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Figure 1: On the example of a memory card game, which requires hand-eye coordination, we demonstrate our closed-loop support
system, which analyzes the user’s gaze, hand velocity and hand trajectory in real-time to warn the user of predictably erroneous
hand actions. (a) Our system records the user’s gaze and hand movements projected into (b) the registered 3D environment to
predict the next hand interaction. (c) Predictions are compared to a ground truth game layout to display either a green, yellow or red
visual alert.

ABSTRACT

Emerging Augmented Reality headsets incorporate gaze and hand
tracking and can, thus, observe the user’s behavior without inter-
fering with ongoing activities. In this paper, we analyze hand-eye
coordination in real-time to predict hand actions during target se-
lection and warn users of potential errors before they occur. In our
first user study, we recorded 10 participants playing a memory card
game, which involves frequent hand-eye coordination with little
task-relevant information. We found that participants’ gaze locked
onto target cards 350 ms before the hands touched them in 73.3 % of
all cases, which coincided with the peak velocity of the hand moving
to the target. Based on our findings, we then introduce a closed-loop
support system that monitors the user’s fingertip position to detect
the first card turn and analyzes gaze, hand velocity and trajectory to
predict the second card before it is turned by the user. In a second
study with 12 participants, our support system correctly displayed
color-coded visual alerts in a timely manner with an accuracy of
85.9%. The results indicate the high value of eye and hand tracking
features for behavior prediction and provide a first step towards
predictive real-time user support.

Index Terms: • Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented real-
ity

1 INTRODUCTION

Augmented reality head-mounted displays (AR HMDs) [24] are
promising for industrial and clinical applications, providing oper-
ators with the information needed to perform manual tasks such
as assembly [40], maintenance [32], or surgery [9]. Studies have
shown that displaying contextual information can improve spatial
understanding [8, 33] and reduce both time expenditures and the
probability of errors [3, 16]. The same studies have also shown that
users still perform errors while wearing AR glasses. In order to

provide effective support during expert activities, recent work has
used AR HMDs to capture and analyze user behavior by tracking
visual markers on manipulated objects or by detecting certain steps
of a procedure [27,31]. Results showed that the relevant information
can be adapted to provide the right instructions at the right time
and place [42] or that real-time feedback on user actions can be
provided [35]. So far, efforts have required processing footage from
the integrated cameras while wearing AR glasses, limiting the depth
of their processing stack for real-time purposes. Recent AR HMDs
incorporate better hardware for computation and can thus provide
eye gaze and hand tracking in real time, both of which have shown
to be suitable for analyzing behavioral patterns outside AR con-
texts [4, 17, 21]. As gaze behavior is highly task-dependent [39], it
provides deep insights into ongoing cognitive processes [10]. Hand
tracking can be used to infer hand actions [12], which provide in-
sights into the user’s performance of manual tasks [21, 31].

Combining sensing modalities in recent HMDs creates a novel
opportunity for capturing hand-eye coordination, which is the task-
dependent relationship between hands and eyes [34]. Hand-eye
coordination has been successfully tracked to automatically detect
usability problems in eye tracking video recordings [29] or to pre-
dict user’s target selection while reaching to a virtual object in a
Virtual Reality (VR) space [6]. During hand-eye coordination, the
eyes provide the necessary information to plan the motor system’s
movements [7, 37], making gaze a suitable indicator for predicting
hand actions. This could be particularly useful in industrial and
clinical applications, where real-time feedback to anticipated actions
could combat the high cost of user errors.

In human-computer interaction, previous work on hand-eye coor-
dination has investigated predicting target selection of virtual objects
in VR [6], but no work has predicted target selection in real-world
handling tasks that include physical object manipulation. Reaching
for and picking up a physical object needs precise coordination that
affects the time the gaze must arrive on the target for a seamless
interaction [7].

In this paper, we investigate to what extent the real-time analysis
of eye gaze and hand tracking lends itself to predicting hand
actions in a real-world task. In a second step, we examine how
effectively ongoing hand actions can be intercepted through visual



alerts before they are executed and how participants perceive
this support. We introduce a method to analyze gaze patterns in
real-time to predict target locations that users will reach next. Our
method simultaneously tracks and analyzes hand movement to
confirm the current gaze prediction and narrow the set of possible
target locations. We illustrate our method on the example of a
memory card game, which requires frequent hand-eye coordination
during card turns with little task-relevant information and is thus
representative of more general interaction. The memory game is
particularly interesting because it is a fast, repetitive procedure
where decisions are made on-the-fly and because it is characterized
by a high frequency of target selections. It therefore supports the
recording of high sample sizes in a well structured and controlled
environment that is fully visible and accessible to the user (no
obstacles or occlusions). A characteristic of memory games is
that the correct choice of the second card depends on the first card
choice. We therefore also investigate hand tracking features, i.e.,
tracked finger joints, that allow for the detection of the first card
turn. Based on hand and gaze data recordings from a first user study,
we derive a logic for closed-loop support that we then implement on
an AR HMD to display color-coded visual alerts to the user. Our
system monitors the user’s fingertip position in proximity to card
locations to detect the first card turn and then predicts the second
card. Predictions are compared to a ground truth game layout
stored on the device to display green, yellow or red visual alerts,
depending on whether the predicted target is correct, incorrect but
adjacent to the correct card, or neither correct nor adjacent. Our
second user study investigated our method in real time with 12 more
participants, showing that it predicted target locations online with
85.9% accuracy while being rated as supportive, well working and
stimulating during qualitative interviews.

In summary, we make the following contributions in this paper:

1) a first study with 10 participants on the accuracy of hand mo-
tion prediction, showing that the gaze locked onto target cards
350 ms before touch in 73.3% of cases (averaged over both
card turns), which coincided with the moment of hand move-
ment deceleration. We further show that the set of possible
targets can be significantly reduced based on the hand tra-
jectory and that fingertip proximity to a card is a promising
indicator for monitoring first card turns

2) a novel method for AR-supported manual real-world tasks
that analyzes hand-eye coordination in real-time to predict
hand actions during target selection. Our method extends
previous work on predicting target selection in VR [6], i.e.,
using a velocity threshold and the gaze target, by combining
gaze prediction with a hand trajectory and with a temporal
coupling of gaze and hand features optimized for physical
object manipulation

3) a second user study with 12 participants to evaluate the real-
time effectiveness of our method to stop participants’ motions
in time (i.e., before they reach and start manipulating a tar-
get), showing correctly timed and placed visual alerts with an
accuracy of 85.9% over 384 card pairs played.

2 RELATED WORK

Our work is related to hand-eye coordination, both in (1) real-world
settings and in (2) human-computer interaction, to (3) predicting
target selection and to (4) context-aware augmented reality.

2.1 Hand-Eye Coordination in Real-World Settings
Several studies have shown a task-dependent relationship between
hands and eyes, namely, hand-eye coordination. Land et al. [25]
investigated participants during “tea making” and found that each
action is typically associated with four to six preceding fixations

on task-relevant objects. Johansson et al. [19] extended the inves-
tigations to object manipulations and found similar behaviors on
landmarks (e.g. objects and obstacles) relevant to the task. In a
study conducted by Helsen et al. [14], participants had to move their
hand as fast as possible from one physical button to another. They
found that the gaze initiated 70 ms earlier than the hand movement,
taking approximately two saccades to arrive on the target. The gaze
stabilized on the target at about 50% of the total hand response
time, which was also approximately the moment the hand started
decelerating.

Similar to Garcia-Hernando et al. [12], we consider a hand ac-
tion as an interaction between the hands and a physical 3D object
(e.g., turning a screwdriver, pouring milk). The kinematics of hand
actions can be divided into several phases, starting with the hands
‘reaching towards an object’ (target selection), ‘grasping the ob-
ject’ to ‘manipulating the object’ [11, 19]. As we ultimately aim at
supporting users in procedural tasks where gaze-behavior is highly
task-dependent [39], we assume that ‘target selection’ can often be
associated with the user’s intent to perform a hand action with the
respective object.

2.2 Hand-Eye Coordination in Human-Computer
Interaction

Early work has dealt with analyzing mouse cursor trajectories and
gaze behavior during interaction with graphical user interfaces [5,36]
or web search [18]. While the gaze often led the mouse, researchers
found several behavioral patterns compared to the more invariant
patterns observed in real-world settings. Mutasim et al. [30] studied
gaze movements in a VR hand-eye coordination training system that
displayed a grid of virtual targets in front of a wall. They found the
gaze arriving on target on average 250 ms before touch.

In a study setup similar to our work, Weill-Tessier and Gellersen
[41] combined remote eye tracking with a Leap Motion hand track-
ing sensor to record the relation between gaze and hand movements
while participants played a memory game on a tablet screen. They
applied a velocity-based algorithm on the hand motion data to de-
tect hovering states, i.e, when the hand was in a standby position,
contrary to hand movement in our method. Their goal was to inves-
tigate whether the gaze behavior during hovering provided insights
about the users’ cognitive states in decision making (decisive, inde-
cisive). Results showed that the number and duration of fixations
during hover could not reveal indecision and that target selection
was closely dependent on the target’s location.

2.3 Predicting Target Selection

In user interfaces, target selection has a rich history in desktop
environments. For example, Baudisch et al. [2] predicted possible
targets during a drag-and-drop task on a large screen by analyzing
cursor trajectories. Koochaki et al. [22] predicted user intent while
participants were shown an image of a kitchen environment on a
computer screen. Using a CNN to detect relevant objects and an
LSTM to learn temporal features of the gaze transitioning between
these objects, four different tasks were distinguished.

Target prediction also finds increasing use in VR. Marwecki et
al. [28] analyzed eye gaze patterns to detect regions of interest
in a virtual environment and covertly adapted the virtual scene,
including the relocation of virtual elements to allow users to reach
out and grasp physical props. Cheng et al. [6] predicted users’ touch
locations in VR by analyzing their gaze and hand motions to redirect
the hand to a haptic prop. Using the gaze target and a velocity
threshold of 3cm/s, their method achieved 97% accuracy. Contrary
to our setup, hand movements were slow and participants were
told which target to aim for. Our method is intended to work with
very fast hand movements during real-world interaction and allows
participants to make their own choice on-the-fly without restrictions.



2.4 Context-Aware Support in Augmented Reality

Context-aware augmented reality aims at automatically changing
the content displayed in AR based on the current context (e.g., inter-
pretation of the surrounding scene) to provide better support, mainly
focusing on procedural applications such as surgery, assembly or
maintenance.

Within surgical applications, research has primarily focused on
robotic surgery or laparoscopy. Katić et al. [20] used different param-
eters during minimally invasive surgery (e.g., ‘current instrument’,
‘distance to anatomical structures’) to detect the current procedural
step and to assess the current risk. They then combined this infor-
mation to highlight specific anatomical structures. Gras et al. [13]
calculated several Euclidean distance measurements between the
tooltips, the gaze point, and the patient anatomy in simulated robotic
surgery. Using these features, they trained a multi-Gaussian process
model to automatically infer the desired AR display view at any
point of the procedure.

In industrial applications such as maintenance, machine operation
or assembly, much work on context-aware augmented reality has
been done with AR Glasses. Henderson and Feiner [15] applied
visual markers during AR-guided assembly to track the movement of
handled objects and assess the user’s current activity. Based on the
relative position of these objects, they could automatically transition
to the next step of the procedure or, if the user moved a wrong object,
display an error message. Peterson and Stricker [35] proposed a
system that compares video recording with a reference workflow
to track the currently executed action at runtime. They used this
awareness to adjust the displayed information for the user’s needs.
Ng et al. [31] detected the user’s hands and particular task-relevant
objects in video recordings. A real-time analysis of the spatial-
temporal relation of the detected objects and hands then inferred the
current step to provide contextual instructions in AR.

Taken together, previous work has explored means to automa-
tically adapt AR support to the current context, but no work has
investigated how hand and gaze features can be combined online to
provide predictive AR support for potential errors before they occur.

3 STUDY 1: PATTERNS IN HAND-EYE COORDINATION

In this study, two players played a memory game. The study’s
purpose was to record and analyze gaze and hand tracking data with
a high level of task immersion to find a pattern that could be used to
predict the next hand movement.

3.1 Apparatus

We implemented a Microsoft HoloLens 2 app using Unity’s 3D
game engine (2019.4.14f1) and the Mixed Reality Toolkit (MRTK
2.4.0). Our app positions a virtual playing field on the top of the
real field, such that hand and eye gaze interactions with the real
game cards resulted in measurable virtual interactions, as shown
in Fig. 3. HoloLens 2 reports the wearer’s gaze with an angular
accuracy of 1.5° around the actual target and a recording rate of
30 fps [1]. Participants were standing in front of a table with an
approximate distance between the head and memory card game
of 60–130 cm, resulting in a measurement error of 1.50–3.25 cm.
Through hand tracking, the 3D positions of 26 hand joints and the
overall 3D velocity of the hand can be measured. We recorded the
index fingertip, thumb tip, and hand velocity for our investigations.
The recording rate varies from a low frame rate when the hand enters
the field of view up to a maximum frame rate of 60 fps. Our app
writes both gaze and hand tracking data into a buffer saved to a text
file with a recording rate of 50 fps to synchronize all measurements.
In this study, the AR HMDs did not display content and merely
recorded hand tracking and gaze data next to a first-person video.

Figure 2: Paper sheet with imprinted 6 x 6 grid for memory cards and
two Vuforia markers for 3D registration.

Figure 3: Front view of a two-layer virtual playing field with 36 fields of
the same dimensions in the horizontal plane as the real playing field.
The flat green cuboids register the user’s eye gaze while the green
transparent cuboids register when the fingertips are within proximity
for a potential card turn. A touch of the large cuboid on the right-hand
side is used during the second user study to reset the support system.
The virtual playing field is only visible during calibration and is faded
out before the game starts.

3.2 Task and Procedure
In each experiment, two players competed in a memory card game,
where one player, i.e. the study participant, was wearing a Microsoft
HoloLens 2. The players stood in front of a table with an imprinted
6 x 6 grid. Each field in the grid measured 10 cm x 10 cm and
contained one memory card. The cards constituted a memory card
game with 18 pairs of cards, i.e. 36 cards in total (Fig. 2). Players
wearing the Hololens 2 were instructed to only play with one hand.

3.2.1 App Calibration
Before each game, participants calibrated the system. First, they
were guided through the eye tracking system’s calibration procedure,
an automated routine available on Microsoft HoloLens 2. Second,
participants were instructed to place a virtual grid over the physical
grid by confirming the position of two Vuforia markers printed at
two diagonally opposing corners of the physical grid (cf. Fig. 2).
After confirmation of both marker positions via touch gestures, the
virtual grid (cf. Fig. 3) was placed between both marker positions,
inheriting the spatial orientation of the first marker. Participants
could then either confirm correct placement and hide the virtual field
or repeat the calibration process.

3.2.2 Game Structure
At the beginning of the game, all 36 cards were shuffled by the study
moderator and placed on the table with their colored sides facing
up (Fig. 2). Players then had one minute to memorize the location



of as many pairs of cards as possible. After the minute, the cards
were flipped and the first player chose two cards to be turned over.
If the cards belonged together, they were removed from the game
and placed on the field on the right-hand side of the grid, the player
scored a point and could turn over another pair of cards. If the cards
did not match, the cards were turned face down again and the other
player’s turn started. The game finished when no more cards were
left. The player with the most correctly identified pairs of cards won.

3.3 Participants
We recruited eleven participants (5 male, 6 female, mean age = 29.2
years, SD = 2.8 years) with normal or corrected-to-normal vision.
All participants stated to be right-handed. One participant’s records
had to be excluded for insufficient tracking quality, resulting in a
total number of ten participants.

3.4 Data Analysis
During the experiments, we recorded the gaze target, i.e., the card
the participant was currently looking at, the 3D position of the index
fingertip, the thumb tip, and the 3D velocity of the hand, with a
fixed frame rate of 50 fps and saved all data to a text file. Simulta-
neously, we recorded a first-person video that displayed the current
frame number in the bottom left corner. We observed and corrected
a delay between video recording and displayed frame number of
approximately 12 frames. All measurements were expressed in the
coordinate system of the virtual playing field.

As a first postprocessing step, we defined the two events ‘First
Card Turn’ (FCT) and ‘Second Card Turn’ (SCT) as the time the
participant started turning the respective card. These events represent
the start of a hand action we intend to predict with our method.
Using the first-person video recordings for comparison, we manually
labeled each of these events with the identification number (ID) of
the turned cards, ranging from 1 to 36, in the output file recorded
with HoloLens 2. Secondly, gaze behavior was then analyzed to
find a predictor for target selection of future hand actions. Using
a sliding window, we categorized 4 or more gaze measurements
(80ms) on the same target as a ‘fixation’ and categorized remaining
measurements as ‘background’. This resulted in a time series with
either ‘fixation’ or ‘background’ labels, where each data point of a
fixation was associated with a card ID of the examined card. We
then performed a retrospective analysis for each card event ‘FCT’
and ‘SCT’ and split the last 3 seconds of gaze behavior prior to the
card events into windows of length 100 ms. For each FCT or SCT,
we iterated through all windows and checked if the card ID of a
fixation in a window matched with the card ID of the target card. If
yes, this resulted in a value of ‘1’ for the respective window. If not,
it resulted in a value of ‘0’. For each window position, we summed
up these results (‘0’/‘1’) over all FCTs/SCTs and divided them by
the total number of FCTs/SCTs. This resulted in the relative number
of fixations on target cards for each window position, expressed in
percent.

Hand movements were evaluated with a threefold objective. In a
first step, we explored the hand velocity curve to investigate whether
the hand movements ‘card reach’ and ‘card turn’ could be clearly
distinguished. In this context, we investigated characteristic features
in the hand velocity that occurred when the correct gaze prediction
was made. Such a feature represents a trigger condition to confirm
the current gaze prediction. As differences in hand tracking rate may
occur, we interpolated missing data points with intermediate values.

Second, we investigated how the direction of the hand movement
can be utilized as a boundary condition to limit possible targets.
Based on the hand velocity vector in the horizontal plane, we cal-
culated the shortest distances between all card locations and the
current hand trajectory, i.e., the perpendicular distances dperp, for
each time step (cf. Equation 1). We tested different perpendicular
and longitudinal distance thresholds to ensure the target card was

Figure 4: Last-second gaze behavior (50 fps) on the selected card
before the first card turn (left) and second card turn (right) across
all participants, divided into 100 ms time windows. Each value of a
box plot represents the number of fixations on target cards for one
participant, divided by all FCTs or SCTs played by the participant.

located within the trajectories bounds soon after the started card
reach while excluding as many other cards as possible.

Last, we evaluated the positions of index fingertip and thumb tip
for each card turn to investigate whether they could be used as an
indicator for the first card turn. We defined cuboids above each card
location that had the same horizontal dimensions as the fields and
varied the height of these cuboids (similar to transparent cuboids in
Fig. 3). We calculated the tracking rate, i.e., the amount of available
hand tracking data points at a recording rate of 50fps, as well as the
relative number of measured hits on the target card’s cuboid for the
index fingertip, thumb tip, and their center.

4 RESULTS

On average, the ten recorded games took 5.2 min (SD=1.0 min) with
a total of 141 card pairs played by the participants.

4.1 Analysis of Gaze Behavior
Eye gaze on the target card was generally low except for the last 1.5
seconds, where the fixations on the target card slowly started rising,
and in particular for the last second, where this increase started
climbing at a faster pace. Figure 4 shows how often participants
were already examining the target card in the last second before the
respective card turn divided into time windows with a duration of
100 ms.

Between 50 and 45 frames before FCT, participants were exam-
ining the target card on average in 35.4% of cases. This value rises
steadily and starts stagnating approximately 20 frames before FCT
with a mean of 81.1%, reaching its highest value just before the
card turn with a mean value of 85.2%. We observe similar SCT
behavior, though with an overall reduced percentage of fixations
on the target card. Between 50 and 45 frames before SCT only
19.0% of fixations were registered on target cards. This value rises
to 65.5% for the fourth-to-last window and reaches its maximum
mean value of 83.3% just before SCT. Averaged over FCT and SCT,
the gaze prediction reaches a value of 73.3% for the fourth-to-last
time window, which corresponds to a prediction time of 350 ms.



Figure 5: The top diagram shows the velocity components of an
example hand sequence of one move (two card turns) and three hand
velocity features that represent the start (A), peak velocity (B) and
end (C) of a card reach. VX represents the velocity in the lateral
direction, VZ represents the longitudinal direction, and VY represents
the vertical direction. The bottom diagram shows the time interval
between each hand velocity feature (A-C) and the gaze arriving on
the target card before a card turn. A positive value indicates that the
feature occurred after the gaze arrived on the target.

4.2 Analysis of Hand Movements

4.2.1 Hand Velocity

Figure 5 shows the hand velocity components and the resulting
velocity magnitude for an example hand sequence. Each FCT and
SCT consisted of two phases: (i) hand movement to a card (card
reach) and the subsequent (ii) turning over of a card (card turn).
Occasionally there were short periods during a move, in which the
participant briefly interrupted their hand movement. These waiting
periods occurred infrequently. We randomly selected and analyzed
30 (approximately 10% of all FCTs and SCTs) card reaches and
card turns to differentiate the ‘card reach’ and ‘card turn.’ The
average velocity during a card turn was 0.10 m/s (SD=0.02 m/s)
with a duration of 0.38 s (SD=0.10 s). The average velocity during a
card reach was 0.39 m/s (SD=0.11 m/s) with a duration of 0.92 s
(SD=0.24 s). Both mean velocity and mean duration during card
reach were significantly higher (p<0.01, Wilcoxon Signed-Rank
Test) than when it was turned over. The two actions can thus be
clearly distinguished from one another using these criteria.

4.2.2 Temporal Coupling of Eye Gaze and Hand Movement

Three features of each hand reach, i.e., the start, the peak, and the
end of the movement, were extracted across all participants and
related to the arrival of gaze on the target card (Fig. 5, Feature
A-C) to derive a trigger condition for the current gaze prediction.
For both FCT and SCT, the occurrence time of the peak velocity
is, on average, very close to the time the gaze arrives on the target

Figure 6: At the top, three characteristic scenes of a card turn are
shown (a-c), with the two involved hand joints index fingertip and
thumb tip as well as their center. At the bottom, over all first card turns
the hit rate on the target card’s cuboid is shown for different cuboid
heights for the index fingertip, thumb tip and center. Error bars show
the hit rates’ standard deviation over all card turns.

card. The start of a hand movement represents an earlier but riskier
prediction, while the end of a hand movement allows for a more
conservative prediction.

4.2.3 Hand Trajectory Planning
Taking into account only cards located within a lateral distance
of 6 cm (approx. half the size of a card field) around the current
hand trajectory and 30 cm in the longitudinal hand direction, the 36
possible cards could be reduced to an average of 2.9 cards (SD=1.1).
Approximately 470 ms (SD=220 ms) before SCT, the target card
laid within the trajectories’ tolerance field.

4.2.4 Fingertip Proximity
Figure 6 shows three relevant hand features during a card turn (top)
and the cuboid hit rates on target card’s cuboids for each feature
(bottom). The hit rates for the thumb tip are overall the lowest,
indicating that the thumb was less often located over a field during
card turn than the other two features. The hit rates of the index
fingertip and the center point are very similar up to a height of 6 cm
and then increase slightly more for the index fingertip.

The tracking rate, more precisely the number of available data
points at a recording speed of 50 fps, reached a mean value of 29.4%
(SD=26.6%) and a maximum of 60%. While running on-device
video recordings, the recording rate is automatically reduced from
60 fps to 30 fps. Despite fluctuations in the tracking rate, the cuboid
hit rates for the index fingertip and the center point were high during
a card turn. Outliers occurred when the tracking rate was very low,
and thus, registered hits on other cuboids had a more significant
effect on the hit rate.

4.3 Intermediate Discussion
Gaze behavior on cards seemed to be random up to the last second
before the card turn. In 73.3% of cases, the gaze arrived on target



card approximately 350 ms before card turn. The lower number
of fixations on the target card during SCT than FCT is most likely
related to the two-player setup. Participants who see a card whose
counterpart they know during their opponent’s move seemed to keep
the position of that card in mind during their move. After revealing
the expected matching card during their first card turn, they choose
the second card without looking at it.

The peak velocity fits on average very well as a trigger condition
for gaze prediction and errors due to the variance of peak velocity
and gaze on target should be greatly reduced by only allowing targets
on the hand trajectory. While the start of a hand movement can be
well detected by a velocity threshold, the peak velocity can only be
evaluated retrospectively. A possible alternative solution would be
first to detect the start of a hand movement and then check for a
negative acceleration of the hand.

The measurement of hit interaction of the index fingertip in the
respective cuboids provides an excellent signal to detect the first
card turn but is strongly affected by the hand tracking rate. For the
best performance of our support system, it is advisable to test the
system without first-person video recording and, thus, make full use
of the device’s capabilities to track hands with 60 fps. While we
aimed for a high degree of task immersion during the behavioral
analysis in the first study, we changed the setup to a single-player
memory game to assess the support system’s performance within
the second user study.

5 IMPLEMENTATION: CLOSED-LOOP USER SUPPORT

Based on the results of the first study, we implemented our pro-
cessing and analysis pipeline of gaze prediction, hand trigger, and
hand trajectory on HoloLens 2 to display visual alerts to the user
in real-time. In this section, we explain the functionality of the
implemented closed-loop support system. As we aim to provide
alerts for the second card turn based on selecting the first card, we
first detect the first card turn by monitoring the fingertip position
when near a respective card. Figure 7 shows the pseudo code of the
closed-loop user support. We initialized the algorithm’s thresholds
based on the findings in our first study and refined them during a
pilot study with three participants.

While the next card is set to the first card, all registered cuboid
hits of the index fingertip are continuously written into a list of
window size 20. We found that a cuboid height of 5.5 cm (Fig. 6)
works well to detect card turns while avoiding false detections due to
the hand moving across the field. Once the window size is reached,
the tracking rate and cuboid hit rate are calculated. If at least 30%
of data points are available and at least 60% of these data points
register a hit on the same cuboid, the first card is selected. As a
result, the respective field is outlined with green dashed lines (Fig. 8
(a)) and the next card is set to the second card.

Once the velocity of four consecutive frames is greater than 0.25
m/s, we detect the start of a new hand reach to a target. This Boolean
allows us to filter out the majority of card turns and random hand
movements (cf. Fig. 5). As missing data points can affect system
performance, we interpolate single missing data points with an im-
mediate value. Once the hand movement has started, the current
gaze target is compared with the card located close to the current
hand trajectory. Only cards within a maximum distance of 6 cm
in the transverse direction and 30 cm in the longitudinal direction
are considered. A color-coded visual alert is displayed above the
examined card position when a match occurs between the gaze tar-
get and hand trajectory targets. If the predicted target matches the
correct second card stored in the ground truth game layout, a green
bounding box outlining the field is displayed (Fig. 8 (b)). A yellow
alert is displayed in the event of a predicted incorrect target adjacent
to the correct card. If neither the predicted target nor any adjacent
fields are the correct card, a red warning sign is displayed (Fig. 8
(c-d)). At the beginning of our tests, we used a second Boolean

Figure 7: Pseudo code for the implemented closed-loop user support.

condition after the detected start of a hand movement set true by
three consecutive frames with negative acceleration (represents a
feature slightly behind ‘B’, cf. Fig. 5). This implementation, how-
ever, proved to be generally too slow to issue visual alerts in-time
and was dropped. The single velocity threshold used in our final
implementation represents a feature between ‘A’ and ‘B’ (cf. Fig.
5). Further, we initialized the threshold for a card to be considered a
gaze target with 4 consecutive frames on the same card. Increasing
this value to 6 frames significantly reduced false positives during
slower gaze transitions to the target.

The system was designed in a way that it would only provide one
visual alert for each move. Issuing multiple warnings for wrong sec-
ond card choices was expected to only result in a trial-and-error strat-
egy instead of participants actually thinking about the card choice.
Hence, after a visual alert was displayed, the system switched to
standby until the cards were turned back and the next move started.
To ensure that false detections were not propagated into future moves,
participants had to reset the system once after each move. This was
done by briefly moving their right hand over the single field on the
right side of the grid (cf. Fig. 2), which was covered by an invisible
cuboid (cf. Fig. 3). A touch with the cuboid resulted in the cuboid
lighting up to confirm the reset.



Figure 8: Confirmation of detected first card turn (a) and visual alerts
for the second card prediction in case of correct target selection (b), a
wrong target that is located directly next to the correct card (c), and a
wrong target that is not located next to the correct card (d).

6 STUDY 2: VALIDATING CLOSED-LOOP USER SUPPORT

In our second study, 12 new participants were recruited to play a
single-player memory game while our app now provided closed-loop
user support (cf. Section 5, Algorithm 1). As observed in the first
study, the use of first-person video recordings greatly reduces sensor
performance. In particular, hand tracking is reduced from a possible
60 fps to approximately 30 fps. To test the support system at its
best performance, we recorded participants’ actions with an external
camera while participants commented on their observations using
the think aloud method.

6.1 Participants

We recruited 12 new participants from our institution (9 male, 3
female, mean ages = 27.3 years, SD = 2.9 years) with normal or
corrected to normal vision. No participants were excluded.

6.2 Task

The goal of the game was to find all pairs of cards with as few card
moves as possible during a single-player game. Participants were
asked to select a different second card if a yellow or red alert was
displayed in-time at the location of their initial card choice. Before
each new move, participants once moved their right hand over the
square to the right of the grid to reset the closed-loop support system.

6.3 Procedure

Participants were introduced to how the system worked and learned
about the four visual aids (cf. Fig. 8) without addressing the un-
derlying behavioral patterns. Participants then performed the app
calibration and were able to test the system on three card pairs be-
fore starting the experiment. Participants were asked to think aloud
and share their observations during the experiment. In the case of
leaving out information, the experimenter asked questions. After the
experiments, an interview was conducted.

Figure 9: Warning system performance averaged over all partici-
pants (a) with categorization of incorrectly displayed warnings (b) and
correctly displayed warnings (c).

6.4 Data Analysis

We analyzed the support system’s performance and statements from
interviews. In a first step, we examined the third-person video
recordings and classified all warnings depending on time and place
of occurrence as described by the participants during think aloud. A
visual alert was considered timely when the participant recognized it
before the card turn, resulting in an observable change in the target
card after yellow and red warnings. The place of occurrence was
categorized as either ‘far away from target’, if at least one field was
separating the predicted and the actual target, as ‘next to target’ or
as ‘correct target’. We calculate the system accuracy by dividing
the number of correctly timed and placed visual alerts by all second
card turns. We did not quantify how often warnings subsequently
led to a correct card choice, as this metric is highly affected by
chance. Finally, during the interviews, we asked participants how
they perceived the system’s functionality, how they experienced the
visual alerts, and whether they felt patronized, monitored or annoyed
by the system at any point during the game.

7 RESULTS

In total 384 card pairs were played by the participants. Only allowing
one visual alert every move (turn of two cards), 330 (85.9%) hand
actions in total correctly triggered a visual alert in-time, while 54
hand actions resulted in wrong, late or missing visual alerts. Fi-
gure 9 shows the mean performance across all participants and the
breakdown of correct and incorrect warnings into subcategories.

Of the 54 card turns not resulting in a correct visual alert, only
5.6% were issued too late. A total of 31.5% of visual alerts were
placed just next to the target, which, in the case of red and yellow
alerts, still provided information about the actual target. A total of
18.5% of warnings placed far from the target usually occured when
the participants moved their hand unconsciously over the field or
when the hand movement and gaze overlapped while moving to a
target. This was often an issue when moving the hand from the
top left corner to the bottom right corner. In these cases, the gaze
movement was slower, and the hand blocked sight on the cards while
moving backward. Finally, 44.4% of second card turns were stated
by the participants to have not issued any visual alert. Analysis
of the event logs in the output file showed that for most of these
cases, a visual alert was issued but was either not recognized by
the participants or was placed outside of the field of view in AR. In
approximately 7% of all first card turns recognition did not work
properly. Either the green dashed lines appeared on the neighboring
field or during the second card turn. In these cases, we recommended
that participants simply reset and repeat the move.



We observed two fundamental strategies in dealing with the sup-
port system. Two-thirds of the participants found a natural pace from
the beginning, where detection of the first card turn and prediction of
the second card worked very well, reaching accuracies of the target
prediction up to 97.0%. The other third of the participants initially
performed random hand movements to test the system. After provo-
king false alerts, they quickly learned how the system worked. This
group of participants then actively used hand-eye coordination to
control the warning system, which became noticeable by the fixation
on the target card and a short yet fast pointing gesture towards the
target. Participants found it particularly helpful that visual feedback
was shown for all card actions, including the first card, which al-
lowed them to understand how the system worked and to collaborate
better.

During the interview, all participants stated that the system
worked very well and that it was helpful and supportive and stimu-
lating to use. None of the participants felt patronized or monitored
by the system. Two participants stated that the interpretation of
visual aids and the effort for memorizing card pairs required an
increased level of concentration. In contrast, two other participants
stated that they had to think less during the task, using the support
system as a tool, which they appreciated. While all visual warnings
were perceived as helpful, preferences varied between participants.
Perceptions of green warnings varied from participants experiencing
them as positive and motivating feedback to participants having a
rather neutral perspective. Yellow alerts were perceived as most
useful, as they prevented incorrect hand action and gave hints about
the correct target. This effect increased especially towards the end
of the game when there were only a few cards left. Finally, red alerts
were not perceived as negative by the participants. However, parti-
cipants criticized that red alerts only pointed out a mistake without
providing the user with additional task-relevant information. Two
participants suggested displaying an arrow above the red warning
that points in the approximate direction of the correct card to provide
better support. Participants further stated that the reset cube was
fast and easy to use but that they sometimes forgot about the reset,
especially during their first moves, and thus needed to be reminded
by the experimenter.

8 DISCUSSION

Our goal was to investigate whether real-time analysis of hand-eye
coordination is suitable for predicting hand actions during target
selection.

Our investigations showed that the support of our implemented
method was effective with a mean accuracy of 85.9%. While target
prediction was lower for SCT than for FCT in the first user study,
these differences were not present in the second user study. This
could be a consequence of the change from a two-player to a single-
player setup. Statements from the interviews suggest that the very
robust predictions are also related, in part, to the fact that participants
sometimes adjusted their behavior to interact with the support system
in an optimal way. Despite the measured average prediction times
of only 350 ms, most visual alerts were issued in time. This seems
plausible, considering that simple reaction times range from 180 ms
to 220 ms [23]. During hand-eye coordination, the eye continuously
supplies information to control hand movement. If a warning sign
obscures the target, the eyes cannot further guide the hand movement.
In contrast, displaying green outlines did not interrupt the hand
action in most of the cases.

Based on our results and previous research on hand-eye coordi-
nation in target selection, there is strong evidence that our method
is transferable to other cases. Several studies have shown the gaze
preceding the hand during target selection [14, 19, 25], also referred
to as a ‘directing’ pattern [26]. Our studies support these findings
while demonstrating how hand and gaze features can be combined
for target prediction. According to Crawford et al. [7], the object

to be manipulated directly affects the time the gaze must arrive on
the target. We therefore expect that some refinements of the thresh-
olds used in our method will be necessary for optimal performance
in other scenarios with other objects. We suggest that researchers
record hand and gaze data for their specific scenario, following our
implementation, and then fine-tune the parameters on their data to
find a good compromise of prediction time and accuracy.

While the playing field used for our studies is two-dimensional,
the invisible virtual objects for measuring user behavior, i.e., a thin
layer for gaze interaction and a thicker layer for finger proximity
(cf. Fig. 3), could be placed over any non-planar surface in 3D
space. Both the velocity threshold and gaze target of our proposed
method should be transferable to 3D settings. Only the trajectory is
currently computed in the 2D plane and would have to also exclude
targets along the vertical axis. Contrary to our setup, which was well
structured and observable from different angles, more complex 3D
setups might be characterized by occlusions and greater variations in
target objects’ distances and sizes, which might require case-specific
extensions to our method.

We see our method in various procedural tasks where an operator
follows a predefined sequence of actions such as, for example, dur-
ing interaction with medical devices or machine interfaces, or while
reaching for assembly parts. To integrate predictive support into
more complex real-world tasks, however, the system needs a pro-
found understanding of what the user is currently doing and how this
is in alignment with a reference workflow. Such process monitoring
has been studied in previous work [15, 31] and could be used as a
basis for our system in the future. Hand tracking capabilities now
also allow for direct monitoring of hand actions. In this work, we
only monitored one hand joint, i.e., the index fingertip, in proximity
to the cards to detect the first card turn, which was simple but very
effective. Recent work has utilized all hand joints of a hand pose for
training time series models (e.g., LSTM) on activity recognition of
manual tasks, resulting in high accuracies [12, 38]. Training algo-
rithms to recognize hand actions would allow future work to label
them during data postprocessing automatically. Using the detected
hand actions as output and the preceding hand and gaze behavior
as input, supervised training pipelines can be implemented to learn
more complex relations involving hand-eye coordination.

9 LIMITATIONS

The results are based on experiments with only 22 participants from
a rather homogeneous sample population. Despite the small number
of participants, the data set included 525 manually labelled first and
second card selections (summed up over both studies), which we
believe to be a solid basis to assess the performance of our method.
Further studies would strengthen the validity of our findings and
would be particularly interesting when conducted in other real-world
settings.

While the heuristics derived in this paper work well on average,
there is a distribution of temporal coupling between gaze and hand
feature occurrence (cf. Fig.5), which can result in warnings some-
times being triggered at the wrong time, and thus at the wrong place.
Such differences in temporal coupling cannot be fully accounted for
by a system based on thresholds, but rather by jointly learning hand
and gaze features from data. Combining the gaze prediction with a
hand trajectory proved to be key to handling the variety in partici-
pants hand movements. During our initial investigations on target
prediction, we found that simply using a velocity threshold and the
gaze target (i.e., as proposed by Cheng et al. [6] for predefined tar-
gets) was not sufficiently robust when participants could make their
own card choice on-the-fly. We suggest future work to also consider
optimizing thresholds for hand movement direction, as hand move-
ments from top left to bottom right corner were associated with a
higher percentage of misplaced warnings. Finally, the thresholds
were only optimized for the average target population. Customizing



thresholds to individual participants is expected to bring participants
performances closer to those of participants who collaborated with
the system and achieved accuracies of up to 97%.

The manual reset of the support system after each move might
have had an effect on participants natural behavior. Playing the
memory game without a reset cube would improve authenticity and
could be achieved by integrating more pronounced process monitor-
ing into the support system. There might have also been an effect
of differences in participants spatial abilities. These differences,
however, are expected to be rather small for the homogeneous group
of young and healthy participants (mean age = 28 years) recruited
for our studies.

In addition, as with any sensor, hand and gaze measurements
are subject to certain measurement errors. The playing field di-
mensions were chosen to minimize error, particularly in measuring
gaze behavior on cards. With state-of-the-art eye tracking glasses
measuring gaze with 100 fps and angular accuracies between 0.5–1°
(e.g., Tobii Pro Glasses 2), compared to HoloLens 2 with 30 fps
and an accuracy of 1.5°, it is possible to analyze gaze behavior on
more compact stimuli in the future, such as machine interfaces or
surgical scenes, and with fine-grained analysis of eye movements.
For hand tracking, data points were occasionally missing due to
low tracking quality, which we also believe gradually improves with
technological advancements. There may also be some errors due to
the manual processing of the ground truth.

10 CONCLUSION

With the high cost that human error in industrial and clinical appli-
cations is associated with, error prevention is an important topic.
In this paper, we presented a method that utilizes hand-eye coordi-
nation to predict hand actions during target selection. End-to-end
testing of our method showed it to be highly effective in placing
visual alerts over target locations and stop hand actions in a timely
manner. Moreover, it showed that hand-eye coordination can be
used as an intuitive way of interacting with a technical system and
that transparent communication from the system to the user is key
for effective collaboration.

To date, the field of context-aware augmented reality in manual
tasks has primarily focused on providing feedback on current user
behavior. With our work, we contribute a method that allows AR
headsets to provide feedback at an earlier stage of a task. While the
memory game proved to be an expedient case for this first investi-
gation, future studies should investigate hand-eye coordination in
industrial and clinical setups. It will be interesting to explore in the
future what patterns exist during other real-world tasks, how they
change in the course of a procedure and how they can be used for
intelligent wearable support systems.
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