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Abstract

The success of contrastive learning is well known to be dependent on data aug-
mentation. Although the degree of data augmentations has been well controlled
by utilizing pre-defined techniques in some domains like vision, time-series data
augmentation is less explored and remains a challenging problem due to the com-
plexity of the data generation mechanism, such as the intricate mechanism in-
volved in the cardiovascular system. Moreover, there is no widely recognized
and general time-series augmentation method that can be applied across different
tasks. In this paper, we propose a novel data augmentation method for quasi-
periodic time-series tasks that aims to connect intra-class samples together, and
thereby find order in the latent space. Our method builds upon the well-known
mixup technique by incorporating a novel approach that accounts for the peri-
odic nature of non-stationary time-series. Also, by controlling the degree of
chaos created by data augmentation, our method leads to improved feature rep-
resentations and performance on downstream tasks. We evaluate our proposed
method on three time-series tasks, including heart rate estimation, human ac-
tivity recognition, and cardiovascular disease detection. Extensive experiments
against state-of-the-art methods show that the proposed approach outperforms prior
works on optimal data generation and known data augmentation techniques in
the three tasks, reflecting the effectiveness of the presented method. Source code:
https://github.com/eth-siplab/Finding_Order_in_Chaos.

1 Introduction

Self-supervised learning methods have gained significant attention as they enable the discovery of
meaningful representations from raw data without explicit annotations. These self-supervised methods
learn representations without labels by designing pretext tasks that transform the unsupervised
representation learning problem into a supervised one such as predicting the rotation of images (1),
or contexts (2; 3). Among these methods, contrastive learning (CL), which learns to distinguish
semantically similar examples over dissimilar ones, stands out as a powerful approach in self-
supervised learning across various domains including computer vision (4; 5; 6), speech recognition (7;
8; 9; 10), and natural language processing (11; 12; 13; 14).

The success of contrastive learning relies on the creation of similar and dissimilar examples, which
is typically achieved through the use of data augmentations (15; 16). Recently, it was shown that
data augmentations have a role to create a “chaos” between different intra-class samples such
that they become more alike. For example, two different cars become very similar when they
are both cropped to the wheels. (17). However, in time-series data, creating similar samples with
augmentation techniques is more challenging due to the complexity of the dynamical data generation
mechanisms (18). Moreover, research on contrastive learning for time series has demonstrated the
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absence of a unique data augmentation technique that consistently performs better than others in
different tasks (19; 20). Instead, the choice of augmentation depends on the contextual characteristics
of the signal, such as perturbing the high-frequency content of a signal that carries characteristic
information in low frequencies does not generate useful data samples that are helpful for contrastive
learning to learn class invariant features (21).

Considering these limitations, in this work, we first propose a novel data augmentation method
for time series data by performing a tailored mixup while considering the phase and amplitude
information as two separate features. Then, we perform specific operations for both features to
generate positive samples by controlling the mixup coefficients for each feature to prevent aggressive
augmentation. Specifically, our method employs a technique that controls the mixup ratio for each
randomly chosen pair based on their distance in the latent space which is acquired through the use
of a variational autoencoder (VAE), whose objective is to learn disentangled representations of data
without labels. To this end, subjecting to the distance constraint in the latent space, the mixup tries
to connect semantically closer samples together more aggressively while preventing the excessive
interpolation of dissimilar samples that are likely to belong to different classes. Therefore, the purpose
of our proposed method for quasi-periodic time-series data augmentation is to find an order in “chaos”
between different samples such that they become more alike by interpolating them in a novel manner
to prevent the loss of information. We summarize our contributions as follows:

• We propose a novel mixup method for non-stationary quasi-periodic time-series data by
considering phase and magnitude as two separate features to generate samples that enhance
intra-class similarity and help contrastive learning to learn class-separated representations.

• We present a novel approach for sampling mixup coefficients for each pair based on their
similarity in the latent space, which is constructed without supervision while learning
disentangled representations, to prevent aggressive augmentation between samples.

• We show that the tailored mixup with coefficient sampling consistently improves the perfor-
mance of contrastive learning in three time-series tasks compared to prior mixup techniques
and proposed augmentation methods that generate optimal/hard positives or negatives.

2 Preliminaries

2.1 Notation

We use lowercase symbols (x) to denote scalar quantities, bold lowercase symbols (x) for vector
values, and capital letters (X) for random variables. Functions with a parametric family of mappings
are represented as fθ(.) where θ is the parameters. The discrete Fourier transformation of a real-
valued time series sample is denoted as F(.), yielding a complex variable as Xk where X ∈ C and
k ∈ [0, fs/2] is the frequency with the maximum value of Nyquist rate. The amplitude and phase of
the F(x) are represented as A(x) and P (x). The real and imaginary parts of a complex variable are
shown as Re(.) and Im(.). The detailed calculations for operations are given in the Appendix A.1.

2.2 Setup

We follow the common CL setup as follows. Given a dataset D = {(xi)}Ki=1 where each xi consists of
real-valued sequences with length L and C channels. The objective is to train a learner fθ which seeks
to learn an invariant representation such that when it is fine-tuned on a dataset Dl = {(xi,yi)}Mi=1
with M ≪ K and yi ∈ {1, . . . , N}, it can separate samples from different classes.

2.3 Motivation

As stated by prior works, mixup-based methods have poor performance in domains where data has
a non-fixed topology, such as trees, graphs, and languages (22; 23). Here, we demonstrate how we
derived our proposed method by revealing the limitations of mixup for time series theoretically while
considering the temporal dependencies and non-stationarities.

Assumption 2.1 (SNR Matters). There exist one or multiple bandlimited frequency ranges of interest
f∗, where the information that average raw time-series data conveys about the labels (i.e., I(y;x))
is directly proportional to normalized signal power in that frequency range as in Equation 1.
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Assumption 2.1 states that the information from a time series depends on its signal-to-noise ratio
(SNR). Prior works showed that specific frequency bands hold inherent information about the
characteristics of time series, which helps classification (21; 24).
Assumption 2.2. The true underlying generative process f(.), for a given data distribution D =
{xk}Kk=1, is quasiperiodic, i.e., f(x+ τ) = g(x, f(x)), where τ can be either fixed or varied.

Assumption 2.2 posits that the observed data samples from the distribution D are generated by a
quasiperiodic function. This is a minimal assumption since the quasiperiodicity is the relaxed version
of the periodic functions. In simpler terms, quasiperiodicity can be described as the observed signals
exhibiting periodicity on a small scale, while being unpredictable on a larger scale. And, several prior
works showed that the data generation mechanism of time-series data for several applications in the
real world are quasiperiodic (25; 26; 27; 28; 29; 30). Therefore, Assumption 2.2 is realistic.
Proposition 2.3 (Destructive Mixup). If Assumptions 2.1 and 2.2 hold, there exist λ ∼ Beta(α, α)
or λ ∼ U(β, 1.0) with high values of β such that when linear mixup techniques are utilized, the
lower bound of the mutual information for the augmented sample distribution decreases to zero.

0 ≤ I(y;x+) < I(y;x∗) where x∗is the optimal sample,

x+ = λx+ (1− λ)x̃ and
∫
f∗

Sx∗(f) =

∫ ∞

−∞
Sx∗(f)

(2)

Proofs can be found in Appendix A. This proposition indicates that although the augmented samples
are primarily derived from anchor samples (x) with high ratios, the resulting instances may not contain
any task-relevant information. In other words, the augmentation process can potentially discard the
whole task-specific information. This destructive behavior of mixup for quasi-periodic data can be
attributed to the interference phenomenon in which two waves interact to form the resultant wave of
the lower or higher amplitude according to the phase difference as shown in Proposition 2.3.

3 Method

We introduce a novel approach to overcome the limitations of mixup by treating the magnitude and
phase of sinusoidal signals as two distinct features with separate behaviors. Subsequently, we apply
tailored mixup operations to each feature, considering their specific characteristics and effects.

We perform the linear mixup for the magnitude of each sinusoidal. However, for the phase, we take a
different approach and bring the phase components of the two coherent signals together by adding a
small value to the anchor’s phase in the direction of the other sample. The mixup operation performs
the linear interpolation of features (31), however, interpolation of two complex variables can result in
a complex variable whose phase and magnitude are completely different/far away from those two,
i.e., mixup can be destructive extrapolation rather than the interpolation of features. Therefore, we
mix the phase of two sinusoidal as follows. We start by calculating the shortest phase difference
between the two samples, denoted as ∆Θ, as described in Equation 31.

θ ≡ [P (x)− P (x̃)] (mod 2π)

∆Θ =

{
θ − 2π, if θ > π

θ, otherwise
(3)

The sign of the calculated phase difference provides information about the relative phase location of
the other sample, in either a clockwise or counterclockwise direction in the phasor diagram. And, the
absolute value of it represents the shortest angular difference between two samples in radians. Based

1We use phase in radians throughout the paper in the range (−π, π]
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on the calculated phase difference between two samples, we perform mixup operation to generate
diverse positive samples as in Equation 4 such that phase and magnitude of augmented instances are
interpolated properly according to the anchor sample x, without causing any destructive interference.

x+ = F−1(A(x+)∠P (x+)) where A(x+) = λAA(x) + (1− λA)A(x̃) and

P (x+) =

{
P (x)− |∆Θ| ∗ (1− λP ), if ∆Θ > 0

P (x) + |∆Θ| ∗ (1− λP ), otherwise
(4)

The proposed method which mixes the magnitude and phase of each frequency component with
tailored operations, not only prevents destructive interference between time series, resulting in an
increase in the lower bound of mutual information (as shown in Theorem 3.1), but also generates
diverse augmented instances with the same two samples by using two different mixing coefficients.

a) b)

Figure 1: The phasor representation of linear mixup a), and proposed mixup b). The anchor, randomly
chosen sample, and generated instances are represented as x, x̃, and x+, respectively.

Theorem 3.1 (Guarantees for Mixing). Under assumptions 2.1 and 2.2, given any λ ∈ (0, 1], the
mutual information for the augmented instance lower bounded by the sampled λ and anchor x.

λI(y;x) ≤ I(y;x+) < I(y;x∗) where x+ = F−1(A(x+)∠P (x+)) (5)

We provide an intuitive demonstration in Figure 1, along with a detailed mathematical proof presented
in Appendix A. Our approach also offers increased flexibility in selecting the mixing coefficients of
phase and magnitude, based on their sensitivities to the mixing process as well as the augmentation
degree for each randomly chosen pair. Since the degree of augmentations has crucial importance for
contrastive learning, there can be cases where augmentations are either too weak (intra-class features
cannot be clustered together) or too strong (inter-class features can also collapse to the same point)
and lead to sub-optimal results (17). To mitigate this issue and find an order for augmentation degree,
we search pairs of samples that are semantically closer, meaning they are more likely to belong to the
same class. We then perform the proposed mixup more aggressively on these pairs, creating more
closer and diverse samples while decreasing the augmentation strength for less similar pairs. To find
similar samples without labels, we train a completely unsupervised β-VAE (32) that maps data points
to a latent space such that two random samples are semantically similar if they are close in the latent
as shown in Proposition 3.2.
Proposition 3.2 (Consistency in Latent Space (33)). Given a well-trained unconditional VAE with
the encoder E(.) that produces distribution pE(z|x), the decoder D(.) that produces distribution
qD(x|z) while the prior for z is p(z), let z1 and z2 be two latent vectors of two different real samples
x1 and x2, i.e., E(x1) = z1 and E(x2) = z2. if the distance d(z1, z2) ≤ δ, then D(z1) and D(z2)
will have a similar semantic label as in Equation 6.

|I(D(z1);y)− I(D(z2);y)| ≤ ϵ, (6)
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where ϵ stands for tolerable semantic difference, δ is the maximum distance to maintain semantic
consistency, and d(.) is a distance measure such as cosine similarity between two vectors.

The above proposition with Theorem 3.1 motivates us to perform augmentation aggressively if two
randomly chosen samples are semantically closer. Therefore, we sample the mixup coefficient for
both phase and magnitude from a uniform distribution λA, λP ∼ U(β, 1.0) with low values of β
if the distance between the latent vectors is below a threshold, otherwise, they are drawn from a
truncated normal distribution λA, λP ∼ N t(µ, σ, 1.0) with a high mean and low standard deviation.

4 Experiments

We conduct experiments on the proposed approach and compare it with other mixup methods or
optimal/hard positive sample generation in the contrastive learning setup. During our experiments,
we use SimCLR (15) framework without specialized architectures or a memory bank for all baselines
to have a fair comparison. Results with other CL frameworks can be found in Appendix E. Complete
training details and hyper-parameter settings for datasets and baselines are provided in Appendix D.

4.1 Datasets

We performed extensive experiments on eight datasets from three tasks that include activity recogni-
tion from inertial measurements (IMUs), heart rate prediction from photoplethysmography (PPG), and
cardiovascular disease classification from electrocardiogram (ECG). We provided short descriptions
of each dataset below, and further detailed information with metrics can be found in Appendix B.

Activity recognition We used UCIHAR (34), HHAR (35), and USC (36) for activity recognition.
During the evaluation, we assess the cross-person generalization capability of the contrastive models,
i.e., the model is evaluated on a previously unseen target domain. We follow the settings in GILE (37)
to treat each person as a single domain while the fine-tuning dataset is much smaller than the
unsupervised one.

Heart rate prediction We used the IEEE Signal Processing Cup in 2015 (IEEE SPC) (38), and
DaLia (39) for PPG-based heart rate prediction. The SPC provides two datasets, one smaller with
lesser artifacts (referred to as SPC12) (38) and a bigger dataset with more participants including heavy
motions (referred to as SPC22). In line with previous studies, we adopted the leave-one-session-out
(LOSO) cross-validation, which involves evaluating methods on subjects or sessions that were not
used for pre-training and fine-tuning.

Cardiovascular disease (CVD) classification We conducted our experiments on China Physiologi-
cal Signal Challenge 2018 (CPSC2018) (40) and Chapman University, Shaoxing People’s Hospital
(Chapman) ECG dataset (41). We selected the same four specific leads as in (42) while treating each
dataset as a single domain with a small portion of the remainder dataset used for fine-tuning the
pre-trained model. We split the dataset for fine-tuning and testing based on patients (each patient’s
recordings appear in only one set).

4.2 Baselines

Comparison with prior mixup techniques We evaluate the effectiveness of our proposed mixup
by comparing it with other commonly used mixup methods, including Linear-Mixup (31), Binary-
Mixup (43), Geometric-Mixup (22), Cut-Mix (44), Amplitude-Mix (45) and Spec-Mix (46). When
we compare the performance of mixup techniques, we follow the same framework with (47) where
the samples of mixture operation only happen in current batch samples. And, the mixup samples are
paired with anchors, i.e., without applying mixup second times, for contrastive pre-training.

Comparison with methods for optimal sample generation We evaluate the performance of
our proposed method by comparing it with other data generation methods and baselines in con-
trastive learning while considering previously known augmentation techniques. Traditional data
augmentations for time-series (19), such as resampling, flipping, etc. InfoMin which leverages an
adversarial training strategy to decrease the mutual information between samples while maximizing
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the NCE loss (48). NNCLR (49), which uses nearest neighbors in the learned representation space
as the positives. Positive feature extrapolation (50), which creates hard positives through feature
extrapolation. GenRep which uses the latent space of a generative model to generate “views” of the
same semantic content by sampling nearby latent vectors (51). Aug. Bank (21), which proposes
an augmentation bank that manipulates frequency components. DACL (22), which creates positive
samples by mixing hidden representations. IDAA (52), which is an adversarial method by modifying
the data to be hard positives without distorting the key information about their original identities
using a VAE. More implementation details for each baseline are given in Appendix C.

4.3 Implementation

We use a combination of convolutional with LSTM-based network, which shows superior performance
in many time-series tasks (19; 53; 54), as backbones for the encoder fθ(.) where the projector is two
fully-connected layers. We use InfoNCE as the loss, which is optimized using Adam with a learning
rate of 0.003. We train with a batch size of 256 for 120 epochs and decay the learning rate using
the cosine decay schedule. After pre-training, we train a single linear layer classifier on features
extracted from the frozen pre-trained network, i.e., linear evaluation, with the same hyperparameters.
Reported results are mean and standard deviation values across 3 independent runs with different
seeds on the same split. More details about the implementation, architectures, and hyperparameters
with the trained VAEs are given in Appendix D.

5 Results and Discussion

Tables 1, 2, and 3 present the results of our proposed approach compared to state-of-the-art methods
for optimal/hard positive sample generation in contrastive learning setup across the three tasks in eight
datasets. Additionally, Figure 2 provides a comparison of our approach with prior mixup methods
(e.g., linear mixup, cutmix) without applying any other additional augmentation techniques. Overall,
our proposed method has demonstrated superior performance compared to other methods in seven
datasets, with the second-best performance in the remaining dataset, and a minor performance gap.

Table 1: Performance Comparison of ours with prior works in Activity Recognition datasets

Method UCIHAR HHAR USC
ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑

Supervised
DCL (37) 77.63 – 51.27 – 60.35 –
CoDATS (55) 68.22 – 45.69 – – –
GILE (37) 88.17 – 55.61 – – –

Self-Supervised
Traditional Augs. 87.05 ± 1.07 86.13 ± 0.96 85.48 ± 1.16 84.31 ± 1.31 53.47 ± 1.10 52.09 ± 0.95
NNCLR (49) 85.31 ± 0.91 83.56 ± 1.25 83.16 ± 1.32 82.15 ± 1.25 55.41 ± 1.43 52.64 ± 1.37
InfoMin (48) 38.07 ± 8.15 30.66 ± 9.15 31.58 ± 10.2 29.72 ± 11.1 35.89 ± 14.3 37.77 ± 9.12
IDAA (52) 82.23 ± 0.69 79.84 ± 0.89 88.98 ± 0.62 89.01 ± 0.55 59.23 ± 1.10 56.11 ± 1.54
PosET (50) 88.13 ± 0.91 87.35 ± 0.96 85.77 ± 1.11 85.90 ± 1.20 41.37 ± 5.63 39.43 ± 5.72
Aug. Bank (21) 65.27 ± 1.12 71.16 ± 1.24 67.95 ± 1.45 75.13 ± 1.32 43.28 ± 4.37 47.31 ± 4.68
GenRep (51) 87.22 ± 1.05 86.48 ± 0.95 87.05 ± 0.95 86.45 ± 0.90 50.13 ± 2.85 49.50 ± 2.73
DACL (22) 73.12 ± 1.23 66.28 ± 1.11 80.89 ± 0.91 81.31 ± 0.78 53.61 ± 2.60 51.76 ± 2.21
Ours 91.60 ± 0.65 90.46 ± 0.53 88.05 ± 1.05 87.95 ± 1.10 60.13 ± 0.75 59.13 ± 0.69

From these tables, we can see that our proposed mixup method significantly outperforms DACL,
which suggests creating a positive sample by mixing fixed hidden representations in an intermediate
layer (22), by a large margin (up to 20.8% with a 10.1% on average in activity recognition). This
suggests that when the representations are not yet linearly separable at the beginning of the con-
trastive training process, the interpolated representations using mixup may be dissimilar to the actual
interpolated samples and may not capture their underlying features. One interesting result from our
experiments is that IDAA method (52) exhibits comparable performance to our method in some
datasets, and even slightly outperforms our approach in the HHAR dataset for the activity recognition
task. Despite using distinct methods to generate positive instances, i.e., adversarial and mixup, our
approach and IDAA algorithm share similarities in approaches for positive instance generation in
CL setup. The IDAA algorithm aims to create hard positive samples that lie near class boundaries
without changing the identity of the sample, while our method interpolates two samples to produce a
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Table 2: Performance comparison of ours with prior works in Heart Rate Prediction datasets

Method IEEE SPC12 IEEE SPC 22 DaLia
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

Supervised
DCL 22.02 28.44 28.10 32.45 6.58 11.30
CNN Ensemble∗ (39) 3.89 – 8.74 – 8.58 –
Self-Supervised
Traditional Augs. 20.67 ± 1.13 26.35 ± 0.98 16.84 ± 1.10 22.23 ± 0.72 12.01 ± 0.65 21.09 ± 0.86
NNCLR (49) 31.20 ± 4.82 38.41 ± 6.45 23.49 ± 1.54 28.75 ± 3.66 10.83 ± 0.61 20.90 ± 0.91
InfoMin (48) 38.07 ± 5.15 30.66 ± 7.34 31.58 ± 4.72 29.72 ± 4.83 45.89 ± 8.71 50.77 ± 9.72
IDAA (52) 19.02 ± 0.96 27.42 ± 1.11 15.37 ± 1.21 22.41 ± 1.42 11.12 ± 0.64 20.45 ± 0.69
PosET (50) 25.60 ± 1.93 33.80 ± 2.71 23.42 ± 1.50 31.51 ± 3.71 35.99 ± 3.95 39.92 ± 3.12
Aug. Bank (21) 27.31 ± 2.17 37.93 ± 2.96 27.84 ± 2.03 36.41 ± 3.98 35.87 ± 4.18 40.61 ± 3.74
GenRep (51) 21.02 ± 1.41 28.42 ± 1.65 15.67 ± 1.23 22.33 ± 1.43 25.41 ± 1.62 36.83 ± 1.87
DACL (22) 21.85 ± 1.63 28.17 ± 1.75 14.67 ± 1.10 20.06 ± 1.21 18.44 ± 1.32 25.61 ± 1.45
Ours 16.26 ± 0.72 22.48 ± 0.95 12.25 ± 0.47 18.20 ± 0.61 10.57 ± 0.55 20.37 ± 0.73
* The entire dataset, except evaluation, is used with labels, while in the DCL, the number of labelled data is set to match
that of the CL.

positive instance that is similar to the original sample while adding noise to the phase and amplitude
in the direction of a randomly chosen sample. In other words, both approaches try to keep the sample
identity intact by taking special precautions while generating new positive instances, which may
explain their similar performance in our experiments.

In contrast, approaches that do not prioritize preserving sample identity while generating samples,
features, or hidden representations often demonstrate suboptimal performance on average.

Table 3: Performance comparison between ours
and prior work in CVD.

Method CPSC 2018 Chapman
AUC↑ AUC↑

Supervised
CNN (56) — 95.80
Casual CNN (57) — 97.70
Self-Supervised
Traditional Augs. 67.86 ± 3.41 74.69 ± 2.04
NNCLR (49) 70.06 ± 2.05 77.19 ± 2.41
InfoMin (48) 38.07 ± 6.15 31.58 ± 9.12
IDAA (52) 80.90 ± 0.73 93.63 ± 0.91
PosET (50) 72.58 ± 2.12 78.27 ± 2.34
Aug. Bank (21) 81.78 ± 1.24 94.75 ± 0.90
GenRep (51) 52.49 ± 3.43 86.72 ± 1.13
DACL (22) 82.38 ± 0.84 92.28 ± 0.97
Ours 85.30 ± 0.45 95.90 ± 0.82

Examples of such methods include PosET (50),
which generates hard positive samples to improve
contrastive learning by extrapolating features, and
InfoMin (48), which tries to minimize mutual in-
formation between two instances in an adversar-
ial manner. The performance comparison of prior
mixup techniques and our proposed one is shown in
Figure 2. On average, our proposed method outper-
forms all other mixup techniques while reducing
the variance across tasks. What is interesting about
this figure is that while the linear (31) and ampli-
tude mixup (45) reach our method in some datasets
for activity recognition, the performance of the lin-
ear mixup decreases heavily for the other two tasks
whereas the amplitude mixup gives reasonable per-
formance. This empirical outcome supports our ini-
tial theorem about the destructive effect of mixup,
which suggests linear mixup or other derivatives
can discard the whole task-specific information in the generated positive sample for quasi-periodic
signals even though the mixing coefficient is sampled from a distribution such that the generated
samples are much closer to the anchor.
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Figure 2: The comparison of mixup methods where the error bars represent the deviation across
random seeds (explicit numbers are given in Appendix E). a) shows the performance in activity
recognition, b) is for heart rate prediction, and finally c) shows the CVD classification. For the last
two tasks, we excluded Geomix as its performance is extremely poor and distorts the y-axis scale.
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5.1 Ablation Studies

Here, we present a comprehensive examination of our proposed method and the effect of its com-
ponents on the performance. Mainly, we investigate the effect of the proposed mixup by applying
the instance selection algorithm to the linear mixup (w/o Prop. Mixup). Then, we perform our
proposed mixup with the constant λA and λP coefficients without investigating latent space distances
between pairs (w/o Aug. Degree). Tables 4, 5 and 6 summarize the results. The second row in the
tables shows the performance when the proposed mixup method is not applied while choosing mixup
coefficients according to the distances in the latent space for the linear mixup. The last row illustrates
the performance change resulting from randomly sampling mixup coefficients without considering
any relationship between the selected pair while applying tailored mixup for phase and magnitude.

Table 4: Ablation on proposed mixup with coefficient selection in Activity Recognition datasets

Method UCIHAR HHAR USC
ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑

Ours 91.60 ± 0.65 90.46 ± 0.53 88.05 ± 1.05 87.95 ± 1.10 60.13 ± 0.75 59.13 ± 0.69
w/o Prop. Mixup 83.09 (-8.51) 81.65 (-8.81) 85.89 (-2.16) 86.01 (-1.94) 45.10 (-15.03) 43.64 (-15.49)
w/o Aug. Degree 80.86 (-10.74) 80.18 (-10.26) 87.53 (-0.95) 87.75 (-0.20) 57.00 (-3.13) 54.75 (-4.38)

The results obtained from the ablation study support the previous claims and outcomes. For example,
when the linear mixup is applied instead of the proposed mixup technique for heart rate prediction
(Table 5, w/o Prop. Mixup), the performance decrease is significant compared to the case when
coefficients are sampled without considering the distance in the latent space (Table 5, w/o Aug.
Degree). This observation indicates that as the periodicity in data increases, linear mixup can lead to
significant destructive interferences, whereas our method effectively prevents such issues.

Table 5: Ablation on proposed mixup with coefficient selection in Heart Rate Prediction datasets.

Method IEEE SPC12 IEEE SPC 22 DaLia
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

Ours 16.26 ± 0.72 22.48 ± 0.95 12.25 ± 0.47 18.20 ± 0.61 10.57 ± 0.55 20.37 ± 0.73
w/o Prop. Mixup 20.45 (+4.19) 28.51 (+6.03) 15.29 (+3.04) 24.08 (+5.88) 24.11 (+13.54) 35.45 (+15.18)
w/o Aug. Degree 19.30 (+3.04) 24.84 (+2.36) 16.01 (+3.76) 21.21 (+3.19) 11.10 (+0.53) 20.13 (-0.24)

Table 6: Ablation on proposed mixup with coeffi-
cient selection in CVD.

Method CPSC 2018 Chapman
AUC↑ AUC↑

Ours 85.30 ± 0.45 95.90 ± 0.82
w/o Prop. Mixup 81.20 (-4.10) 86.30 (-9.60)
w/o Aug. Degree 80.67 (-4.63) 95.98 (+0.08)

While our mixup technique consistently en-
hances performance across datasets, we ob-
serve a decline when the mixing coefficients
are sampled based on the distance in the latent
space for two datasets. Also, the performance
increase gained by sampling coefficients based
on distance is relatively low compared to the
proposed mixup. Several factors can explain
this observation. First, the VAE might not be
well trained due to the limited size of data in each class, i.e., the assumption in Proposition 3.2
does not hold. This can lead to inconsistencies in the semantic similarity of the latent space such
that two close samples in the latent space might have different labels. Second, if the number of
classes increases for a downstream task, the probability of sampling intra-class samples in a batch
will decrease, leading to a lack of performance improvement. Therefore, in future investigations, it
might be beneficial to use a different distance metric for quasi-periodic time-series data such that it
can scale with the number of classes while considering the lack of big datasets.

More ablation studies about the sensitivity of mixing coefficients and performance in different
self-supervised learning frameworks, like BYOL (58) can be found in Appendix E.1 and E.2. And,
investigations regarding whether we still need known data augmentations are given in Appendix E.3.
Examples that visually demonstrate the negative effects of linear mixup and our proposed mixup
technique to prevent this problem can be found in Appendix F. Comparative results regarding the
performance of the tailored mixup in the supervised learning paradigm are given in Appendix G.
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6 Related Work

The goal of contrastive learning is to contrast positive with negative pairs (59). In other words, the
embedding space is governed by two forces, the attraction of positive pairs and the repellence of
negatives, actualized through the contrastive loss (60). Since label information is unavailable during
the training, positive pairs are generated using augmentation techniques on a single sample, while
negative pairs are randomly sampled from the entire dataset. Therefore, the choice or generation
of positive and negative samples plays a pivotal role in the success of contrastive learning (61; 62;
63; 64) and both approaches, generation/selection of positive/negative pairs, have been investigated
thoroughly in the literature (65; 66; 67; 68; 69; 70), we limit our discussion about prior works related
to data augmentation techniques that create optimal or hard samples without labels.

Adversarial based approaches A growing body of literature has investigated generating samples
by using adversarial training for both positives and negatives (48; 71; 72). A seminal work about
the importance of augmentations in CL, InfoMin, presented an adversarial training strategy where
players try to minimize and maximize the mutual information using the NCE loss (48). CLAE, one
of the first works that leveraged the adversarial approach, shows that adversarial training generates
challenging positive and hard negative pairs (71). Another recent study proposed an adversarial
approach that generates hard samples while retaining the original sample identity by leveraging
the identity-disentangled feature of VAEs (52). However, adversarial augmentations may change
the original sample identity due to excessive perturbations and it is infeasible to tune the attack
strength for every sample to preserve the identity. In other words, these approaches do not consider
the sample-specific features and use a constant perturbation coefficient for all samples whereas our
proposed method considers the similarity between pairs and tunes the mixing coefficients accordingly.

Mixup based approaches Mixup-based methods have been recently explored in contrastive learn-
ing (22; 70; 47; 73; 74). According to a recent theoretical work (22), mixup has implicit data-adaptive
regularization effects that promote generalization better than adding Gaussian noise, which is a
commonly used augmentation strategy in both time-series and vision data (75; 76; 77). Although,
mixup-based approaches have shown success in different problems (78; 79), such as domain adap-
tation, creating samples using mixup in the input space is infeasible in domains where data has a
non-fixed topology, such as sequences, trees, and graphs (22). Therefore, recent works suggest mixing
hidden representations of samples, similar to Manifold Mixup (80). However, this method claims that
mixing fixed-length hidden representation via an intermediate layer "z = αz+(1−α)z̃" can be inter-
preted as adding noise to a given sample in the direction of another. However, it is an overly optimistic
claim because early during training, where in most cases there is usually no linear separability among
the representations, this synthesis may result in hidden representations that are completely different
and far away from the samples (70; 81). Therefore, in this work, we take a different approach and
modify the mixup method considering its limitations for quasi-periodic non-stationary time-series
data. Also, unlike most existing methods that aim to generate hard samples—samples that are close
to class boundaries—using adversarial approaches (52; 48; 71) or feature extrapolation (50; 70), our
method seeks to connect semantically closer samples together using interpolation in a tailored way.

7 Conclusion

In this paper, we first demonstrate the destructive effect of linear mixup for quasi-periodic time-
series data, then introduce a novel tailored mixup method to generate positive samples for the
contrastive learning formulation while preventing this destructive effect and interpolating the samples
appropriately. Theoretically, we show that our proposed method guarantees the interpolation of pairs
without causing any loss of information while generating a diverse set of samples. Empirically, our
method outperforms the prior approaches in three real-world tasks. By conducting experiments on
contrastive and supervised learning settings, we show that our approach is agnostic to the choice
of learning paradigm. Thus, it holds the potential for utilization in generating augmented data for
different learning paradigms as well. We believe that the method proposed in this paper has the
potential to significantly improve learning solutions for a diverse range of time series tasks.
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Appendix
A Proof

In this section, we present complete proofs of our theoretical study, starting with notations.

A.1 Notations

Fourier transform of a real-valued sample with a finite duration is obtained as in Equation 7.

Xk = F(x) =

∞∑
n=−∞

xne
−j2πkn (7)

The amplitude and phase for each frequency are calculated from the Fourier transform as follows.

A(x) =
√
Re(Xk)2 + Im(Xk)2

P (x) = arctan2(Im(Xk),Re(Xk)),
(8)

where arctan is a 2-argument arctangent which is the angle measure in radians. The phasor, as in
Figure 1, of a sample is represented as in Equation 9.

Xk = F(x) = A(x)ejP (x) (9)

A.2 Proof for Proposition 2.3

Proposition A.1 (Destructive Mixup). If Assumptions 2.1 and 2.2 hold, there exist λ ∼ Beta(α, α)
or λ ∼ U(β, 1.0) with high values of β such that when linear mixup techniques are utilized, the
lower bound of the mutual information for the augmented sample distribution decreases to zero.

0 ≤ I(y;x+) < I(y;x∗) where

x+ = λx+ (1− λ)x̃ and
∫
f∗

Sx∗(f) =

∫ ∞

−∞
Sx∗(f)

(10)

Proof.

x+ = λx+ (1− λ)x̃ (11)

From the linearity of Fourier transformation and ignoring k in Xk for the sake of easiness.

X+ = λX+ (1− λ)X̃ (12)

X+ = X̃+ λ(X− X̃) (13)

Let X̃ = e−jωϕkXωk, where ϕk and ωk are random phase and frequency modulators for each
frequency, sampled from distributions ϕk ∼ Φ, ωk ∼ Ω.

X+ = e−jωϕkXωk + λ(X− e−jωϕkXωk) (14)

X+ = X
[
λ+ e−jωϕkωk − λe−jωϕkωk

]
(15)

X+ = X
[
λ+ (1− λ)e−jωϕkωk

]
(16)

X+ = X [λ+ (1− λ)ωk(cos (ωϕk)− j sin (ωϕk))] (17)
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From the quasi-periodicity, assume that the frequency ranges of interest (f∗, i.e., k∗) are overlapped
for both samples while the sampled random modulators have the following relationship.

ωk∗ ≈ λ

1− λ
and θ ≡ [ωϕk∗ ] (mod 2π), (18)

where θ is an odd multiple of π. Equation 17 can be simplified as follows.

X+
k∗ = Xk∗ [λ+ λ cos (ωϕk∗)] (19)

X+
k∗ ≈ 0 (20)

X+
k∗ =

∞∑
n=−∞

xne
−j2πk∗n −→

∞∑
n=−∞

xne
−j2πk∗n ≈ 0 (21)

Sx+(f∗) = lim
N→∞

1

2N

∣∣∣∣∣
N∑

n=−N

xne
−j2πf∗n

∣∣∣∣∣
2

(22)

From Assumption 2.1,

I(y;x+) ∝
∫
f∗

Sx+(f) /

∫ ∞

−∞
Sx+(f) (23)

0 ≤ I(y;x+) < I(y;x∗) (24)

We use Euler’s formula to expand Equation 16 to 17. While we use the frequency bins (k) and
frequency values in Hz (f ) interchangeably for Equations 21 and 22.

Although the above proof is to show the resulting instances may not contain any task-relevant
information, it can also be demonstrated that the augmentation process can potentially discard the
partial task-specific information (not whole) if ϕk and ωk are close to indicated relationships.

A.3 Proof for Theorem 3.1

Theorem A.2 (Guarantees for Mixing). Under assumptions 2.1 and 2.2, given any λ ∈ (0, 1], the
mutual information for the augmented instance lower bounded by the sampled λ and anchor x.

λI(y;x) ≤ I(y;x+) < I(y;x∗) where x+ = F−1(A(x+)∠P (x+)) (25)

Proof.

x+ = F−1(A(x+)∠P (x+)) where

A(x+) = λAA(x) + (1− λA)A(x̃) and

P (x+) =

{
P (x)− |∆Θ| ∗ (1− λP ), if ∆Θ > 0

P (x) + |∆Θ| ∗ (1− λP ), otherwise

(26)
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X+ = A(x+)ejP (x+) (27)∣∣X+
∣∣ = ∣∣∣A(x+)ejP (x+)

∣∣∣ (28)

∣∣X+
∣∣ = A(x+) where

∣∣X+
k

∣∣ = ∣∣∣∣∣
∞∑

n=−∞
x+
n e

−j2πkn

∣∣∣∣∣ (29)∣∣X+
∣∣ = λA(x) + (1− λ)A(x̃) (30)∣∣X+

∣∣ = λ

∣∣∣∣∣
∞∑

n=−∞
xne

−j2πkn

∣∣∣∣∣+ (1− λ)

∣∣∣∣∣
∞∑

n=−∞
x̃ne

−j2πkn

∣∣∣∣∣ (31)

λ

∣∣∣∣∣
∞∑

n=−∞
xne

−j2πkn

∣∣∣∣∣+ (1− λ)

∣∣∣∣∣
∞∑

n=−∞
x̃ne

−j2πkn

∣∣∣∣∣ ≥ λ

∣∣∣∣∣
∞∑

n=−∞
xne

−j2πkn

∣∣∣∣∣ (32)∫
f∗

Sx+(f) ≥ λ

∫
f∗

Sx(f) (33)

Using the
∫∞
−∞ Sx+(f) =

∫∞
∞ Sx̃(f) (i.e., both samples are normalized to have the same power) and

Assumption 2.1,

I(y;x+) ∝
∫
f∗

Sx+(f) /

∫ ∞

−∞
Sx+(f) (34)

λI(y;x) ≤ I(y;x+) < I(y;x∗) (35)

Proof is completed with Equation 35 by combining equations 33 and 34.

Although this proof ignores the effect of phase mixing on the mutual information with the assump-
tion 2.1, it is known that phase components carry semantically important features (S1). Therefore, it
is necessary to note that the objective of this proof is to demonstrate that by applying mixup separately
to the phase and amplitude components, we can avoid destructive interference.
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B Datasets

In this section, we give details about the datasets that are used during our experiments.

B.1 Human Activity Recognition

UCIHAR Human activity recognition using smartphones dataset (UCIHAR) (S2) is collected by
30 subjects within an age range of 16 to 48 performing six daily living activities with a waist-mounted
smartphone. Six activities include walking, sitting, lying, standing, walking upstairs, and walking
downstairs. Data is captured by 3-axial linear acceleration and 3-axial angular velocity at a constant
rate of 50 Hz. We used the pre-processing technique the same as in (S3; S4) such that the input
contains nine channels with 128 features (it is sampled in sliding window of 2.56 seconds and 50%
overlap, resulting in 128 features for each window). Windows are normalized to zero mean and unit
standard deviation before feeding to models. Also, we follow the same experimental setup with prior
works as follows. The experiments are conducted with a leave-one-domain-out strategy, where one of
the domains is chosen to be the unseen target (S4). The contrastive pre-training is conducted with
all subjects without any label information except the target one. Training of the linear layer, which
is added to the frozen trained encoder, is only performed with the first five subjects of UCIHAR
after excluding the target subject. In other words, if the target subject is 0, the subjects from 1 to 29
are used to train the encoder without any label information. Then, subjects from 1 to 4 are used to
train the linear layer. And, evaluation is performed for subject 0. This is performed for the first five
subjects with three random seeds and the mean value is reported.

HHAR Heterogeneity Dataset for Human Activity Recognition (HHAR) is collected by nine
subjects within an age range of 25 to 30 performing six daily living activities with eight differ-
ent smartphones—Although HHAR includes data from smartwatches as well, we use data from
smartphones—that were kept in a tight pouch and carried by the users around their waists (S5).
Subjects then perform 6 activities: ‘bike’, ‘sit’, ‘stairs down’, ‘stairs up’, ‘stand’, and ‘walk’. Due to
variant sampling frequencies of smart devices used in HHAR dataset, we downsample the readings to
50 Hz and apply 100 (two seconds) and 50 as sliding window length with step size, the windows are
normalized to zero mean with unit standard deviation. We used the first four subjects (i.e., a, b, c, d)
as source domains.

USC USC human activity dataset (USC-HAD) is composed of 14 subjects (7 male, 7 female,
aged 21 to 49 with a mean of 30.1) executing 12 activities with a sensor on the front right hip. The
data dimension is six (3-axis accelerometer, 3-axis gyroscope) and the sample rate is 100 Hz. 12
activities include walking forward, walking left, walking right, walking upstairs, walking downstairs,
running forward, jumping up, sitting, standing, sleeping, elevator up, and elevator down. We used the
pre-processing technique with a smaller window size such that the input contains six channels with
100 features (it is sampled in a sliding window of 1 second and 50% overlap, resulting in 100 features
for each window). The same normalization is also applied to windows before feeding to models. We
used the same setup with UCIHAR while source subjects are chosen as the last four this time.

B.2 Heart Rate Prediction

IEEE SPC This competition provided a training dataset of 12 subjects (SPC12) and a test dataset
of 10 subjects (S6). The IEEE SPC dataset overall has 22 recordings of 22 subjects, ages ranging
from 18 to 58 performing three different activities (S7). Each recording has sampled data from
three accelerometer signals and two PPG signals along with the sampled ECG data and the sampling
frequency is 125 Hz. All these recordings were recorded from the wearable device placed on the
wrist of each individual. All recordings were captured with a 2-channel pulse oximeter with green
LEDs, a tri-axial accelerometer, and a chest ECG for the ground-truth HR estimation. During our
experiments, we used PPG channels. We choose the first five subjects of SPC12 as source domains
similar to activity recognition setup while the last six subjects of SPC22 are used for source domains
to prevent overlapping subjects with SPC12.

Dalia PPG dataset for motion compensation and heart rate estimation in Daily Life Activities
(DaLia) was recorded from 15 subjects (8 females, 7 males, mean age of 30.6), where each recording
was approximately two hours long. PPG signals were recorded while subjects went through different
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daily life activities, for instance sitting, walking, driving, cycling, working, and so on. PPG signals
were recorded at a sampling rate of 64 Hz. The first five subjects are used as source domains.

All PPG datasets are standardized as follows. Initially, a fourth-order Butterworth bandpass filter
with a frequency range of 0.5–4 Hz is applied to PPG signals. Subsequently, a sliding window of 8
seconds with 2-second shifts is employed for segmentation, followed by z-score normalization of
each segment. Lastly, the signal is resampled to a frequency of 25 Hz for each segment.

B.3 Cardiovascular disease (CVD) classification

CPSC China Physiological Signal Challenge 2018 (CPSC2018), held during the 7th International
Conference on Biomedical Engineering and Biotechnology in Nanjing, China. This dataset consists
of 6,877 (male: 3,699; female: 3,178) and 12 lead ECG recordings lasting from 6 seconds to 60
seconds with 500 Hz. We use the original labelling (S8) with one normal and eight abnormal types as
follows: atrial fibrillation, first-degree atrioventricular block, left bundle branch block, right bundle
branch block, premature atrial contraction, premature ventricular contraction, ST-segment depression,
ST-segment elevated. We resampled recordings to 100 Hz and exclude recordings of less than 10
seconds.

Chapman Chapman University, Shaoxing People’s Hospital (Chapman) ECG dataset which pro-
vides 12-lead ECG with 10 seconds of a sampling rate of 500 Hz. The recordings are downsampled
to 100 Hz, resulting in each ECG frame consisting of 1000 samples. The labeling setup follows the
same approach as in (S9) with four classes: atrial fibrillation, GSVT, sudden bradycardia, and sinus
rhythm. The ECG frames are normalized to have a mean of 0 and scaled to have a standard deviation
of 1. We split the dataset to 80–20% for training and testing as suggested in (S9).

We choose leads I, II, III, and V2 during our experiments for both ECG datasets. We followed a
similar setup with prior works (S10) and considered each dataset as a single domain different from
previous tasks. The fine-tuning of the linear layer, which is added to the frozen pre-trained encoder,
is performed with 80% of the same domain.

B.4 Metrics

We used the common evaluation metrics in the literature for each task. Specifically, we used accuracy
(Acc) and F1 score for activity recognition (S4), mean absolute error (MAE), and root mean square
error (RMSE) for heart rate prediction (S6; S11), and the area under the ROC curve (AUC) for
cardiovascular disease classification (S10).

In this section, we explain how to calculate each metric for different time-series tasks. For activity
recognition, the accuracy metric is computed by dividing the sum of true positives and true negatives
by the total number of samples where a window has a single label. The MF1 score is calculated as a
harmonic mean of the precision and recall where metrics are obtained globally by counting the total
true positives, false negatives, and false positives similar to (S4).

For heart rate prediction, the Mean Absolute Error (MAE) and Root-Mean-Square Error (RMSE) are
calculated using the following equation:

MAE =
1

K

K∑
k=1

|HRmodel(k)− HRref(k)| (36)

RMSE =

√∑K
k=1(HRmodel(k)− HRref(k))2

K
, (37)

where K represents the total number of segments. The variables HRmodel(k) and HRref(k)
denote the output of the model and reference heart rate values in beats-per-minute for the kth

segment, respectively. This performance metric is commonly used in PPG-based heart rate estimation
studies (S6). The estimated heart rate values (HRmodel(k)) are obtained using our model, while the
reference heart rate values (HRref(k)) are directly taken from datasets.
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The AUC score for CVD classification is calculated using the one-vs-one scheme where the average
AUC is computed for all possible pairwise combinations of classes for both datasets.

C Baselines

C.1 Prior Mixup Techniques

In this section, we give a detailed explanation of each mixup technique we compare our proposed
method.

LinearMix We apply linear mixup as in Equation 38 to generate positive samples, if x has more
than one channel, mixup is applied independently for each of them.

x+ = λx+ (1− λ)x̃ (38)

BinaryMix We implement the binary mixup (S12) by swapping the elements of x with the elements
of another randomly chosen sample x̃ as shown below.

x+ = m⊙ x+ (1−m)⊙ x̃, (39)

where m is a binary mask sampled from a Bernouilli(ρ) with high values, and ⊙ stands for Hadamard
product.

GeometricMix In Geometric Mixup, we create a positive sample corresponding to a sample x by
taking its weighted-geometric mean with another randomly chosen sample x̃ same as (S13) as shown
below.

x+ = xλ + x̃(1−λ) (40)

CutMix Cutmix is implemented similarly to Binarymix. However, instead of changing each sample
point with a probability, we cut a continuous portion using a rectangle mask M from a signal x and
replace it with the same portion of another randomly chosen one x̃. The starting point of the mask is
uniformly sampled while its length is sampled from lower values such that the augmented sample is
more similar to the anchor. If the signal has multiple channels, this process is applied to all channels
in the same section.

x+ = M⊙ x+ (1−M)⊙ x̃, and M = rect
(
b

a

)
, (41)

where b and a are the starting point and length of the rectangle wave, respectively.

AmplitudeMix AmplitudeMix is introduced for domain adaptation problems by mixing the ampli-
tude information of images without mixing the phase of two samples (S1). In our setup, we perform
amplitude mixing on the time series data across all channels while keeping the phase component
unchanged. In other words, we perform the following operations.

x+ = F−1(A(x+)∠P (x+)) where

A(x+) = λAA(x) + (1− λA)A(x̃) and P (x+) = P (x)
(42)

SpecMix We implement the SpecMix by applying CutMix to the spectrogram of time-series where
the spectrogram is calculated using the short-time Fourier transform as follows.

X+
k =

∞∑
n=−∞

xng[n−mR]e−j2πkn, (43)
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where g[n − mR] is an analysis window of length M with hop length of R over the signal and
calculating the discrete Fourier transform (DFT) of each segment of windowed data. The length of
the Fourier transform is set to the sample size of the input time series while the hop and window
parameters are set to the quarter of the length.

C.2 Prior Methods for Sample Generation

In this section, we give a detailed explanation of prior methods for data generation methods.

Traditional Augmentations We apply two separate data augmentation to the anchor for creating
two instances, and the encoders are trained to maximize agreement using the contrastive loss in (S14).
We search mainly for augmentations that are known in state-of-the-art works (S4). The detailed
augmentations are given in Table 22.

InfoMin We train a model gθ(.), which is restricted to sample-wise 1× 1 convolutions and ReLU
activations same as in (S15), to decrease the mutual information between two instances. In the
original paper, the input sample is split into two instances (X1 and X2:3) and then adversarial training
is performed. As we do not have RGB channels for time-series data, we added Gaussian noise to the
signal for creating other instances and then perform adversarial training.

NNCLR We follow a similar setup to SimCLR by applying two separate data augmentations, then
we use nearest neighbors in the learned representation space as the positive in contrastive losses (S16).

PosET We perform the dimension level mixing with extrapolation of positive features as follows:

z+ = λ⊙ z+ (1− λ)⊙ z̃, (44)

where ⊙ is Hadamard product, and λ ∼ Beta(α, α). We add 1 to sampled λ for extrapolation as
in (S17).

GenRep In the original implementation of GenRep, the authors use implicit generative models
(IGMs) such as BigBiGAN (S18) that are trained with millions of images to create the anchor and
positive instance by sampling nearby latent vectors. However, as the number of samples for training
is limited in time series and there is a well-trained generator for different time-series tasks, we use
our trained VAE for sampling nearby latent vectors as positives. Mainly, we sample an anchor from
real data, feed it to the encoder, add a Gaussian noise sampled from a truncated normal distribution,
and use the output of the decoder for the positive sample with the anchor.

Augmentation Bank The augmentation bank that perturbs frequency components of a time-series
signal is proposed in (S19) where the authors use it for unsupervised domain adaptation with a
different framework than SimCLR, namely time-frequency consistency (TF-C). As it is a novel data
augmentation technique, we have implemented the frequency augmentation bank as a baseline while
using the SimCLR framework for a fair comparison with other methods. The authors also employed
a collection of time-based augmentations for the time-domain contrastive encoder. Nonetheless, since
these augmentations have already been studied in previous CL setups, we chose to exclusively utilize
the frequency augmentation bank. In the paper, the authors mentioned using a small budget with
low-frequency perturbations results in a performance increase, thus we chose the budget with a single
frequency while choosing the α = 0.5 with the same settings in the paper.

DACL We perform the mixup for hidden representations, i.e., before applying projection-head, as
follows.

v+ = λv + (1− λ)ṽ, (45)

where v is the fixed-length hidden representations of samples while λ is sampled from uniform
distribution with high values.
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IDAA We follow the original implementation of authors with their proposed VAE architecture
while optimizing the adversarial strength for each time-series task. We apply the FGSM adversarial
attack the same as in the original implementation (S20) by perturbing the encoded representation of a
sample while adding noises along the gradient sign’s direction of the loss.

One setup difference between this section and the previous mixup methods is that when we compare
our work with PosET, GenRep, DACL, and IDAA, we apply the best traditional data augmentation
techniques, which are used for SimCLR implementation, to the specific positive data generation
mechanisms. The reason for this approach is that the original implementations of certain works
indicate that the proposed methods achieve optimal results when used in conjunction with known
augmentations, where our observations align with these findings.

The detailed hyperparameters for each baseline with the corresponding time series tasks are given in
the following section.

D Implementation Details

D.1 Parameters for mixing

In this section, we provide the parameters that are used during our experiments. To determine the
optimal parameters of the baselines for each task, we conduct a grid search. This search is performed
on a small validation set taken from the largest dataset of the respective tasks, which are USC, Dalia
and Chapman. We believe that this approach ensures fairness and produces more realistic results, as
dataset-specific optimizations can lead to overfitting of parameters, particularly in smaller and less
diverse datasets.

Table 7: Parameters for baselines

Method Activity Recognition Heart rate Prediction CVD Classification

Linear Mixup λ ∼ U(0.9, 1) λ ∼ U(0.9, 1) λ ∼ U(0.85, 1)

Binary Mixup m ∼ U(0.8, 1) m ∼ U(0.9, 1) m ∼ U(0.9, 1)

Geometric Mixup λ ∼ U(0.9, 1) λ ∼ U(0.9, 1) λ ∼ U(0.9, 1)

CutMix
b ∼ U(0, 1) b ∼ U(0, 1) b ∼ U(0, 1)

a ∼ U(0.1, 0.4) a ∼ U(0.1, 0.3) a ∼ U(0.1, 0.3)

AmplitudeMix λA ∼ U(0.9, 1) λA ∼ U(0.9, 1) λA ∼ U(0.8, 1)

SpecMix
b ∼ U(0, 1) b ∼ U(0, 1) b ∼ U(0, 1)

a ∼ U(0.1, 0.4) a ∼ U(0.1, 0.3) a ∼ U(0.1, 0.3)

PosET λ ∼ Beta(2, 2) λ ∼ Beta(2, 2) λ ∼ Beta(2, 2)

GenRep λ ∼ N t(0, 0.2, 1.0) λ ∼ N t(0, 0.25, 1.0) λ ∼ N t(0, 0.2, 1.0)

DACL λ ∼ U(0.9, 1) λ ∼ U(0.9, 1) λ ∼ U(0.85, 1)

IDAA δ = 0.1 δ = 0.15 δ = 0.2

Ours
λA ∼ U(0.7, 1), λP ∼ U(0.9, 1) λA ∼ U(0.7, 1), λP ∼ U(0.9, 1) λA ∼ U(0.7, 1), λP ∼ U(0.9, 1)

ϵ = 0.7, λA, λP ∼ N t(0.9, 0.1, 0.9) ϵ = 0.8, λA, λP ∼ N t(1, 0.1, 0.9) ϵ = 0.7, λA, λP ∼ N t(1, 0.1, 0.9)

D.2 Baseline Encoder Architecture

For the baseline encoder model, we adopt the DeepConvLSTM as in (S4) where the architecture has
4 convolutional layers with 5× 1 size of 64 kernels while ReLU is followed each convolution. After
the convolutions, the tensor is passed through a dropout layer with a dropout rate of 0.5 to prevent
overfitting. Then, the output of dropout is fed into the 2-layer LSTM with 128 units. After training
the baseline encoder, we attach a linear layer and freeze the previous layers for fine-tuning. This
architecture is widely used for the datasets we used during our experiments (S3; S7; S4), we therefore
adopt the same network across tasks.

D.3 VAE Models

We use the total correlation variational autoencoder (β-TCVAE) (S21) to calculate the distance
between two encoded samples in the latent space. We train the model for 100 epochs with a learning
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rate of 1e− 3 while setting the batch size to 2048. The latent dimensions and the β values are set
to 10 and 5, respectively. Below, we present the tables providing detailed information about the
architectures of the encoder and decoder for datasets. The output of convolutional layers is fed to the
batch normalization before the activation layer is applied. For tasks Heart rate Prediction and CVD
Classification, we use task-specific encoder and decoder as the number of channels and input size for
datasets in each task are the same. However, two different networks, one for UCIHAR and one for
others, are designed for the Activity Recognition due to different number of input channels.

Table 8: Encoder Network for UCIHAR in Activity Recognition

Encoder

Layer Name Output size # of kernels Kernel size Stride Activation
Input Nx1x128x9

Convolution Nx32x60x7 32 9x3 2x1 ReLU
Convolution Nx32x27x5 32 7x3 2x1 ReLU
Convolution Nx64x8x3 64 5x3 3x1 ReLU
Convolution Nx128x2x1 128 5x3 2x1 ReLU
Convolution Nx512x1x1 512 2x1 1x1 ReLU
Convolution Nx20x1x1 10 1x1 1x1

Table 9: Decoder Network for UCIHAR in Activity Recognition

Decoder

Layer Name Output size # of kernels Kernel size Stride Activation
Input Nx1x10x1

Transposed Convolution Nx512x2x9 512 2x9 1x1 ReLU
Transposed Convolution Nx128x8x9 128 4x1 6x1 ReLU
Transposed Convolution Nx64x16x9 64 4x1 2x1 ReLU
Transposed Convolution Nx32x32x9 32 4x1 2x1 ReLU
Transposed Convolution Nx32x64x9 32 4x1 2x1 ReLU
Transposed Convolution Nx1x128x9 1 4x1 2x1

Table 10: Encoder Network for USC and HHAR in Activity Recognition

Encoder

Layer Name Output size # of kernels Kernel size Stride Activation
Input Nx1x100x6

Convolution Nx32x46x5 32 9x2 2x1 ReLU
Convolution Nx32x20x4 32 9x2 2x1 ReLU
Convolution Nx64x8x3 64 5x2 2x1 ReLU
Convolution Nx128x2x2 128 5x2 2x1 ReLU
Convolution Nx512x1x1 512 2x2 1x1 ReLU
Convolution Nx20x1x1 10 1x1 1x1

Table 11: Decoder Network for USC and HHAR in Activity Recognition

Decoder

Layer Name Output size # of kernels Kernel size Stride Activation
Input Nx1x10x1

Transposed Convolution Nx512x2x6 512 2x6 1x1 ReLU
Transposed Convolution Nx128x6x6 128 6x1 2x1 ReLU
Transposed Convolution Nx64x12x6 64 4x1 2x1 ReLU
Transposed Convolution Nx32x25x6 32 5x1 2x1 ReLU
Transposed Convolution Nx32x50x6 32 4x1 2x1 ReLU
Transposed Convolution Nx1x100x6 1 4x1 2x1
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Table 12: Encoder Network for Heart rate Prediction

Encoder

Layer Name Output size # of kernels Kernel size Stride Activation
Input Nx1x200x1

Convolution Nx32x94x1 32 13x1 2x1 ReLU
Convolution Nx32x43x1 32 9x1 2x1 ReLU
Convolution Nx64x18x1 64 9x1 2x1 ReLU
Convolution Nx128x6x1 128 7x1 2x1 ReLU
Convolution Nx512x1x1 512 5x1 2x1 ReLU
Convolution Nx20x1x1 20 2x1 1x1

Table 13: Decoder Network for Heart rate Prediction

Decoder

Layer Name Output size # of kernels Kernel size Stride Activation
Input Nx1x10x1

Transposed Convolution Nx512x6x1 512 6x1 1x1 ReLU
Transposed Convolution Nx128x12x1 128 4x1 2x1 ReLU
Transposed Convolution Nx64x25x1 64 5x1 2x1 ReLU
Transposed Convolution Nx32x50x1 32 4x1 2x1 ReLU
Transposed Convolution Nx32x100x1 32 4x1 2x1 ReLU
Transposed Convolution Nx1x200x1 1 4x1 2x1

Table 14: Encoder Network for CVD Classification

Encoder

Layer Name Output size # of kernels Kernel size Stride Activation
Input Nx1x1000x4

Convolution Nx32x330x3 32 12x2 3x1 ReLU
Convolution Nx32x107x2 32 10x2 3x1 ReLU
Convolution Nx64x34x1 64 8x2 3x1 ReLU
Convolution Nx128x9x1 128 8x1 3x1 ReLU
Convolution Nx512x1x1 512 7x1 3x1 ReLU
Convolution Nx20x1x1 20 1x1 1x1

Table 15: Decoder Network for CVD Classification

Decoder

Layer Name Output size # of kernels Kernel size Stride Activation
Input Nx1x10x1

Transposed Convolution Nx512x4x4 512 6x1 1x1 ReLU
Transposed Convolution Nx128x12x4 128 4x1 2x1 ReLU
Transposed Convolution Nx64x36x4 64 5x1 2x1 ReLU
Transposed Convolution Nx32x109x4 32 4x1 2x1 ReLU
Transposed Convolution Nx32x331x4 32 4x1 2x1 ReLU
Transposed Convolution Nx1x1000x4 1 4x1 2x1
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Figure 3: The experiment regarding the effect of phase mixup coefficients in eight datasets. a) shows
the performance in activity recognition, b) is for heart rate prediction using PPG, and finally c) shows
the cardiovascular disease classification

50

60

70

80

90

100

-0.2 -0.1 0

A
cc

u
ra

cy

Δ λA

UCIHAR HHAR USC

75

80

85

90

95

100

-0.2 -0.1 0

A
U

C

Δ λA

CPSC Chapmana) b) c)

10
12
14
16
18
20
22
24
26

-0.2 -0.1 0

M
e

an
 A

b
so

lu
te

 E
rr

o
r

Δ λA

IEEE SPC12 IEEE SPC22 Dalia

Figure 4: The experiment regarding the effect of amplitude mixup coefficients in eight datasets. a)
shows the performance in activity recognition, b) is for heart rate prediction using PPG, and finally
c) shows the cardiovascular disease classification

E Additonal Results

E.1 The effect and robustness of mixing coefficients

In this section, our experiments focus on observing the impact of a diverse range of mixing coefficients
for both phase and amplitude components. We decrease the lower threshold of distributions for
sampling the mixing coefficient by 0.1 and 0.2. For example, normally the phase mixup coefficient
for Activity Recognition is sampled from truncated normal λP ∼ N t(1, 0.1, 0.9) and uniform
λP ∼ U(0.9, 1). We decrease the low threshold value from 0.9 to 0.8 and 0.7 and report the results
for both phase and amplitude. The results are reported in Figures 3 and 4 for eight datasets.

From Figures 3 and 4, it can be inferred that the phase component is more sensitive to the changes. In
other words, a significant decrease in performance is observed when the mixing coefficients for the
phase are sampled from lower values whereas this effect is not as much as severe for the amplitude
coefficient, indicating that the amplitude of frequencies is more robust to changes compared to phase.

E.2 The performance in other frameworks

In this section, we investigate the effect of data augmentations in three different unsupervised learning
frameworks which are SimCLR (S14), BYOL (S22) and TS-TCC (S23). For BYOL, the hidden size
of the projector is set to 128, the exponential moving average parameter is set to 0.996. For TS-TCC,
the λ1 and λ2 coefficients of temporal and contextual contrasting losses are set to 1, the same as
in the original implementation. In TS-TCC, the authors proposed to use a weak (jitter and scale)
and strong (permutation and jitter) augmentation together, which is shown as TS-TCC + Traditional
Augs in the tables. During our experiments, we followed the original implementation of TS-TCC
and applied additional augmentations after the strong one without changing the original contrastive
learning framework. We set the scaling ratio to 2 and 10 for permutation (splitting the signal into a
random number of segments with a maximum of 10 and randomly shuffling them). These parameters
for augmentation strengths are set to the same values as in the original implementation.
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Table 16: Performance comparison of our method in different CL frameworks for Activity Recognition

Method UCIHAR HHAR USC
ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑

SimCLR + Traditional Augs. 87.05 ± 1.07 86.13 ± 0.96 85.48 ± 1.16 84.31 ± 1.31 53.47 ± 1.10 52.09 ± 0.95
SimCLR + Aug. Bank 65.27 ± 1.12 71.16 ± 1.24 67.95 ± 1.45 75.13 ± 1.32 43.28 ± 4.37 47.31 ± 4.68
SimCLR + DACL 73.12 ± 1.23 66.28 ± 1.11 80.89 ± 0.91 81.31 ± 0.78 53.61 ± 2.60 51.76 ± 2.21
SimCLR + Ours 91.60 ± 0.65 90.46 ± 0.53 88.05 ± 1.05 87.95 ± 1.10 60.13 ± 0.75 59.13 ± 0.69
BYOL + Traditional Augs. 83.41 ± 0.95 82.13 ± 1.12 86.41 ± 0.97 86.31 ± 1.10 58.34 ± 1.15 55.04 ± 1.15
BYOL + Aug. Bank 73.71 ± 0.74 69.80 ± 1.10 84.60 ± 0.93 84.65 ± 1.03 52.00 ± 1.21 49.14 ± 1.18
BYOL + DACL 73.86 ± 1.12 70.46 ± 1.24 82.76 ± 1.04 84.89 ± 0.93 47.14 ± 2.08 45.34 ± 2.98
BYOL + Ours 87.01 ± 1.10 84.92 ± 1.13 90.31 ± 1.16 90.45 ± 1.31 56.87 ± 0.91 55.01 ± 0.95
TS-TCC + Traditional Augs. 90.95 ± 0.87 90.30 ± 0.64 35.57 ± 1.43 40.13 ± 1.67 39.76 ± 1.61 43.12 ± 1.10
TS-TCC + Aug. Bank 76.78 ± 0.95 76.52 ± 0.97 20.25 ± 1.54 19.25 ± 1.32 21.37 ± 1.78 20.15 ± 1.48
TS-TCC + DACL 73.86 ± 1.12 70.46 ± 1.24 33.89 ± 1.87 37.41 ± 1.39 36.74 ± 1.36 40.18 ± 1.45
TS-TCC + Ours 91.86 ± 0.97 91.92 ± 1.02 38.45 ± 1.12 43.52 ± 1.33 42.61 ± 1.92 45.06 ± 1.11

Table 17: Performance comparison of our method in different CL frameworks for Heart Rate
Prediction

Method IEEE SPC12 IEEE SPC22 DaLia
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

SimCLR + Traditional Augs. 20.67 ± 1.13 26.35 ± 0.98 16.84 ± 1.10 22.23 ± 0.72 12.01 ± 0.65 21.09 ± 0.86
SimCLR + Aug. Bank 27.31 ± 2.17 37.93 ± 2.96 27.84 ± 2.03 36.41 ± 3.98 35.87 ± 4.18 40.61 ± 3.74
SimCLR + DACL 21.85 ± 1.63 28.17 ± 1.75 14.67 ± 1.10 20.06 ± 1.21 18.44 ± 1.32 25.61 ± 1.45
SimCLR + Ours 16.26 ± 0.72 22.48 ± 0.95 12.25 ± 0.47 18.20 ± 0.61 10.57 ± 0.55 20.37 ± 0.73
BYOL + Traditional Augs. 20.68 ± 0.98 27.11 ± 0.85 21.16 ± 1.10 26.83 ± 1.05 12.03 ± 0.75 20.77 ± 0.83
BYOL + Aug. Bank 26.08 ± 1.05 32.62 ± 0.93 21.87 ± 1.03 29.13 ± 1.03 18.63 ± 0.91 28.30 ± 0.87
BYOL + DACL 26.45 ± 1.23 33.50 ± 1.32 21.29 ± 1.13 27.34 ± 1.33 15.11 ± 0.93 23.21 ± 0.83
BYOL + Ours 19.85 ± 0.88 26.10 ± 0.94 22.08 ± 1.24 28.20 ± 1.13 11.45 ± 0.63 20.38 ± 0.80
TS-TCC + Traditional Augs. 11.08 ± 1.03 16.97 ± 0.92 13.48 ± 1.23 21.61 ± 1.11 16.18 ± 1.03 24.27 ± 0.95
TS-TCC + Aug. Bank 11.44 ± 1.01 17.06 ± 0.94 13.79 ± 1.21 22.41 ± 1.08 17.28 ± 1.12 25.41 ± 0.98
TS-TCC + DACL 11.60 ± 1.16 18.26 ± 1.20 15.25 ± 1.26 24.40 ± 1.10 16.27 ± 1.16 24.28 ± 0.97
TS-TCC + Ours 10.82 ± 0.65 16.93 ± 0.73 13.63 ± 1.02 21.80 ± 1.11 15.90 ± 0.57 23.81 ± 0.89

Tables 16 17 and 18 compares the performance of three data augmentation techniques, traditional
time-series augmentations, DACL and our proposed method, in contrastive learning frameworks of
BYOL, SimCLR, and TS-TCC.

Table 18: Performance comparison of our method in different CL frameworks for CVD classification

Method CPSC 2018 Chapman
AUC↑ AUC↑

SimCLR + Traditional Augs. 67.86 ± 3.41 74.69 ± 2.04
SimCLR + Aug. Bank 81.78 ± 1.24 94.75 ± 0.90
SimCLR + DACL 82.38 ± 0.84 92.28 ± 0.97
SimCLR + Ours 85.30 ± 0.45 95.90 ± 0.82
BYOL + Traditional Augs 75.41 ± 1.34 85.63 ± 1.43
BYOL + Aug. Bank 83.51 ± 1.12 91.03 ± 1.18
BYOL + DACL 77.61 ± 1.16 81.62 ± 1.24
BYOL + Ours 83.25 ± 1.03 91.23 ± 1.15
TS-TCC + Traditional Augs 87.07 ± 1.10 92.03 ± 1.17
TS-TCC + Aug. Bank 86.67 ± 1.04 92.15 ± 1.02
TS-TCC + DACL 87.63 ± 0.83 92.21 ± 0.86
TS-TCC + Ours 88.05 ± 0.37 92.11 ± 0.75

The results show that the BYOL is more robust to the choice of augmentations than SimCLR,
which is also indicated in the original paper (S22). Also, another important outcome of this ablation
experiment is that when the TS-TCC framework is used for datasets HHAR and USC, the performance
decreases compared to other datasets. A possible explanation for this decrease in the TS-TCC might
be the hyper-parameters of the augmentations that are used in the paper. The authors change the
strength of the permutation window from dataset to dataset. In our experiments, we used the same
hyperparameter for all activity recognition datasets, which can explain the outcome. This ablation
experiment also shows that the degree of traditional augmentations is important for contrastive
learning to learn class invariant representations.

27



E.3 Do we still need data augmentations?

In this section, we conduct experiments to observe the performance of methods without additional
augmentations. During our experiments, we searched for the best traditional augmentation technique
for each method in a given task. We searched over common time series augmentation methods in
literature (Table 22), and applied them with baselines. Specifically, we apply Resample for Activity
Recognition, Permutation with Noise for Heart rate Prediction and Noise with Scaling for CVD
Classification. We have observed that these augmentations yield the best results for all baselines
when applied prior to the proposed techniques. However, for GenRep, we found that applying
the augmentations after generating instances results in better performance, similar to the original
work (S24). We, therefore, apply these specified augmentations for each baseline and report the
corresponding results.

Different from other baselines, we observed performance increases for a few datasets when GenRep
is applied without any augmentations. This phenomenon can be attributed to the generation of
low-quality and less realistic positive samples, where additional augmentations lead to alterations in
semantic information, due to less number of samples during training VAE models. However, in the
end, we observe that applying additional augmentations always increases the performance on average
for all baselines in each task.

Table 19: Performance comparison of methods without Augs. in Activity Recognition datasets

Method
UCIHAR HHAR USC

ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑

IDAA (S20) 82.23 ± 0.69 79.84 ± 0.89 88.98 ± 0.62 89.01 ± 0.55 59.23 ± 1.10 56.11 ± 1.54
w/o Aug. 64.42 (-17.81) 65.17 (-14.67) 86.44 (-2.54) 86.31 (-2.70) 35.22 (-24.01) 33.62 (-22.59)

GenRep (S24) 87.22 ± 1.05 86.48 ± 0.95 87.05 ± 0.95 86.45 ± 0.90 50.13 ± 2.85 49.50 ± 2.73
w/o Aug. 88.01 (+0.79) 88.12 (+1.64) 86.51 (-0.54) 86.33 (-0.22) 48.31 (-1.82) 47.33 (-2.17)

DACL (S13) 73.12 ± 1.23 66.28 ± 1.11 80.89 ± 0.91 81.31 ± 0.78 53.61 ± 2.60 51.76 ± 2.21
w/o Aug. 45.17 (-27.95) 44.84 (-21.44) 56.70 (-24.19) 56.55 (-25.76) 27.12 (-26.49) 26.99 (-24.77)

Ours 91.60 ± 0.65 90.46 ± 0.53 88.05 ± 1.05 87.95 ± 1.10 60.13 ± 0.75 59.13 ± 0.69
w/o Aug. 84.04 (-5.56) 83.34 (-7.12) 86.70 (-1.35) 86.72 (-1.23) 45.55 (-14.58) 44.94 (-14.19)

Table 20: Performance comparison of methods without Augs. in Heart Rate Prediction datasets

Method
IEEE SPC12 IEEE SPC22 DaLia

MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

IDAA (S20) 19.02 ± 0.96 27.42 ± 1.11 15.37 ± 1.21 22.41 ± 1.42 11.12 ± 0.64 20.45 ± 0.69
w/o Aug. 20.19 (+1.17) 28.51 (+1.09) 16.34 (+0.97) 25.75 (+3.34) 16.01 (+4.89) 25.62 (+5.17)

GenRep (S24) 21.02 ± 1.41 28.42 ± 1.65 15.67 ± 1.23 22.33 ± 1.43 25.41 ± 1.62 36.83 ± 1.87
w/o Aug. 20.51 (-0.51) 28.35 (-0.07) 23.07 (+7.40) 33.20 (+10.87) 20.03 (-5.38) 31.01 (-5.82)

DACL (S13) 21.85 ± 1.63 28.17 ± 1.75 14.67 ± 1.10 20.06 ± 1.21 18.44 ± 1.32 25.61 ± 1.45
w/o Aug. 22.75 (+0.90) 29.90 (+1.73) 20.88 (+6.21) 29.51 (+2.70) 28.24 (+9.45) 37.33 (+11.72)

Ours 16.26 ± 0.72 22.48 ± 0.95 12.25 ± 0.47 18.20 ± 0.61 10.57 ± 0.55 20.37 ± 0.73
w/o Aug. 19.41 (+3.15) 26.23 (+3.75) 16.41 (+4.16) 25.71 (+7.51) 16.73 (+6.16) 27.43 (+7.06)

28



Table 21: Performance comparison of methods without Augs. in CVD classification datasets

Method
CPSC 2018 Chapman

AUC↑ AUC↑

IDAA (S20) 80.90 ± 0.73 93.63 ± 0.91
w/o Aug. 79.00 (-1.90) 92.37 (-1.26)

GenRep (S24) 52.49 ± 3.43 86.72 ± 1.13
w/o Aug. 45.17 (-7.32) 84.51 (-2.21)

DACL (S13) 82.38 ± 0.84 92.28 ± 0.97
w/o Aug. 73.00 (-9.38) 75.10 (-17.18)

Ours 85.30 ± 0.45 95.90 ± 0.82
w/o Aug. 79.67 (-5.63) 93.48 (-2.42)

Table 22: Common time series augmentations (S4)

Domain Augmentation Details

Time

Noise Add Gaussian noise sampled from normal distribution, N (0, 0.4)

Scale Amplify channels by a random distortion sampled from normal distribution N (2, 1.1)

Shuffle Randomly permute the channels of the sample. (Not available for Heart rate Prediction)

Negate Multiply the value of the signal by a factor of -1

Permute
Split signals into no more than 5 segments, then permute the segments

and combine them into the original shape

Resample
Interpolate the time-series to 3 times its original sampling rate

and randomly down-sample to its initial dimensions

Rotation
Rotate the 3-axial (x, y, and z) readings of each IMU sensor by a random degree, which follows a

uniform around a random axis in the 3D space. (Only applied for Activity Recognition)

Time Flip Flip the time series in time for all channels, i.e., xAug[n] = x[−n]

Random Zero Out Randomly chose a section to zero out

Permutation + Noise Combination of Permutation and Noise

Noise + Scale Combination of Noise and Scaling

Frequency

Highpass Apply a highpass filter in the frequency domain to reserve high-frequency components

Lowpass Apply a lowpass filter in the frequency domain to reserve low-frequency components

Phase shift Shift the phase of time-series data with a randomly generalized number

Noise in Frequency Add Gaussian noise, sampled from normal distribution N (0, 0.5), to the frequency spectrum
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E.4 The effect of interpolating phase components

Here, we investigate the effect of phase interpolation of two samples on the CL performance. In our
proposed method, we bring the phase components of the two coherent signals together by adding a
small value to the anchor’s phase in the direction of the other sample. In this section, we apply the
opposite case of our proposed method and increase the gap of phase difference between the anchor
and randomly chosen sample. However, we mix their amplitudes according to our proposed method
to only observe the phase effect. In other words, we perform the mixup as in Equation 46. Note that
the phase mixing in Equation 46 differs from the proposed method only by the sign change.

x+ = F−1(A(x+)∠P (x+)) where

A(x+) = λAA(x) + (1− λA)A(x̃) and

P (x+) = P (x) + ∆Θ ∗ (1− λP )

(46)

Also, It is important to note that we sample the mixing coefficients for both amplitude and phase
from the same distributions in the proposed method to have a fair comparison. Tables 23 24 25.

Table 23: Performance comparison of our method and its ablation regarding the phase interpolation
in SimCLR and BYOL frameworks for Activity Recognition

Method UCIHAR HHAR USC
ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑

SimCLR + Traditional Augs. 87.05 ± 1.07 86.13 ± 0.96 85.48 ± 1.16 84.31 ± 1.31 53.47 ± 1.10 52.09 ± 0.95
SimCLR + Phase Gap 79.62 ± 1.10 80.57 ± 1.03 86.55 ± 0.83 86.68 ± 0.71 53.61 ± 2.60 51.76 ± 2.21
SimCLR + Ours 91.60 ± 0.65 90.46 ± 0.53 88.05 ± 1.05 87.95 ± 1.10 60.13 ± 0.75 59.13 ± 0.69
BYOL + Traditional Augs. 83.41 ± 0.95 82.13 ± 1.12 86.41 ± 0.97 86.31 ± 1.10 58.34 ± 1.15 55.04 ± 1.15
BYOL + Phase Gap 78.66 ± 0.63 75.45 ± 1.02 85.82 ± 0.91 85.16 ± 0.92 56.14 ± 0.67 56.20 ± 0.75
BYOL + Ours 87.01 ± 1.10 84.92 ± 1.13 90.31 ± 1.16 90.45 ± 1.31 56.87 ± 0.91 55.01 ± 0.95

Table 24: Performance comparison of our method and its ablation regarding the phase interpolation
in SimCLR and BYOL frameworks for Heart Rate Prediction

Method IEEE SPC12 IEEE SPC22 DaLia
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

SimCLR + Traditional Augs. 20.67 ± 1.13 26.35 ± 0.98 16.84 ± 1.10 22.23 ± 0.72 12.01 ± 0.65 21.09 ± 0.86
SimCLR + Phase Gap 18.90 ± 1.43 25.29 ± 1.56 14.60 ± 1.03 19.84 ± 1.15 17.57 ± 1.13 27.72 ± 1.35
SimCLR + Ours 16.26 ± 0.72 22.48 ± 0.95 12.25 ± 0.47 18.20 ± 0.61 10.57 ± 0.55 20.37 ± 0.73
BYOL + Traditional Augs. 20.68 ± 0.98 27.11 ± 0.85 21.16 ± 1.10 26.83 ± 1.05 12.03 ± 0.75 20.77 ± 0.83
BYOL + Phase Gap 25.93 ± 0.96 32.68 ± 0.90 21.87 ± 1.03 29.13 ± 1.03 17.46 ± 0.83 27.24 ± 0.83
BYOL + Ours 19.85 ± 0.88 26.10 ± 0.94 22.08 ± 1.24 28.20 ± 1.13 11.45 ± 0.63 20.38 ± 0.80

Table 25: Performance comparison of our method and its ablation regarding the phase interpolation
in SimCLR and BYOL frameworks for CVD classification

Method CPSC 2018 Chapman
AUC↑ AUC↑

SimCLR + Traditional Augs. 67.86 ± 3.41 74.69 ± 2.04
SimCLR + Phase Gap 77.45 ± 1.10 91.95 ± 0.91
SimCLR + Ours 85.30 ± 0.45 95.90 ± 0.82
BYOL + Traditional Augs 75.41 ± 1.34 85.63 ± 1.43
BYOL + Phase Gap 83.11 ± 1.03 91.02 ± 1.11
BYOL + Ours 83.25 ± 1.03 91.23 ± 1.15
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E.5 The comparison of Mixup methods

In this section, we give a detailed comparison of prior mixup methods with ours below tables, which
are the explicit numbers for Figure 2. Our method demonstrates superior performance compared
to previous mixup techniques in 11 out of 14 metrics, indicating its effectiveness. Additionally, the
Amplitude Mixup technique, which yields comparable results in two datasets, further supports our
claim regarding the destructive effect of simultaneously mixing phase and magnitude for time series.
The relatively lower performance of Amplitude Mixup for some datasets can be explained by its
limited diversity in generating positive samples since this technique has no solution for mixing the
phase of samples in randomly chosen pairs. In other words, as the phase of the augmented instance is
the same as the anchor in Amplitude Mix, the diversity of generated positive samples is less compared
to other techniques.

Table 26: Performance comparison of ours with prior mixups in Activity Recognition datasets

Method UCIHAR HHAR USC
ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑

Geo 36.31 ± 10.15 33.21 ± 12.25 33.16 ± 8.32 31.15 ± 9.25 24.85 ± 9.43 21.64 ± 8.94
Amp 81.76 ± 0.89 80.78 ± 0.78 87.85 ± 0.83 85.53 ± 1.10 41.29 ± 0.56 39.77 ± 1.03
Spec 40.14 ± 2.05 38.34 ± 1.95 56.73 ± 2.01 53.54 ± 1.98 23.45 ± 2.55 21.30 ± 2.41
Cut 50.21 ± 1.34 48.23 ± 1.23 57.71 ± 1.12 53.87 ± 1.09 25.63 ± 2.95 23.41 ± 3.11
Binary 74.13 ± 1.12 71.31 ± 1.10 77.12 ± 0.75 75.23 ± 0.95 42.21 ± 0.97 41.53 ± 1.10
Linear 82.23 ± 2.10 80.25 ± 1.93 80.11 ± 2.05 81.31 ± 1.73 40.15 ± 1.43 39.71 ± 1.14
Ours 84.30 ± 0.73 83.23 ± 0.58 84.51 ± 1.10 83.98 ± 1.03 45.36 ± 0.97 43.14 ± 0.81

Table 27: Performance comparison of ours with prior mixups in Heart Rate Prediction datasets

Method IEEE SPC12 IEEE SPC 22 DaLia
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

Geo 32.65 ± 7.25 48.90 ± 9.87 37.15 ± 6.74 36.32 ± 6.21 38.45 ± 7.31 41.32 ± 6.21
Amp 23.01 ± 0.95 30.10 ± 1.04 18.07 ± 1.13 23.13 ± 1.43 19.05 ± 1.63 30.41 ± 1.65
Spec 24.09 ± 4.10 38.41 ± 3.98 24.41 ± 4.10 29.93 ± 4.10 26.71 ± 4.34 35.31 ± 3.93
Cut 24.98 ± 3.93 35.67 ± 4.15 21.77 ± 4.45 28.43 ± 3.97 31.75 ± 4.10 43.56 ± 3.88
Binary 32.23 ± 1.67 40.21 ± 1.98 22.55 ± 1.87 28.78 ± 2.10 19.71 ± 2.15 28.83 ± 2.45
Linear 24.31 ± 1.54 31.29 ± 1.75 18.52 ± 1.43 22.54 ± 1.49 24.16 ± 1.89 32.46 ± 1.97
Ours 21.13 ± 0.89 28.21 ± 1.15 16.17 ± 0.85 21.13 ± 1.05 16.64 ± 1.20 28.43 ± 1.43

Table 28: Performance comparison of ours with prior mixups in CVD classification datasets

Method CPSC 2018 Chapman
AUC↑ AUC↑

Geo 45.65 ± 6.43 61.32 ± 5.79
Amp 84.10 ± 1.05 89.83 ± 1.12
Spec 69.26 ± 3.10 70.48 ± 3.05
Cut 72.20 ± 2.98 79.23 ± 2.75
Binary 80.53 ± 1.62 82.56 ± 1.45
Linear 78.02 ± 1.43 90.21 ± 1.15
Ours 83.79 ± 1.10 93.85 ± 1.05
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F Illustrative Examples

In this section, we show examples of the destructive behavior of linear mixup and how our proposed
mixup technique solves this problem. In Figure 5 a), we show two PPG waveforms that are obtained
from IEEE SPC15 with the same label i.e., the same heart rate value. Also, we give the corresponding
frequency domain transformations of these two waveforms in Figure 5 b) where the frequency axis is
converted to heart rate in beats-per-minute i.e., 1 Hz corresponds to 60 bpm.
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Figure 5: a) The waveforms of anchor and random sample, b) The frequency domain (A(x))
representation of two samples.

When the linear mixup is applied as in Equation 47 with a λ of 0.9, the resulting waveform is
anticipated to contain heart rate information to an extent similar to both the anchor and the sample.

x+ = λx+ (1− λ)x̃ (47)

However, when there is a phase difference greater than π/2 between these two samples in the
frequencies where the task-specific information is carried, the linear mixup destroys the information.
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Figure 6: a) The waveform of anchor and augmented sample with linear mixup, b) The frequency
domain (A(x)) representations of samples where the augmented waveform has lost all the information
in the critical frequency band, i.e., the task-specific information is lost.
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Figures 5 and 6 demonstrate the destructive behavior of linear mixup instead of feature interpolation.
The linear mixup technique destroys the task-specific information even though the two samples have
the same labels and the mixup ratio is relatively high.

As our proposed mixup prevents this problem and interpolates between features of two samples, the
information is not lost but rather enhanced as both samples have the same label, shown in Figure 7.
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Figure 7: a) The waveform of anchor and augmented sample with proposed mixup technique, b)
The frequency domain (A(x)) representations of samples where the augmented waveform carries the
information in the critical frequency band as an interpolation of two samples.

As can be seen From figures 6 and 7, our proposed mixup technique not only prevents information
loss due to linear mixup but also generates an interpolated sample.
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G Performance in Supervised Learning Paradigm

We also conduct experiments in the supervised learning paradigm with our proposed mixup method to
see its effectiveness in different learning paradigms. We compare the performance of our method with
prior mixup techniques. During the experiments, we follow the original implementation where the
mixup is applied to the same minibatch after random shuffling. In the seminal work of mixup (S25),
the authors stated that interpolating only between inputs with equal labels does not lead to performance
gains. Therefore, we only perform the tailored mixup without implementing any VAEs to check the
similarity of the randomly chosen samples. We implement the tailored mixup for the supervised
learning paradigm as follows.

x+ = F−1(A(x+)∠P (x+)) where A(x+) = λAA(x) + (1− λA)A(x̃) and

P (x+) =


P (x)− |∆Θ| ∗ (1− λP ), if ∆Θ > 0 and λA ≥ 0.5

P (x) + |∆Θ| ∗ (1− λP ), if ∆Θ ≤ 0 and λA ≥ 0.5

P (x̃)− |∆Θ| ∗ (1− λP ), if ∆Θ > 0 and λA < 0.5

P (x̃) + |∆Θ| ∗ (1− λP ), if ∆Θ ≤ 0 and λA < 0.5

y+ = λAyx + (1− λA)yx̃,

(48)

where the coefficient for the λA is chosen from a beta distribution with α ∈ [0.1, 0.4] within the
same range of the original implementation (S25). The mixing for the phase is constrained to our
original implementation with a uniform λP ∼ U(0.9, 1). We searched for the best α value for each
time-series task and augmentation method. Unlike linear mixup and our mixup approach, for cutmix,
we followed the recommendation from the original paper and searched the α value close to 1.

Table 29: Performance comparison in Activity Recognition within supervised learning scheme

Method UCIHAR HHAR USC
ACC↑ MF1↑ ACC↑ MF1↑ ACC↑ MF1↑

W/o Augs. 65.66 ± 0.23 61.21 ± 0.15 91.58 ± 0.07 91.64 ± 0.11 71.93 ± 0.54 68.43 ± 0.78
Linear Mix 77.06 ± 0.18 73.21 ± 0.17 93.64 ± 0.17 93.67 ± 0.08 74.45 ± 0.28 71.93 ± 0.43
Amp Mix 70.96 ± 0.19 67.14 ± 0.33 92.50 ± 0.15 92.54 ± 0.10 74.02 ± 0.19 71.90 ± 0.26
Binary Mix 69.01 ± 0.36 71.63 ± 0.11 92.36 ± 0.19 92.42 ± 0.10 72.81 ± 0.15 70.98 ± 0.35
CutMix 67.14 ± 0.54 63.31 ± 0.48 90.37 ± 0.43 90.36 ± 0.76 57.89 ± 0.34 61.45 ± 0.57
Ours 81.60 ± 0.15 79.35 ± 0.13 94.02 ± 0.05 94.00 ± 0.06 74.85 ± 0.19 72.45 ± 0.34

Table 30: Performance comparison in Heart Rate Prediction within supervised learning scheme

Method IEEE SPC12 IEEE SPC 22 DaLia
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

W/o Augs. 20.01 ± 0.03 27.16 ± 0.05 20.29 ± 0.87 26.60 ± 1.13 6.58 ± 0.10 11.30 ± 0.58
Linear Mix 20.07 ± 0.09 26.93 ± 0.10 19.98 ± 0.12 24.90 ± 0.51 6.97 ± 0.14 12.07 ± 0.51
Amp Mix 20.14 ± 0.07 26.98 ± 0.07 19.61 ± 0.07 24.11 ± 0.21 11.20 ± 0.17 16.07 ± 0.43
Binary Mix 21.05 ± 0.13 27.02 ± 0.08 19.62 ± 0.10 25.23 ± 0.13 7.35 ± 0.16 12.17 ± 0.53
CutMix 20.12 ± 0.06 26.89 ± 0.11 19.64 ± 0.13 24.18 ± 0.20 10.78 ± 1.23 14.40 ± 1.43
Ours 19.97 ± 0.05 26.98 ± 0.10 19.45 ± 0.12 24.35 ± 0.18 6.49 ± 0.08 11.69 ± 0.10

Table 31: Performance comparison in CVD classification within supervised learning scheme

Method CPSC 2018 Chapman
AUC↑ AUC↑

W/o Augs. 82.01 ± 0.51 92.27 ± 0.35
Linear Mix 80.29 ± 0.93 93.02 ± 0.33
Amp Mix 80.01 ± 0.36 89.11 ± 0.27
Binary Mix 78.10 ± 0.98 80.31 ± 0.36
CutMix 80.75 ± 0.78 89.17 ± 0.58
Ours 83.75 ± 0.32 95.26 ± 0.24
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