiology recordings for PPG-based HR analysis. Our experimental protocol included a wide
variety of activities and environmental conditions including indoor and outdoor activities at different
ambient temperatures, altitude levels, and light conditions. Participants moved, acted, and interacted
naturally throughout the day and recording without being bound to a strict study procedure—for
the purpose of capturing representative data that resembles the measurements taken by wearable
devices in everyday use. Besides PPG measurements at the three common red, green, and infrared
wavelengths and ECG ground-truth references, WildPPG includes acceleration, temperature, and
barometric altitude measurements to suit a wide range of analysis methods and tasks. Our study
recorded and synchronized measurements from multiple body locations to support exploring future
estimation techniques that exceed the analysis of signals from wrist-worn devices most common on
smartwatches today and to capture cardiac activity more holistically and robustly in the future.

To the best of our knowledge, WildPPG is the largest available dataset of its kind and can enable
learning pipelines that benefit from longer time series during training, additional modalities, and
real-world data (“in the wild”). Beyond the dataset, WildPPG includes a range of baseline algorithms—
heuristic as well as supervised—and our novel method that leverages temperature readings for
improved HR estimation. These methods can serve as a starting point for future work and benchmarks
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and our intention is to enable future work to better tailor methods to real-world situations and
applications in less-than-optimal conditions. This could include multi-modal processing or analyses
of additional cardiovascular metrics that are of interest in wearable devices.
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spent on participant compensation? [Yes] 3.2
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Appendix

A Dataset Accessibility

We provide WildPPG time series in the MATLAB .mat file format. Code is provided in Matlab .m
file format and Python .py source code. The python source code contains functions to load the .mat
files into equivalent python structures. All data, code, and the project website are hosted on ETH
Zurich servers with long-running maintenance intended for long-term availability. The dataset uses a
Creative Commons CC BY-NC-SA 4.0 license [60] while the code is released under GPL-3 [61].

B Experimental Settings

This section provides more details on the implementations of the learning-based baseline methods
and the dataset we tested them on.

B.1 Datasets

The datasets used in this study are both widely employed in related work about HR estimation from
PPG signals.

IEEE SPC This competition provided a training dataset of 12 participants (SPC12) and a test
dataset of 10 participants [5]. The IEEE SPC dataset overall has 22 recordings of 22 participants
(ages 18 – 58) performing three different activities. Each recording contains data sampled at 125 Hz
from a 3-axis accelerometer and 2-channel pulse oximeter sensor (green LEDs). All these recordings
were captured from the wearable device placed on the wrist of each individual. Additionally, a chest
ECG provides ground-truth HR estimation. During our experiments, we used the PPG channels only.
We use leave-one-out-cross-validation similar to the previous setups.

DaLiA PPG signals from the DaLia dataset were recorded at a sampling rate of 64 Hz. We used
the whole dataset of 15 participants while following the leave-one-out-cross-validation. 10% of the
training data is randomly split for validation, i.e., early stopping and saving the best model.

All PPG datasets are standardized as follows. Initially, a fourth-order Butterworth bandpass filter
with a frequency range of 0.5–4 Hz is applied to the PPG signals. Subsequently, a sliding window of
8 seconds with 2-second shifts is employed for segmentation, followed by z-score normalization of
each segment. Lastly, the signal is resampled to a frequency of 25 Hz for each segment.

B.2 Supervised Baseline Methods

We train the models using a batch size of 128 with a learning rate of 5e− 4. The validation loss is
employed to save the optimal model and halt training to prevent overfitting. If no improvements are
observed for 15 consecutive epochs, we reduce the learning rate by a factor of 10. Our experiments
utilized NVIDIA GeForce RTX 4090 GPUs and involved training with three random seeds across all
datasets, resulting in approximately 480 GPU hours, including ablation.

1D ResNet is a modified version of ResNet for time series with 1D filters of size five across eight
residual blocks. The initial block consists of 32 filters, incrementing by a factor of two for every two
subsequent residual blocks. Also, batch normalization [62] is applied after each convolutional block.
We apply a pooling operation after each residual with a stride of 2 while using Dropout [63] with 0.5
after each activation. Finally, a global average pooling is used before the final linear layer.

DCL is a combination of convolutional blocks with the long-short term memory units [56] (LSTMs)
and is widely used for time series [54, 55] as it considers the temporal relationship. Specifically, the
DCL architecture has four convolutional layers with 5× 1 size of 64 kernels. Then, the output is fed
into the 2-layer LSTM with 128 units. The last time step of the LSTM is fed to a linear layer.

FCN We also implemented a fully convolutional neural network with a 3-layer followed by ReLU
activation and MaxPooling after each convolutional layer, similar to the implementation in [54].
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Dropout with 0.5 is applied after the first convolutional layer. We set the kernel and padding size to 8
and 4, respectively for each convolutional layer. The number of kernels for each convolutional layer
is set to 32 for the first one and 64 for the rest.

LSTM We employed a unit of two layers of LSTM [56] without any feature extraction, i.e., the
raw PPG data is fed to the model. The features from the final LSTM are fed to a linear layer for HR
estimation.

Transformer We also added transformers with positional encodings as a baseline model. Since
the attention mechanism [57] is used to capture dependencies between any points within the input
sequence, irrespective of their temporal distance, we used it for time series data, similar to [54].
Specifically, we used linear layers with a stack of four identical blocks. The linear layer converts
the input data to embedding vectors of 128. A token of size 128 is added to the embedded input
as the representation vector. Each block is made up of a multi-head self-attention layer and a fully
connected feed-forward layer with residual connections around them.

B.3 Self-Supervised Baseline Methods

For our self-supervised learning experiments, we follow the same implementation setup as previous
works [54, 64, 65] for self-supervised learning in time series. Specifically, we use a combination of
convolutional with LSTM-based network, which is widely used in heart rate estimation from PPG
signals [55, 65], as backbones for the encoder fθ(.) where the projector is two fully connected layers.
During pre-training, we use InfoNCE (for contrastive learning-based methods) as the loss function,
which is optimized using Adam [66] with a learning rate of 0.003. We train the models with a batch
size of 256 for 120 epochs and decay the learning rate using the cosine decay. After pre-training, we
train a single linear layer classifier on features extracted from the frozen pre-trained network, i.e.,
linear probing.

SimCLR SimCLR [67] introduces a contrastive learning framework for self-supervised visual repre-
sentation learning. The method relies on maximizing agreement between differently augmented views
of the same image via a contrastive loss in the latent space. We follow the previous implementations
of SimCLR for time series [54] and PPG signals [65].

NNCLR We follow a similar setup to SimCLR by applying two separate data augmentations,
and then we use nearest neighbors in the learned representation space as the positive in contrastive
losses [68]. The maximum size of the support set equals 1024.

BYOL For the BYOL implementation, the exponential moving average parameter is set to 0.996
where the projector size is set to 128. We set the learning rate to 0.03 similar to other SSL techniques.
Following the original implementation, we use a weight decay parameter of 1.5e− 6.

TS-TCC We follow the same architecture implementation with the losses, i.e., contextual and
temporal contrasting. TS-TCC [69] proposed applying two separate augmentations, one augmentation
is weak (jitter-and-scale) and the other is strong (permutation-and-jitter). The authors also change
the strength of the permutation window from dataset to dataset. In our experiments, we follow the
previous work [64] for PPG-based augmentation.

TS2Vec TS2Vec [70] is an SSL method specifically designed for time series based on contrastive
(instance and temporal-wise) learning in a hierarchical way over augmented context views where the
context is generated by applying timestamp masking and random cropping on the input time series.
Following the original framework, we use a dilated CNN architecture with a depth of 10 and a hidden
size of 64, which has a similar number of parameters to the architectures used by other SSL methods.
The batch size is set to 256, and the number of epochs to 120, consistent with other SSL techniques.

VICReg We follow the original implementation and set the coefficients for each loss term to 25
(λ), 25 (µ), and 1 (ν), corresponding to the invariance, variance, and covariance terms, respectively.
We have not performed an additional hyper parameter search as these values are also set by previous
on this application [64].
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Barlow Twins Barlow Twins [71] presents a function to avoid collapse for SSL by measuring the
cross-correlation matrix between the outputs of two identical networks fed with augmented versions
of a sample, and making it as close to the identity matrix as possible. This causes the embedding
vectors of augmented versions of a sample to be similar while minimizing the redundancy between the
components of these vectors. Following the original implementation, we applied batch normalization
to the extracted embeddings and set the hyperparameter λ coefficient (in Equation 1) to 0.005.

L =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij , (1)

where C is the cross-correlation matrix computed between the two sets of normalized embeddings.

B.4 Unsupervised Baseline Method

We also consider one of the unsupervised learning based method, unsupervised periodicity detection
(UPD), as an additional baseline model.

UPD UPD [64] presented two novel regularizers for detecting periodic patterns in time series
data without using labels or specific augmentations. We follow the original implementation
https://github.com/eth-siplab/Unsupervised _ Periodicity _ Detection.

Since this method operates without supervision, it requires relatively clean samples to learn periodic
representations. Consequently, its performance is quite low on datasets with noisy samples, such as
WildPPG and DaLiA datasets.

C Additional Experiments

Here, we present additional experiments we conducted beyond our main experiments, which focused
on estimating the heart rate from green PPG recordings on the wrist as it is the most widely used
measurement site and PPG wavelength for wearable devices [11].

C.1 Evaluation Across Multiple Body Locations and PPG Wavelengths

We investigated the performance of the models when we integrate PPG signals from the different
measurement sites of the body as well as PPG signals recorded at different wavelengths. Table 4
presents the results for the baseline and the modified ResNet architecture performances.

Table 4: Performance comparison of baselines with prior works in datasets

Location
Method

WildPPG

MAE↓ RMSE↓ ρ↑
Only Wrist
1D ResNet 8.62±0.06 15.00±0.06 42.41±0.24

Temp-ResNet 8.37±0.02 14.72±0.01 45.50±0.14

Only Chest
1D ResNet 8.55±0.05 14.95±0.07 44.30±0.20

Temp-ResNet 8.35±0.03 14.68±0.02 46.48±0.10

Wrist and Chest
1D ResNet 8.40±0.10 14.85±0.10 44.40±0.20

Temp-ResNet 8.28±0.03 14.67±0.02 47.55±0.13

All
1D ResNet 8.60±0.05 14.93±0.10 43.27±0.21

Temp-ResNet 8.33±0.05 14.70±0.05 46.50±0.10

Wavelength
Method

WildPPG

MAE↓ RMSE↓ ρ↑
Green
1D ResNet 8.62±0.06 15.00±0.06 42.41±0.24

Temp-ResNet 8.37±0.02 14.72±0.01 45.50±0.14

Red
1D ResNet 10.25±0.14 17.63±0.21 35.21±0.23

Temp-ResNet 9.97±0.10 16.41±0.12 36.45±0.10

Infrared
1D ResNet 8.97±0.12 15.93±0.12 36.33±0.16

Temp-ResNet 8.72±0.10 15.88±0.11 37.66±0.09

All
1D ResNet 8.59±0.03 14.97±0.05 43.21±0.13

Temp-ResNet 8.35±0.04 14.68±0.10 46.38±0.10

From these results, we observe that incorporating additional measurement sites for HR prediction
generally reduces the error, despite increasing the number of model parameters. Furthermore, results
suggest that the wrist measurement site has the lowest signal quality compared to other sites. This
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outcome is expected, as the wrist is particularly susceptible to motion artifacts and exposure to
cold, and the results are consistent with prior work [72]. Similarly, the signal quality of alternative
wavelengths is lesser compared to green PPG which is also consistent with prior work [73].

C.2 Cross-Dataset Evaluation

We evaluated model performance using a cross-dataset approach, specifically employing a leave-one-
dataset-out scheme. In this setup, two datasets were used for training, while the third dataset was
reserved for testing. Results are summarized in Table 5.

Table 5: Performance comparison of baselines in cross-dataset evaluation (one dataset left for
evaluation and others used for training)

Method Test on WildPPG Test on SPC12 Test on DaLiA

MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑

Supervision
1D ResNet 16.32±0.26 27.33±0.33 12.33±0.24 11.25±1.78 18.37±0.88 67.36±0.78 17.23±2.28 22.10±0.13 67.14±0.15
DCL 19.43±2.12 29.32±2.43 10.68±2.59 15.45±2.34 26.32±2.09 55.43±4.75 20.90±0.55 25.31±1.54 60.21±2.56
FCN 16.55±1.23 26.77±0.26 11.53±1.56 14.22±2.45 24.58±1.96 50.28±1.50 24.13±1.13 24.56±2.31 65.32±2.56
LSTM 16.79±1.30 28.57±2.43 8.97±1.10 27.86±2.21 28.11±4.10 42.11±3.95 21.59±1.10 23.47±1.67 63.42±1.30
Transformer 17.25±1.45 30.98±2.59 6.72±3.66 28.45±1.98 30.38±3.59 30.85±2.05 20.31±2.56 20.17±2.17 55.21±2.17

C.3 Additional sensor modality

In Table 6 we present the experimental results of integrating acceleration with PPG as an additional
modality.

Table 6: Performance comparison of baseline models across datasets when integrating accelerometer
data with PPG as an additional modality

Method Test on WildPPG Test on SPC12 Test on DaLiA

MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑

Supervision
1D ResNet 8.22±0.09 14.34±0.07 44.33±0.22 5.33±0.18 11.08±0.67 85.02±0.47 4.43±0.10 09.88±0.13 85.96±0.20
DCL 8.69±0.03 15.03±0.09 42.01±0.07 15.30±1.20 20.98±1.33 20.78±1.26 4.88±0.12 11.73±0.07 79.12±0.12
FCN 9.65±0.20 15.16±0.22 37.42±0.71 25.95±0.37 27.87±0.12 45.13±1.80 6.12±0.23 10.92±0.28 84.04±0.03
LSTM 8.72±0.20 14.11±0.10 38.61±1.10 17.41±2.30 21.13±2.57 60.10±3.12 5.07±0.08 10.94±0.20 80.01±0.30
Transformer 9.98±0.15 17.10±0.23 31.73±1.08 21.92±0.20 25.10±0.18 50.97±0.21 7.17±0.15 14.98±0.20 68.97±0.66
Temp-ResNet 8.13±0.03 13.95±0.02 47.48±0.10 — — — 4.27±0.03 9.13±0.15 87.31±0.19

C.4 Baseline Results on the BIDMC Dataset

Considering the wide use of the BIDMC dataset (recorded in controlled environments), we provide
baseline results of the baseline methods listed in Section B.2 for this dataset in Table 7.

Table 7: Performance comparison of baselines when tested on the BIDMC dataset

Method BIDMC

MAE↓ RMSE↓ ρ↑

Heuristic
FFT 4.41 9.74 33.42

Supervision
1D ResNet 3.62±0.22 5.23±0.39 85.43±0.20
DCL 4.18±0.31 5.89±0.65 83.34±1.37
FCN 4.01±0.27 5.41±0.47 84.57±1.14
LSTM 5.73±1.79 10.86±0.96 29.37±1.58
Transformer 7.71±1.40 11.03±1.35 19.21±2.20
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D Impact of Temperature and Motion

The modified architecture Temp-ResNet adds the device’s case temperature (measured within the
encasing) as an additional input modality to improve results. Figure 5 shows the HR error of 1D
ResNet based on PPG from the wrist in relation to case temperature and motion. The correlations
of error and temperature/motion are supported by the investigation of signal-to-noise ratio (SNR):
We have computed the SNR of the PPG signal by relating the power PHR of the ground truth HR in
the frequency spectrum of the PPG signal to the power Pnoise = Ptot − PHR of the other frequency
components in the relevant window of possible heart rates:

SNR = 10 · log
(

PHR

Ptot − PHR

)
dB

While it is well understood that motion artifacts have a negative impact on PPG signal quality [5], the
presented results show that the temperature within the wearable has an inverse correlation to PPG
signal quality as well.
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Figure 5: The error (blue) of 1D ResNet based on PPG from the wrist, dependent on the device
temperature (left), and device motion (right). Inversely related is the computed SNR of the PPG
signal (red).

E PPG Device

The schematics and production data (CAD drawing, BOM, Gerber/NCDrill, pick&place) of the PPG
device used in this project are available on the project website. The data is acquired using an off-the-
shelf PPG LED module (SFH7072, OSRAM) and a commonly used dedicated PPG acquisition chip
(MAX86141, Analog Devices). Table 8 shows the register configuration of the MAX86141 PPG chip
as used during the data acquisition.

Table 8: Register configurations of the MAX86141 PPG chip.

Register Name Reg Addr Value Description
MAX86141_PPG_CONFIG_1 0x11 0x2B ALC enable, 117us integration time, 16uA ADC range
MAX86141_PPG_CONFIG_2 0x12 0x70 128 Hz SR (ext. clock), no averaging
MAX86141_PPG_CONFIG_3 0x13 0xC0 12uS LED settle time
MAX86141_PHOTO_DIODE_BIAS 0x15 0x11 Low capacity PD
MAX86141_LED_RANGE_1 0x2A 0x00 LED driver range 31mA
MAX86141_LED1_PA 0x23 0x12 IR LED current 2.16mA
MAX86141_LED2_PA 0x24 0x0C R LED current 1.44mA
MAX86141_LED3_PA 0x25 0x0C G LED current 1.44mA
MAX86141_INTERRUPT_ENABLE_1 0x02 0x00 Disable all Interrupts
MAX86141_LED_SEQ_REG1 0x20 0x21 Set LED sequence (1 slot each for IR R G)
MAX86141_LED_SEQ_REG2 0x21 0x03 Set LED sequence (1 slot each for IR R G)
MAX86141_LED_SEQ_REG3 0x22 0x00 Set LED sequence (1 slot each for IR R G)
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F File Structure

The file structure of the WildPPG dataset is shown in Figure 6

WildPPG data file structure

Par�cipant File (.mat) [body_loca�on] [sensor_trace] fs sensor sampling rate, numeric
descr sensor descrip�on, string
v values, numeric array

id par�cipant id, string
notes par�cipant specific informa�on, string

available values
[body_loca�on] head

ankle
sternum
wrist

[sensor_trace] acc_x accelerometer X-Axis fs=128 Hz
acc_y accelerometer Y-Axis fs=128 Hz
acc_z accelerometer Z-Axis fs=128 Hz
al�tude barometric al�tude fs=0.5 Hz 8-second sliding window
temperature device case temperature fs=0.5 Hz 8-second sliding window
ppg_g green PPG fs=128 Hz
ppg_ir infrared PPG fs=128 Hz
ppg_r red PPG fs=128 Hz
ecg lead I ECG, sternum only fs=128 Hz

Figure 6: For each participant in WildPPG, one .mat Matlab data file is provided with the structure as
illustrated.

G Author Statement

The authors bear all responsibility in case of violation of rights.
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