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Temporal Cardiovascular Dynamics for Improved
PPG-Based Heart Rate Estimation

Berken Utku Demirel and Christian Holz

Abstract— The oscillations of the human heart rate are
inherently complex and non-linear—they are best described
by mathematical chaos, and they present a challenge when
applied to the practical domain of cardiovascular health
monitoring in everyday life. In this work, we study the
non-linear chaotic behavior of heart rate through mutual
information and introduce a novel approach for enhancing
heart rate estimation in real-life conditions. Our proposed
approach not only explains and handles the non-linear
temporal complexity from a mathematical perspective but
also improves the deep learning solutions when combined
with them. We validate our proposed method on four es-
tablished datasets from real-life scenarios and compare
its performance with existing algorithms thoroughly with
extensive ablation experiments. Our results demonstrate
a substantial improvement, up to 40%, of the proposed
approach in estimating heart rate compared to traditional
methods and existing machine-learning techniques while
reducing the reliance on multiple sensing modalities and
eliminating the need for post-processing steps.

Index Terms— Hearth rate monitoring, photoplethysmog-
raphy, deep neural networks, temporal dynamics.

I. INTRODUCTION

Healthy biological systems exhibit complex patterns of
variability that can be described by mathematical chaos [1],
[2]. A healthy heart is not a metronome; instead, its complex
and constantly changing oscillations enable the cardiovascular
system to rapidly adjust to sudden physical and psychological
challenges to homeostasis [2]. Therefore, measuring heart rate
(HR) during daily life has significant importance in monitoring
individuals’ health. For example, increased oscillations of HR
measurements are related to cardiac conduction abnormalities,
which are strongly linked to an increased risk of mortality
(particularly among the elderly) [3].

Moreover, the changes in heart rate to activities, such as HR
variations during running, have been shown to be predictive of
cardiovascular disease (CVD) risk and are inversely associated
with many other health outcomes [4]. Therefore, monitoring
heart rate variations in daily life, espeically during activities,
not only provides valuable insights into cardiovascular health
but also serves as a predictive tool for assessing the risk of
cardiovascular diseases and cardiovascular mortality [5].

The electrocardiogram (ECG) is the primary tool for mon-
itoring cardiac activity. However, it requires electrodes to be
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connected to various parts of the body and, therefore, can only
be used for a limited amount of time within medical facili-
ties [6]. Recently, wearable devices have emerged as powerful
platforms for monitoring the cardiac activity of users during
their daily life through blood flow measurement sensors, i.e.,
photoplethysmogram (PPG). Commercial products, such as
the Apple Watch [7], Google’s Fitbit [8], or the Samsung
Watch [9], now include these sensors to track the wearer’s
heart rate, for health monitoring and fitness purposes.

However, measurements on wearable devices are prone to
motion artifacts (MAs), which cause variability of sensor
pressure on the skin while scattering or leaking ambient light
into the gap between the photodiode and the skin, resulting in
a significant decrease in heart rate estimation performance [9].

For instance, when users engage in physical activities,
such as walking, running, or working, the HR estimation
performance in wearable devices decreases heavily. The stud-
ies that are concerned with commercial wearables state that
the performance of devices extremely decreases during high-
intensity activities. For example, reviewing studies on Fitbit
reported severe underestimations of the HR [10]–[12]. Sim-
ilarly, previous works showed that the performance of the
Apple Watch for HR estimation during exercise decreases with
increasing intensity and the proportion of HR values recorded
by the watch decreases [13]. In other words, previous works
reported a trivial underestimation of the heart rate from the
Apple Watch compared to the ground truth [14].

Moreover, a recent study shows that in a commercial device,
HR estimation errors reach 80–100 beats per minute (bpm)
during wake periods where data recorded from sensors are
contaminated by different levels of noise [9]. While the
Association for the Advancement of Medical Instrumentation
(AAMI) standard indicates that for cardiac monitors the al-
lowable error rate should be less than ±5 bpm or ±10%,
whichever is greater [15]. Although this error is defined for a
single estimation instead of the mean, current state-of-the-art
methods, especially those using deep learning, fall short of this
performance. Moreover, estimating the HR during intensive
activities is crucially important for monitoring individuals’
cardiovascular health while the current solutions fail. Current
solutions for estimating HR from blood volume pulse signals
remain straightforward while applying machine learning as
they have not dealt with the complex and non-linear dynamics
of the cardiovascular system, which limits performance and
overshadows the learning capability of algorithms.

In this paper, we first study the chaotic behavior of the heart
rate in real-life conditions through mutual information and
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Fig. 1: Heart rate dynamics during walking (a) and reading
(b). Both figures show the phase space plot of sinus rhythm for
two healthy subjects over three minutes. Each point represents
the current HR (x-axis) and the HR after 4 seconds (y-axis).
The gradual darkening of the line color represents the time,
which illustrates the chaotic fluctuations of heart rate.

introduce a novel approach for enhancing heart rate estimation
with deep learning solutions. Our proposed method overcomes
previous limitations of motion artifacts by learning the chaotic
behavior of cardiovascular dynamics together with the sensor
data and utilizes this for predictions during inference without
requiring any additional post-processing or sensor modalities.
The contributions can be summarized as follows:

• We present an information-theoretical approach for un-
derstanding the non-linear chaotic behavior of cardiovas-
cular dynamics. To the best of our knowledge, we are the
first to investigate the non-linear temporal relations in the
heart rate with a mathematical approach to identify un-
derlying patterns within this complex behavior, shedding
light on previously unrecognized order.

• Building on this, we integrate our findings into deep
learning solutions to improve the heart rate estimations,
different from intuition-based traditional methods and
trial-error-based learning solutions.

• We extensively evaluated our method on established HR
estimation datasets that span a wide range of physical
activities, performed under close to real-life conditions.
Our method outperforms the prior works in HR estima-
tion. Unlike previous methods, our method produces esti-
mations with high robustness over time while decreasing
the number of required sensing modalities and discarding
the need for post-processing.

II. RELATED WORKS

A considerable amount of literature has been published on
estimating heart rate from wearable devices based on PPG
signals. Most of these studies utilized power spectral density
(PSD) estimation, a quantitative method for describing a signal
in terms of its underlying oscillations, enabling one to observe
how the frequency changes over time. Assuming the heart rate
will not change abruptly and be stationary in a short window,
the PSD reveals information about heartbeat frequency. While
this approach works for less contaminated PPG, motion arti-
facts hinder the measurement of heart rate in spectral density.
As a result, different approaches have been proposed to obtain
the PSD of PPG signals with accelerometers to differentiate
the frequency of heartbeats from motion artifacts [16]–[21].

These approaches have significant drawbacks. First, the
accelerometer signals do not always have the true motion
artifacts (for example, finger tapping, wrist-twisting, and fist
clenching/unfolding) [22], which limits the performance of the
solutions heavily. Second, the dominant frequencies from the
accelerometer signals may overlap with the true frequencies
of the HR, which makes signals impossible to differentiate
by investigating the frequency domain. Finally, since these
solutions use multiple modalities [23] to increase performance,
they are more susceptible to sensor faults, such as communi-
cation or hardware failures. Also, it is known that low-cost
IMUs are vulnerable to various faults because of temperature
variation, performance degradation, component damage [24],
[25]. The inaccurate information provided by the IMU will
seriously affect the performance of these algorithms. Deep-
learning solutions have been proposed to make the system
more robust by only utilizing PPG signals [16], [26]–[28].
However, as learning models have no information about the
degree of motion artifact contamination in PPG signals, they
can estimate HR with large errors. Or even though the IMU
is fed together with PPG, the models cannot learn the relation
between motion artifact and PPG signals and estimate the
HR incorrectly [29], [30]. To prevent this, several works have
proposed applying additional post-processing that considers
the estimated values from preceding segments to detect and fix
the abrupt changes in the model’s output [16], [29]. Although
current solutions have their own specific values, they remain
straightforward and have not dealt with the rich dynamics
of the cardiovascular system, which limits performance and
overshadows the learning capability of algorithms.
In this work, we introduce a method that requires a single
modality, PPG, to estimate the heart rate while concerning the
temporal dynamics without requiring any post-processing.

III. MOTIVATION

Several studies have attempted to model cardiovascular
dynamics in heart rate estimation using linear methods such
as mean filters [16], [29], curve tracking [31] or linear re-
gression models [32]. Although the linear relation between
temporal heartbeats can be useful to predict the current HR,
the oscillations of a heart are complex and non-linear [2] while
exhibiting a chaotic non-Markovian dynamical system [1].
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Fig. 2: The heatmap of estimated mutual information between
random variables ξ (previous heart rate values) and Y (the
current heart rate). We investigated the effect of time (y-axis)
and noise (x-axis) for ξ with ξ = ξ+σ⊙ϵ where ϵ ∼ N (0, I).
And, ξN = [yt−1, yt−2, . . . , yt−N ].

We first study the non-linear temporal relations of cardio-
vascular dynamics. To investigate the relationship between
heartbeat values over time, we calculated the Mutual Infor-
mation (MI) between them. Unlike linear methods such as
correlation and mean filters, mutual information, which is a
Shannon entropy-based measure of dependence [33] as defined
in Equation 1 for variables X and Z, captures non-linear
statistical dependencies between variables and thus can act
as a measure of true dependence [34].

I(X;Z) =

∫
X×Z

log
dPXZ

dPX ⊗ PZ
dPXZ , (1)

where PXZ is the joint probability distribution, PX =∫
Z
dPXZ and PZ =

∫
X

dPXZ are the marginals. The mutual
information between X and Z can be understood as the
decrease of the uncertainty in X given Z. We, therefore,
calculated the mutual information between previous (past)
heartbeats and the current one as in Equation 2.

I(Y ; ξ) := H(Y )−H(Y | ξ), (2)

where H , Y , and ξ are the Shannon entropy, current heart rate,
and past HR values, respectively. H(Y | ξ) is the conditional
entropy of Y given ξ. I(Y ; ξ) measures how much information
on average previous heart rates convey about the current value
without seeking any linear relations.

Figure 2 shows that knowing previous HR values reduces
the uncertainty of the current HR. Moreover, it also indicates
that even the past values are observed with an error, they carry
information about the future. Also, the noise affects the MI
in different degrees depending on how many past values are
included in ξ. The experiment for additive noise is especially
important as it explains the effect from a statistical point of the
possible realizations of past values on future estimations. We
note that small decreases in MI with longer windows come
from finite-sample effects and estimator bias/variance, not a
violation of the data processing inequality.

A. The non-linearity
Previous studies have often relied on leveraging prior HR

values to address errors in predictions. However, many of
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Fig. 3: The heatmap of calculated Pearson correlation be-
tween random variables ξ (previous heart rate values) and Y
(the current heart rate). We investigated the effect of time (y-
axis) and noise (x-axis) for ξ with ξ = ξ + σ ⊙ ϵ where
ϵ ∼ N (0, I). And, ξN = [yt, yt−1, yt−2, . . . , yt−N ].

these techniques were characterized by their straightforward
and predominantly linear nature. Here, we seek to find any
linear relations in HR using the Pearson correlation coefficient
(PCC). PCC calculates the linear correlation between two
variables and ignores other types of relationships since it is
defined as with covariance itself.

When we calculate the PCC, we follow the same setup
with MI estimation and take one variable as time and sum
the absolute value of PCC instead of ± 1 since the overall
trend is important rather than increase and decrease. Figure 3
shows the PCC values where no clear and distinct pattern is
observed at all. Conversely, there are some cases in which
the addition of noise increases the correlation between past
and future HRs. These experiments show that HR changes
are non-linear. Thus, we propose a method to capture non-
linear variations for improved HR estimation, unlike the linear
methods used in previous works [16], [29], [32].

IV. OBJECTIVE

Considering our findings, we aim to train a learner fθ
which seeks to learn the behavior of heart rate variability with
volumetric changes in blood together for estimating the current
heart rate value. Therefore, we only require volumetric blood
volume change signals to estimate the heart rate, unlike the
related works which require additional modalities [31], [35].

A. Framework

The overall proposed framework can be explained as fol-
lows: Given an observation of the blood volume signal xt that
is a single dimensional vector drawn from the distribution X
at time t and composed of a sequence of voltage values with
length T, (x1, x2, . . . , xT ), we aim to map this sequence to
the heart rate value of this segment yt.

Previous deep learning approaches attempted to estimate the
conditional probability p(yt|xt) by training different mapping
functions, using Equation 3, that perform fθ : X → Y where
the Y is a one-dimensional space consisting of real-valued
heart rate y ∈ Y , and fθ is a parametric family of mappings
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(e.g., CNNs), under a loss function L.

min
θ

∑
t

L(fθ(xt), yt) (3)

As the previous methods optimized the models to estimate
yt using only the current signal xt, they lack the ability to
capture heart rate variability. As a result, when inputs deviate
from distributions seen during training due to noise, the models
produce large errors [16], [29], decreasing the performance.

To solve this problem and make the trained model suitable
for real-life conditions, we train the model with the current
signal and HR variations together. We optimize the model
to estimate the heart rate distribution given the volumetric
changes in blood and HR variations, i.e., p(yt|xt, ξt) where
yt is the heart rate of the current segment and ξt is the vector
composed of previously estimated HR values.

We optimized the training task for a set of input-target pairs
using the loss function shown in Equation 4 where the network
function fθ, is parameterized by θ:

LMAE(θ) = E[||yt − fθ(xt, yt−1, . . . , yt−K)||1] (4)

The loss function employed to train the learner is closely simi-
lar to transfer entropy, with the goal of maximizing it. Transfer
entropy, TY→X , is a non-parametric statistic measuring the
rate of information flow between two random variables [36].∑

p(yt, yt−L, xt−L) log

(
p(yt|yt−L, xt−L)

p(yt|yt−L)

)
(5)

In our case, we train the model to learn the information
flow from the past to the future while incorporating the
present. Hence, we characterize this as the conditional mutual
information between variables, as defined in Equation 6.

TY→X = I(Xt;Yt|Xt−1:t−L) (6)

Learning the function fθ by minimizing Equation 7—also
known as the empirical risk minimization—maximizes the
conditional mutual information between the past, present, and
future states of the dynamical complex system.

min
θ

∑
t

L(fθ(xt, ξt), yt) (7)

In contrast to common dynamical systems [37], [38], car-
diovascular dynamics are not Markovian due to their chaotic
nature, such as we have no information when someone starts
exercising and how it will affect the heart. We, therefore, incor-
porate our findings from MI analysis into a common network
and show how a small modification can improve performance
significantly. This non-linear relationship, as revealed through
MI analysis (shown in Figure 2, derived from Equations 1 and
2), is instrumental in enhancing the model’s performance.

B. Architecture
We modify the encoder-decoder architecture to learn heart

rate variations together with blood volume changes. Specifi-
cally, we used linear layers with Long-Short Term Memory
(LSTM) to encode the previous HR estimations and CNNs
with LSTMs to extract features from the current segment,
which is common in literature for sequential data [27], as
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Fig. 4: Modified encoder-decoder architecture. The encoder
part incorporates the HR variations into the model. The
decoder outputs the HR by using both the current signal and
encoded HR. Black arrows represent the input-output flow
while double arrows show the content of a block.

shown in Figure 4. We first expand the HR values using a
linear transformation with fifty output features. Then, extracted
features are fed to the encoder. Our feature extractor includes
convolutional blocks that are composed of 1D convolutions
followed by batch normalization [39] and ReLU. We added a
max-pooling layer with a size of two after each convolutional
block. The decoder takes the extracted features from the output
of the last pooling layer and conditions the encoder output.
To estimate the HR, we used the last hidden state of the
decoder with a linear layer. We also used a data augmentation
to increase the diversity of heart rate variations. We, therefore,
added a random noise sampled from the normal distribution
to the HR, which is given in Equation 8. At the end of
augmentation, some segments that are chosen randomly map
to the different heart rate vectors ξ, with small differences.

ξaug = ξ + 3 · z where z ∼ N (0, 1) (8)

Although this procedure adds noise during training, we ob-
served significant performance gains, especially on smaller
datasets, as it exposes the model to HR variations not present
in the training data. Importantly, the added perturbations are
small relative to overall HR dynamics. For example, in a
commonly used large PPG dataset [16], HR values have a stan-
dard deviation of ≈ 17 bpm. With added noise of σ=3 bpm,
the resulting Signal-to-Noise ratio (SNR) is (17/3)2 ≈ 32,
meaning most of the original HR information is preserved.
We randomly selected 10% of the HR vectors in the training
data (excluding validation and test) for this augmentation.

V. EXPERIMENTAL SETUP

A. Datasets

We used four popular PPG datasets: IEEE Signal Processing
Cup 2015 (SPC15) [44], [45], Dalia [16], WildPPG [46], and
WESAD [47], which are selected to assess performance across
diverse activities and age groups.

IEEE SPC: Includes 22 recordings from participants aged
18–58 [28]. Data includes accelerometer signals, two PPG
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TABLE I: Performance comparison of methods. Best results are shown in bold, and second-best are underlined.

Work (Year) Input Pre-Processing Method (# of params) Post-Processing Dataset Results (bpm)

Heuristic Solutions

Troika*[40] PPG + ACC Signal decomposition Signal reconstruction N/A SPC15-12 2.34

SpaMa**[16] PPG + ACC
0.5- to 3-Hz filtering
Downsampling
Freq. Transformation

Spectral filtering using
power spectrum Interpolation

SPC15-12 13.1±20.7
SPC15-22 9.20±11.4
Dalia 15.56±7.5
WESAD 11.51±3.7

SpaMaPlus [16] PPG + ACC
0.5- to 3-Hz filtering
Downsampling
Freq. Transformation

Picking the maximum
in a weighted spectrum
using linear prediction

HR tracking

SPC15-12 4.25±5.9
SPC15-22 12.31±15.5
Dalia 11.06±4.8
WESAD 9.45±2.9

Schaeck [16]
[17] PPG + ACC

0.5- to 6-Hz filtering
Downsampling
Freq. Transformation

Comparing spectra of
PPG and accelerometer HR tracking

SPC15-12 2.91±4.6
SPC15-22 24.65±24
Dalia 20.45±7.1
WESAD 19.97±8.1

CurToSS*[31] PPG + ACC Sparse spectrum
reconstruction Curve tracing N/A

SPC15-12 2.2±–
SPC15-22 4.5±–
Dalia 5.0±2.8
WESAD 6.4±1.8

Deep Learning Solutions

CNN [16] PPG + ACC 0- to 4-Hz filtering
Freq. Transformation CNN ensemble (8.5M) N/A SPC15-12 4.0±5.4

SPC15-22 16.51±16.1

PPGNet [26] PPG 0.4- to 18-Hz filtering
z-score normalization CNN + LSTM (765k) N/A SPC15-12 3.36

SPC15-22 12.48

CorNet [41]
[28] PPG 0.4- to 18-Hz filtering

z-score normalization CNN + LSTM (257k) N/A SPC15-12 4.67
SPC15-22 5.55

BinCorNet [28] PPG 0.4- to 18-Hz filtering
z-score normalization CNN + LSTM N/A SPC15-12 6.78

SPC15-22 7.32

CardioGAN [35] PPG 1- to 8-Hz filtering
z-score normalization GANs (5.1M) N/A Dalia 8.4

WESAD 8.6

Only-LSTM [27] PPG N/A LSTM (680k) N/A SPC15-12 4.47±3.68

TimePPG [29] PPG + ACC 0.5- to 4-Hz filtering TCN (900k) HR clipping Dalia 4.88±3.23

LSTM [42] PPG + ACC N/A LSTM Filtering Dalia 7.44±3.26

KID** [23] PPG + ACC Adaptive linear filtering CNN + Attention N/A Dalia 3.79

WildPPG PPG 0.5- to 4-Hz filtering 1D ResNet N/A WildPPG 8.62±0.06

Ours (2025) PPG 0.5- to 4-Hz filtering
z-score normalization

Encoder-Decoder
+ (430k)

HR variations
N/A

SPC15-12 2.24±1.03 (+33%)
SPC15-22 4.30±2.97 (+22%)
Dalia 4.16±1.74 (-10%)
WildPPG 7.73±0.05 (+12%)
WESAD 4.75±2.25 (+45%)

* Dataset-specific threshold optimization is performed, requiring prior knowledge of HR distribution and activity intensity.
** Increasing dataset size with generating synthetic PPG waveforms to form the high HR signals using speed up [43].

signals, and ECG sampled at 125 Hz, with sensors worn on
the wrist. Ground truth ECG was recorded via a chest sensor.

Dalia: Recorded from 15 participants, with each session
lasting 2 hours [16]. ECG and PPG signals were collected
during daily activities such as sitting, walking, and cycling.

WildPPG: Contains 13.5 hours of recordings from 16
participants during outdoor activities [46]. It captures heart
rate data under challenging conditions with extreme noisy
environments, including temperature variations.

WESAD: Includes 15 participants (12 males, 3 females,
mean age 27.5) [47], with over one hour of recordings during
tasks like solving arithmetic problems and watching videos.

B. Evaluation

Our evaluation uses leave-one-session-out (LOSO) cross-
validation (CV). In LOSO, each test session is excluded from
training, allowing assessment under realistic conditions with
subject variations. Then, a 3-fold CV is used on the training
set to select the model with the lowest validation error. During
testing, we generated the ξ using model predictions without
any information about the test subject. For the first four
segments, HR was estimated using Fourier transformation by
selecting the harmonic with the highest spectral energy.
We evaluated performance using the most common metric in
prior work, the mean absolute error (MAE) [16].
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C. Training Architecture
The designed architecture takes as input only the pre-

processed PPG and no other patient- or PPG-related features.
We used the Adam optimizer [48] with β1 = 0.9, β2 = 0.999,
and a mini-batch size of 32. The learning rate was initialized
to 5e− 4 with a weight decay of 1e− 6 and reduced by 0.1
when the validation loss stopped improving for 10 consecutive
epochs. The training continues until 30 successive epochs
without validation performance improvements. The best model
is chosen as the lowest mean absolute error on the validation.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

We evaluated our method with fixed architecture and hy-
perparameters on four datasets. Table I presents the results,
along with the percentage performance gain of our method
compared to the best learning-based solution for each dataset.
We compared with the learning-based algorithms because
traditional rule-based methods have optimized their parameters
and thresholds according to the dataset statistics, which require
prior knowledge of HR behavior with activities.

Our method outperforms all related works while using
fewer sensor modalities. Many published approaches rely on
additional inputs, such as power spectra, raw signals, or their
combination with multiple sensor modalities, which makes
their models more complex. Yet, their performance remains
lower than ours, showing that our method is more effective for
real-world settings where data is heavily contaminated with
noise. We also examined model performance across demo-
graphic and activity-related factors. While no clear differences
were observed across age or sex groups, our HR-integrated
architecture showed greater improvements during high-motion
activities. In the Dalia, which includes activity labels, our
method reduced error by ≈ 10–15% in stairs and table soccer
segments, where error is typically high [16].

Table I shows that the performance of related works, which
evaluated their method on multiple datasets, vary significantly
between datasets since the Dalia and SPC15-22 datasets are
seen as the most challenging to estimate HR due to including
a wide range of activities performed under close to real-life
conditions [16]. While these datasets are challenging due to
low signal quality, our method reduces overall error and either
outperforms or closely matches prior methods (e.g., second-
best on Dalia). The results indicate that the performance of
models should be evaluated across datasets with the same
hyperparameters to investigate if the models generalize and
perform well enough under numerous types of activities with
different noise levels. Otherwise, the architectures and hy-
perparameters (post-processing with threshold values) can be
optimized for a dataset while performing poorly for the rest.

Overall, our method improves HR estimation by 30–45%
compared to prior solutions. This shows that learning HR
variations together with volumetric flow changes help the
model to accurately estimate heart rate under real-life settings.

A. Ablation Study
To investigate the effectiveness of our method, we perform

ablations by removing each of the components individually.

TABLE II: Ablation studies across datasets. Top: model im-
provements with HR dynamics and augmentation. Bottom:
comparison of different ξ lengths for past HR inputs.

Method / Datasets SPC15-12 SPC15-22 Dalia WESAD WildPPG

Model Variants
Traditional, p(yt|xt) 7.80±4.71 11.11±6.21 8.10±5.45 6.13±3.52 8.62±0.06
+ HR variations 5.85±3.31 6.50±5.15 6.12±3.20 4.88±2.45 7.92±0.02
+ Data Aug. (Proposed) 2.24±1.03 4.30±2.97 4.16±1.74 4.75±2.25 7.73±0.05

Effect of ξ Length (Past HR Window)
ξ3 = yt−1, ..., yt−3 3.37±1.69 5.23±3.14 5.68±2.65 5.34±2.57 8.28±0.10
ξ5 = yt−1, ..., yt−5 2.24±1.03 4.30±2.97 4.16±1.74 4.75±2.25 7.73±0.05
ξ7 = yt−1, ..., yt−7 3.35±1.13 5.19±3.11 5.62±2.28 5.14±2.35 7.79±0.17

For the Traditional case, we only feed the signal similar to
previous solutions. For the second part, we used the complete
model, which learns HR variations, without augmentations.

Table II shows that incorporating our method improves es-
timation. Notably, augmentation reduces error for the smaller
datasets, SPC15 pairs, more than in the bigger dataset, Dalia.
This evidence supports our motivation for introducing HR
variations to the model. Interestingly, increasing temporal
dependencies with longer ξ reduces performance, despite pro-
viding more information for learning non-linear HR variations.

In other words, the model performs better when past HRs
are included to a certain extent. This is an interesting finding,
revealing that incorporating past information into the model is
effective up to a limit. And, inputting all data into the model in
hopes of uncovering relationships decreases the performance.
To further understand the model’s temporal behavior, we
also analyzed its performance during sudden HR changes. In
the Dalia dataset, the largest HR jump between consecutive
segments was 16.46 bpm. For such high-change intervals, the
model’s average error is 4.52 bpm—around 10% higher than
the dataset average. This suggests that while past information
is helpful, handling abrupt HR transitions may require modi-
fications, such as dynamic modeling or specialized loss terms.
Additionally, we performed ablations whether learning HR

dynamics is architecture-agnostic and improves performance
across models with minimal changes. Specifically, we used
a two-layer MLP to extract features from past HR values
and concatenated them with PPG features before the final
prediction layer. Results in Table III show that our method
improves performance across all models. We, also, show
the Bland-Altman plot with correlation for SPC and Dalia in
Figure 5 to investigate how learning the HR variability affects
estimations. When the model takes only the current segment as
input, it produces large errors. However, if the model learns the
HR variations besides the current segment, the error decreases.

VII. DISCUSSION AND LIMITATIONS

We propose a HR estimation algorithm that leverages tem-
poral dynamics to enhance cardiac monitoring with wear-
able devices, particularly in real-life conditions where noise

TABLE III: Architecture ablations on WildPPG. Values in
parentheses indicate baselines without learning HR dynamics.

Dataset / Models CNN [16] LSTM [27] CNN+Attention [23] Ours

WildPPG 7.80 (8.87) 7.98 (9.03) 7.59 (8.53) 7.73 (8.62)
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Fig. 5: Bland-Altman and correlation plots. Top row: SPC15-22, bottom row: Dalia. Left column: without learning the heart
rate variations, right column: learning variations with ξ vector for the HR estimation. Colors represent subjects.

is prevalent. Our method surpasses current state-of-the-art
approaches by reducing estimation errors by up to 40%,
demonstrating improvements in robustness and accuracy.

a) Comparison with previous methods: Unlike traditional
methods that rely heavily on heuristic-based signal processing
techniques, our approach integrates non-linear temporal dy-
namics. While previous works [16] focused on hand-crafted
features or trial-and-error optimization in deep learning mod-
els, our method models the chaotic behavior of cardiovascular
dynamics, uncovering temporal patterns. This leads to more
stable HR estimations, even under motion-corrupted conditions
where conventional algorithms fail. Moreover, our method
reduces dependency on multiple sensing modalities, outper-
forming multi-sensor approaches while using fewer modalities.
While our method ranks second on the Dalia, trailing KID—
uses adaptive filtering with inertial data and attention-based
models—by 10% [23]), our approach is complementary. In ad-
dition, our model is relatively lightweight and avoids reliance
on inertial signals or attention mechanisms, making it more
suitable for deployment on memory- and energy-constrained
wearable devices, which is an important design factor for
HR estimation [49]. In future work, combining our dynamics
module with other methods, including data augmentation [50],
could further improve the performance.

b) Clinical Relevance: Accurate HR estimation is critical in
ambulatory settings, where continuous monitoring is essential
for managing cardiovascular diseases [5], stress detection,
and fitness tracking [9]. By minimizing errors and reducing
reliance on sensors, our method offers a solution for wearable
devices. The ability to maintain high accuracy in dynamic
environments enhances the reliability of HR monitoring for
early detection of abnormal heart rate patterns, contributing to
preventive healthcare.

c) Limitations and Future Work: Despite its strengths, our
approach has limitations. First, it relies on accurate initial HR

values to predict subsequent readings, making it sensitive to
noise during the initial segments. In noisy scenarios, heuris-
tic methods like Fourier transforms may struggle to extract
reliable initial HR, potentially affecting the performance.

Second, our model requires tuning of the temporal window
size to effectively utilize historical data. While we identified an
optimal range, incorporating excessive historical information
can degrade performance and increase computational com-
plexity. Future research can focus on adaptive mechanisms
that adjust window sizes based on real-time signal quality or
detecting and handling the motion artifacts [51].

Lastly, while our method shows strong performance on
datasets, further validation in clinical settings with patients is
necessary to confirm its generalizability. Testing on datasets
that include abnormal heart rate would help evaluate the
model’s sensitivity to irregular and sudden changes in HR.

VIII. CONCLUSION

Our work is the first to study the behavior of HR variations
through mutual information and have introduced an approach
for improving HR estimations. Our method overcomes pre-
vious limitations by learning the HR dynamics together with
blood volume changes to prevent large errors made by pre-
viously proposed learning methods. As a result, our method
works without requiring post-processing or optimizing hyper-
parameters, e.g., threshold values. These findings underscore
the efficacy of incorporating past information into the model,
up to a certain threshold, while random inclusion of historical
data decreases the performance while increasing computations.
To the best of our knowledge, our method achieves the best
performance, decreasing the error rates up to 40%, on HR
estimation compared to the existing solutions.



8 IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2024

REFERENCES

[1] A. Goldberger, “Is the normal heartbeat chaotic or homeostatic?” Phys-
iology, 1991.

[2] F. Shaffer and J. P. Ginsberg, “An overview of heart rate variability
metrics and norms,” Frontiers in Public Health, vol. 5, 2017.

[3] T. F. of the European Society of Cardiology the North American So-
ciety of Pacing Electrophysiology, “Heart rate variability,” Circulation,
vol. 93, no. 5, pp. 1043–1065, 1996.

[4] K. Mandsager et al., “Association of Cardiorespiratory Fitness With
Long-term Mortality Among Adults Undergoing Exercise Treadmill
Testing,” JAMA Network Open, 10 2018.

[5] L. Sandvik et al, “Heart rate increase and maximal heart rate during
exercise as predictors of cardiovascular mortality: a 16-year follow-up
study of 1960 healthy men,” Coronary Artery Disease, 1995.

[6] M. Azram et al, “Clinical validation and evaluation of a novel six-
lead handheld electrocardiogram recorder compared to the 12-lead elec-
trocardiogram in unselected cardiology patients (EVALECG Cardio),”
European Heart Journal - Digital Health, 2021.

[7] G. M. Marcus, “The Apple Watch can detect atrial fibrillation: so what
now?” Nature Reviews Cardiology, vol. 17, Mar. 2020.

[8] S. A. Lubitz, A. Z. Faranesh, C. Selvaggi, S. J. Atlas, D. D. McManus,
D. E. Singer, S. Pagoto, M. V. McConnell, A. Pantelopoulos, and A. S.
Foulkes, “Detection of atrial fibrillation in a large population using
wearable devices: The fitbit heart study,” Circulation, 2022.

[9] F. Sarhaddi et al, “A comprehensive accuracy assessment of samsung
smartwatch heart rate and heart rate variability,” PLOS ONE, 2022.

[10] S. Benedetto and et al., “Assessment of the fitbit charge 2 for monitoring
heart rate,” PLOS ONE, 2018.

[11] M. Nissen and et al., “Heart rate measurement accuracy of fitbit charge
4 and samsung galaxy watch active2: Device evaluation study,” JMIR
Form Res, 2022.

[12] S. Suman M and et al., “Photoplethysmogram signal analysis for the
heart rate estimation using shannon entropy,” in 21st IEEE CSPA, 2025.

[13] A. Khushhal and et al., “Validity and Reliability of the Apple Watch for
Measuring Heart Rate During Exercise,” Sports Medicine International
Open, Oct. 2017.

[14] M. P. Wallen and et al., “Accuracy of heart rate watches: Implications
for weight management,” PLOS ONE, 2016.

[15] “ANSI/AAMI EC13-2002 - Cardiac Monitors, Heart Rate Meters, and
Alarms.” [Online]. Available: https://webstore.ansi.org/standards/aami/
ansiaamiec132002

[16] A. Reiss and et al., “Deep ppg: Large-scale heart rate estimation with
convolutional neural networks,” Sensors, 2019.
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