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Meaningful digital biomarkers derived
from wearable sensors to predict daily fatigue
in multiple sclerosis patients and healthy controls

Max Moebus,1,4 Shkurta Gashi,1,2 Marc Hilty,3 Pietro Oldrati,3 PHRT author consortium, and Christian Holz1,2,4,5,*

SUMMARY

Fatigue is the most common symptom among multiple sclerosis (MS) patients and severely affects the
quality of life. We investigate how perceived fatigue can be predicted using biomarkers collected from
an arm-worn wearable sensor for MS patients (n = 51) and a healthy control group (n = 23) at an unprec-
edented time resolution of more than five times per day. On average, during our two-week study, partic-
ipants reported their level of fatigue 51 times totaling more than 3,700 data points. Using interpretable
generalized additive models, we find that increased physical activity, heart rate, sympathetic activity, and
parasympathetic activity while awake and asleep relate to perceived fatigue throughout the day—partly
affected by dysfunction of the ANS.We believe our analysis opens up new research opportunities for fine-
grained modeling of perceived fatigue based on passively collected physiological signals using wear-
ables—for MS patients and healthy controls alike.

INTRODUCTION

Fatigue is the most common symptom of multiple sclerosis (MS) patients. An estimated 53–87% of MS patients are severely impacted by fa-

tigue.1 ForMS patients, fatigue significantly impacts quality of life besidesmood, sleep quality, and experienced functional independence.2–5

Even though fatigue has been a topic of research already in the 19th century, no current definition suits all connected fields of research.6 As a

symptom of ‘‘long covid’’, currently still affecting 11% of all individuals ever infected with COVID-19 in the US, understanding fatigue and

perceived fatigue has gained recent attention.7 In the context ofMS, primary fatigue refers to fatigue caused by inflammatory activity (lesions),

while secondary fatigue refers to fatigue related to symptoms of MS, such as low sleep quality or pain.8 Research has further distinguished

between perceived fatigue (also known as state fatigue), a subjective assessment of fatigue potentially also influenced by general mood, and

fatigability. Despite it being the most frequent symptom of MS, perceived fatigue is still poorly understood. Thus far, perceived fatigue has

been the topic of numerous studies.8 However, respective studies either included only very few instances for MS patients or gaps of weeks or

months in between consecutive assessments. Intensive longitudinal studies involvingmultiple assessments of fatigue per day across weeks or

months are currently lacking.

Whereas fatigue inMS patients is commonly assessed using questionnaires, such as, e.g., the Fatigue Severity Scale (FSS)9 and the Fatigue

Scale for Motor and Cognitive Functions (FSMC),10 fatigability is commonly assessed using mechanic devices such as a knee11 or hand-grip

dynamometers.12 While the FSS, for instance, assesses fatigue over a prolonged period of time resulting in a measure of, so-called, trait fa-

tigue,13 ratings on a visual analog scale (VAS) assess state fatigue, which forms amore subjectivemetric relating to amomentary perception of

fatigue.14 State fatigue as captured via VAS ratings does not necessarily correlate strongly with fatigue captured by handgrip strength, for

instance.15 VAS ratings capture alsomore subtle changes in state fatigue, for instance, due to excessive exercise, and thus change throughout

the day.16,17 To fully understand its drivers, state fatigue thus has to be assessed continuously in the daily lives of MS patients.

Biosignals promise valuable insights when continuously assessing state fatigue. The activity of the autonomic nervous system (ANS), for

instance, has previously been linked to state fatigue.14,18 For MS patients, the ANS is often impaired and symptoms of impairment might be

observed already 10 years before the diagnosis.19,20 Symptoms of an impaired ANS have previously been linked to MS-related fatigue and

how patients rank, for instance, on the Modified Fatigue Impact Scale.21 Given how the activity of the ANS varies due to emotion or stress,22

we hypothesize that changes in ANS activity also affect VAS fatigue ratings. Furthermore, given that the ANS is dysfunctional in a substantial

proportion of MS patients, we hypothesize VAS fatigue ratings should be modeled separately for healthy controls, MS patients with a func-

tional ANS, and MS patients with a dysfunctional ANS.
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Wearable sensors allow to measure various biosignals including cardiac and electrodermal activity as well as skin temperature. Such de-

vices have been extensively used to measure emotions and stress. Currently, state fatigue for MS patients has not been assessed using wear-

able sensors. Given the success of modeling other subjective responses, wearable sensors used in intensive longitudinal studies seem prom-

ising to model state fatigue. Besides improving our understanding of a very subjective phenomenon, this will contribute to individuals

affected by fatigue increasing their quality of life.

In a two-week intensive longitudinal study, we investigate how also smaller changes in state fatigue can be explained by changes in

behavior and biosignals for MS patients and a control group. For 74 participants, we model state fatigue multiple times a day totaling on

average more than 50 observations per participant. We use an arm-worm wearable sensor collecting information about physical, cardiac,

and electrodermal activity, as well as skin temperature and the weather.

To reveal the effect of changes in collected biosignals, we normalized biosignals and VAS fatigue ratings per participant and used inter-

pretable generalized additive models (GAMs) recursively removing features without explanatory power. For MS patients, state fatigue levels

were more difficult to model and changes in ANS activity seemed less informative toward state fatigue. Our study further revealed that while

physical activity in terms of walkingmight reduce fatigue for healthy individuals, it might increase state fatigue forMSpatients. Variousmetrics

of cardiac activity while asleep were calculated to impact state fatigue the following day, highlighting the need to analyze the relationship

between sleep and state fatigue more thoroughly for MS patients and healthy individuals alike.

RESULTS

We analyzed 3,733 VAS fatigue ratings from 74 individuals across a period of two weeks. We first analyzed how average VAS fatigue ratings

and FSMC scores relate for MS patients in the VAS fatigue ratings and their relation to FSMC scores section. Then, after briefly comparing

the overall distribution of VAS fatigue ratings in different subgroups in the VAS fatigue ratings amongdifferent subgroups section, we normal-

ized VAS fatigue ratings and biosignals recorded from an arm-worn wearable sensor per participant as input to predictive models in the per-

formance comparison of generalized additive models section. Using interpretable GAMs in the calculated effects on perceived fatigue sec-

tion, we analyzed and interpreted predictors of state fatigue normalized per participant.

Participants

We analyzed VAS fatigue ratings for healthy controls (Co, n = 23), MS patients with a functional ANS (MS I, n = 27), and MS patients with a

dysfunctional ANS (MS II, n = 24). We classified the ANS of MS patients who scored higher than 17 on the abbreviated COMPASS question-

naire as dysfunctional.23,24 Table S3 compares heart rate variability metrics between MS patients with a dysfunctional ANS and MS patients

with a functional ANS in more detail. Baseline characteristics for the three different subgroups are listed in Table 1.

VAS fatigue ratings and their relation to FSMC scores

For MS patients, we found that average VAS fatigue ratings correlate strongly with reported FSMC scores (Spearman correlation of 0.78). Fig-

ure 1 shows a clear trend between average VAS fatigue ratings and FSMC scores.

VAS fatigue ratings among different subgroups

Between the control group andMS patients, we found differences in the distribution of VAS fatigue ratings. Table 1 displays average baseline

characteristics of the healthy controls (Co), MS patients with a functional ANS (MS I) and MS patients with a dysfunctional ANS (MS II), and

whether the differences are statistically significant. Table 1 shows that VAS fatigue ratings significantly differ between MS patients with a

dysfunctional ANS and MS patients with a functional ANS (p = 0.026). The two groups also significantly differ in terms of EDSS and FSMC

scores, as well as heart rate variability (HRV) metrics (Table S3 in the Appendix). FSMC scores also significantly differ between MS patients

with a dysfunctional ANS and the control group but not MS patients with a functional ANS and the control group.

Performance comparison of generalized additive models

With GAMs, we choose an interpretable class of models that have shown great flexibility for tabular data. Table 2 compares the performance

of a GAM to other commonly used techniques such as a generalized linear model (GLM), (boosted) random forest regressor (RF and BRF), a

support vector machine (SVM), and a small fully connected feedforward neural network (NN) for the prediction of VAS fatigue ratings.

Removing all data points with missing values (No mean imp.), the GAM achieved the highest explained variance with 26.2% followed by a

random forest with 26.1%. When imputing missing values by each participant’s mean feature value (Mean imp.), the SVM performed best

with an explained variance of 24.6% followed by a GAM with 24.0%.

Table 3 displays the performance of GAMs fitted as outlined in the STAR Methods section for five different subgroups of participants: all

participants, the control group, all MS patients, and MS patients with and without a dysfunctional ANS. The model selected for the control

group (within-group validation) performs best with an explained variance of 33.6% and amean absolute error of 0.63, while themodel selected

for all MS patients at once performed worst. When performing across-group evaluation, model performance drops in all cases. Model perfor-

mance (R2) drops by almost 16%when evaluating themodel optimized for the control group onMS patients with a functional ANS (MS I) (from

33.6% to 17.7%). The difference in R2 is statistically significant (p<0:001). Similarly, the performance of models trained on data of MS patients

with a functional ANS drops significantly when used to predict VAS fatigue ratings of MS patients with a dysfunctional ANS, and vice-versa.
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Table 3 shows varying proportions of incomplete data points from 20 to 28% between subgroups, where missing data points were mean

imputed (Mean imp.). To prevent inaccurately detected heartbeats from our optimal sensor worn at the arm, we require 5-min windows with

littlemotionwhenparticipants were at rest to calculatemetrics about ANS activity.Missing 5-min low-motionwindows in a 1-hwindowprior to

a VAS fatigue rating is the most frequent reason for incomplete data points—see the STAR Methods section for more details.

Calculated effects on perceived fatigue

Table 4 lists all significant effects for the VAS fatigue ratings and their directions for the three different groups: the control group (Co), MS

patients with a functional ANS (MS I) according to COMPASS,23,24 and MS patients with a dysfunctional ANS (MS II). Table 4 summarizes

the effects calculated for the aforementioned groups. The effects are derived from partial independence plots (see Figure S1 as an example).

Table 1. Comparison of healthy controls, MS patients with a functional ANS (MS I) and MS patients with a dysfunctional ANS (MS II)

Co MS I MS II pC�I pC�II pI�II

N 23 27 24

Female 13 (57%) 21 (78%) 13 (38%) 0.115 0.882 0.079

SPMS 0 (0%) 4 (15%) 4 (17%) 0.580

RRMS 0 (0%) 23 (85%) 20 (83%) 0.869

Age 33.9 (10.7) 34.3 (7.9) 39.1 (11.3) 0.487 0.095 0.125

VAS 3.8 (1.0) 3.6 (1.4) 4.5 (1.5) 0.271 0.083 0.026

FSMC 30.9 (9.0) 47.3 (20.3) 63.2 (18.7) 0.193 0.002 0.037

FSMC: cognitive 15.6 (3.4) 21.9 (9.5) 32.9 (10.2) 0.395 0.009 0.003

FSMC: motoric 15.2 (5.9) 25.4 (11.0) 30.3 (10.1) 0.089 0.013 0.199

Handgrip (kg) 27.4 (3.6) 21.6 (6.0) 26.6 (9.4) 0.004 0.480 0.053

9-hole PT (s) 17.2 (1.6) 20.1 (4.9) 24.8 (7.3) 0.071 0.001 0.001

EDSS 1.9 (1.5) 2.7 (1.4) 0.021

ARMSS 4.1 (2.4) 5.0 (1.8) 0.177

Disease Duration (y) 0 (0) 6.7 (6.8) 10.4 (8.8) 0.150

Percentages and standard deviations are provided in brackets in the first and second part of the table, respectively. The p values corresponding to distribution-

free Wilcoxon signed rank tests testing for mean differences between Co and MS I, Co and MS II, and MS I and MS II are given in columns pC�I , pC�II, and pI�II,

respectively. SPMS and RRMS refer to the number of participants with Secondary Progressive MS and Relapse Remitting MS, respectively. Overall scores on the

FSMC are presented, as well as the scores on the cognitive and motoric subparts. Only 8 participants of the control group completed the FSMC, the handgrip

strength, and the 9-hole peg (9-hole PT) test. Participants of the control group were not scored on the EDSS or the ARMSS. Further information aboutMS patients

can be found in Tables S1–S3. Figure S2 shows the distribution of VAS fatigue ratings.

R = 0.78, p < 0.001

30

60

90

2 3 4 5 6 7 8
average VAS perceived fatigue rating

FS
M

C
 s

co
re

MS Type
MS I

MS II

Figure 1. VAS fatigue ratings versus FSMC scores for MS patients

MS I refers to MS patients with a functional ANS, while MS II refers to MS patients with a dysfunctional ANS. The Spearman correlation between VAS fatigue

ratings and FSMC scores and its p value are given in the top-left corner. The fitted trendline with confidence interval is derived from a linear regression

model. The overall distribution of VAS fatigue ratings is displayed in Figure S2.
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Predictors for state fatigue include variables related to participants’ daily routine, cardiac activity, electrodermal activity, physical activity,

and the weather. While most variables were calculated over longer time horizons such as the time period when participants were asleep or

since they woke up before a VAS fatigue rating 6 predictors are variables collected within 3 h before a VAS fatigue rating.

Ablation study for perceived fatigue

We conducted an ablation study to better understand how different groups of features contribute to model performance for the five sub-

groups of the dataset. We find that removing feature groups when modeling VAS fatigue ratings for all participants at once (All), or all MS

patients at once, does not significantly change performance. For MS patients with a dysfunctional ANS (MS II), the explained variance de-

creases when removing any combination of features (by up to 6%). When removing all four feature groups, R2 decreases the most for MS

patients with a dysfunctional ANS (4.9%).

DISCUSSION

Fatigue and state fatigue

According to a commonly used definition by Kluger et al.,29 there are two distinct types of fatigue. The first type, known as performance

fatiguability, describes general weakness of muscles or the inability to perform a task at the same speed or quality for long. It is an objective

Table 2. Comparison of different modeling techniques for per-participant normalized VAS fatigue ratings

Model

No mean imp. Mean imp.

R2
% MAE RMSE R2

% MAE RMSE

RF 26.1 0.69 0.86 24.0 0.71 0.89

BTE 26.0 0.69 0.86 23.6 0.71 0.89

SVM 25.8 0.68 0.85 24.6 0.70 0.88

NN 24.4 0.71 0.88 23.1 0.72 0.90

GAM 26.2 0.69 0.85 24.2 0.70 0.88

GLM 25.9 0.68 0.84 24.0 0.70 0.88

For all participants, we compare the performance of a GAM to a random forest (RF),25 a boosted tree ensemble (BTE),26 a linear support vector machine (SVM),27

and a neural network (NN).28 We evaluate all techniques when removing all data points with missing values (No mean imp.) and imputing each missing value by

the mean feature value per participant (Mean imp.). Details in the STAR Methods section.

Table 3. Performance evaluation of GAMs fitted for five different groups

Group

P N Imp.

No mean imp. Mean imp. Baseline p

Train Test R2
% MAE RMSE R2

% MAE RMSE R2
% MAE RMSE p pimp

All All 74 3733 25% 26.2 0.69 0.85 24.2 0.70 0.88 0 0.78 0.99

Co Co 23 1137 20% 33.6 0.63 0.78 29.8 0.66 0.84 0 0.80 0.99

MS I 17.7 0.73 0.91 18.1 0.73 0.91 0 0.83 0.99 <0.001 <0.001

MS II 18.2 0.74 0.92 17.1 0.75 0.93 0 0.81 0.99 <0.001 <0.001

MS MS 51 2596 27% 25.9 0.68 0.86 22.2 0.71 0.89 0 0.83 0.99

MS I MS I 27 1338 27% 27.5 0.67 0.84 24.8 0.70 0.88 0 0.80 0.99

Co 18.6 0.74 0.89 18.2 0.73 0.88 0 0.80 0.99 <0.001 <0.01

MS II 17.5 0.73 0.93 14.2 0.75 0.94 0 0.81 0.99 <0.001 <0.001

MS II MS II 24 1258 28% 27.8 0.69 0.85 22.3 0.71 0.90 0 0.81 0.99

Co 25.9 0.67 0.83 21.2 0.70 0.86 0 0.80 0.99 0.05 0.36

MS I 20.6 0.72 0.89 17.2 0.74 0.93 0 0.80 0.99 <0.001 <0.01

P: number of participants, N: number of observations, Imp.: % of observations with mean imputation. Models are trained based on data of participants in the Train

group, and evaluated on participants in the Test group. Each participant’s average VAS fatigue rating is used as a baseline regressor for comparison. Themetrics are

averaged across all participants of the Test group. In case the model is tested on participants of the same group it is trained on (within-group evaluation), each

participant is left out from the training set once for testing (leave-one-participant-out cross-validation). In case the model is tested on participants of a different

group than it is trainedon (across-groupevaluation), themodel is trainedondata from all participants in theTraingroup and evaluatedondata fromeach participant

of the Test group separately to match the setting of the within-group evaluation. The p and pimp columns give the p value of Wilcoxon signed rank tests indicating

whether the across-group performance is different from the within-group performance. At each split, the model is trained omitting any data points with imputed

data and evaluated once on this reduced dataset without any mean imputation (No mean imp. & p) and once including mean imputation (Mean imp. & pimp).
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Table 4. Summary of the effects of an increase in the respective variable on the VAS fatigue rating

Variable

Effect on VAS rating

Co MS I MS II

time of day ╱ ╱

time spent awake ╱

sleep duration ╲

HR 6h: mean ╱

6h: sd ╱

as: mean ╱

as: sd ╲

as: slope ╲ ╱

SD1 3h: min ╲

3h: mean ╱

aw: mean ╲

aw: slope ╲ ╱

as: mean ╲

as: sd ╱

SD2 3h: min ╲

aw: sd ╱

aw: slope ╲

as: min ╱

as: sd ╱

SDNN 1h: sd ╱

3h: slope ╱

6h: mean ╱

aw: max ╲

as: min h

as: max ╱

as: sd ╲

EDA peaks 1h: sd ╱

6h: sd ╲

steps 6h: count ╲ ╲

aw: count ╱

activity 6h: sd ╱

6h: max ╲

aw: max ╲ � ╲

aw: sd ╱

aw: int. ╱ ╱

as: max ╱

temp day: mean ╲

day: min ╲

temp (felt) day: min ╱

dew day: mean ╲ ╲

humidity day: mean ╱

The symbols ╱, ╲,h,g and� summarize the shape of respective partial dependence plots. ‘1h’, ‘3h’, ‘6h’, ‘aw’, and ‘as’ refer to the 5 time horizons defined in the

STAR Methods section of one, three, and 6 h prior to the respective rating, and awake and asleep, respectively. Variables connected to weather were calculated

across the whole day. Co = control group; MS I = MS patients with a functional ANS; MS II = MS patients with a dysfunctional ANS.
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usually stationary assessment of (trait) fatigue. It is commonly assessed via questionnaires such as the FSMC,10 or mechanic devices such as a

knee11 or hand-grip dynamometer.12 Recently, however, also mobile devices have been used to assess fatiguability.30 Perceptions of fatigue

(state fatigue), as assessed via VAS ratings, form the second type of fatigue as defined by Kluger et al., which does not necessarily relate to the

first type. While these two types of fatigue have to be treated separately and do not have to occur at the same time, they can influence each

other and might be observed together. With a correlation of 0.79 (Figure 1), we find that MS-related trait fatigue, as assessed via the FSMC,

relates well to state fatigue as assessed via the average VAS fatigue rating recorded during our two-week study. This does not imply, however,

that the smaller, short-term changes in fatigue we model after normalizing VAS fatigue ratings per participant also relate to changes in trait

fatigue. Thesemore subtle changes are intertwined with a feeling of tiredness as often included in the definition of perceived fatigue.31 This is

also supported by our finding of a strong positive effect of time of day on state fatigue and time spent awake on state fatigue.

Table 1 further shows that FSMC scores, as well as VAS fatigue ratings, differ significantly between the control group andMSpatients with a

dysfunctional ANS, as well as between MS patients with a functional ANS and MS patients with a dysfunctional ANS, highlighting fatigue

severity for MS patients with a dysfunctional ANS. While the average FMSC score of MS patients with a functional ANS (47.3) lies above

the cut-off value of 43 for mild fatigue,10 the average FSMC score of the control group (30.9) is not statistically different. Consequently, while

there is evidence of (trait) fatigue in MS patients with a functional ANS given the average FSMC scores of 47.3, the difference to the healthy

controls is much less substantial than for MS patients with a dysfunctional ANS. Similarly, there is also no significant difference in VAS fatigue

ratings between the control group and MS patients with a functional ANS. Thus, between healthy controls and MS patients with a functional

ANS, there is no general difference in perceived fatigue (state fatigue), and VAS fatigue ratings might primarily relate to a feeling of tiredness

for MS patients with a functional ANS.

Performance by different modeling techniques

For all models, we observed lower performance when mean-imputing missing values. This is expected since we add noise by doing so. The

GAMachieved the highest explained variance when all observations withmean imputed variables were removed and generally performed on

par with all other modeling approaches. Differences in R2, MAE, and RMSE between different approaches, however, are overall small. GAMs

allow for the interpretation of calculated effects, while little to no predictive performance on completely unseen test sets seems lost in com-

parison to less interpretable techniques such as the SVM, RF, BTE, or NN.

Performance in different sub-groups

Modeling the control group on its own resulted in the best performance as displayed in Table 3. ForMSpatients, this highlights a lower signal-

to-noise ratio given the observed variables. The significant drops in performance in Table 4 when a model fitted for MS patients with a func-

tional ANS is used to predict VAS fatigue ratings forMSpatients with a dysfunctional ANS, and vice-versa, highlight that state fatigue seems to

respond differently to changes in biosignals based on ANSdysfunction. Thismatches observed differences in the sets of predictors in Table 4.

Ablation study

Weevaluated theGAM for modeling VAS fatigue ratings when removing combinations of feature groups for the five different subgroups of par-

ticipants as part of an ablation study. Table 5 displays the performance of theGAMfittedon combinations of the four featuregroups: including all

available features, removing one group, removing all groups apart from one, and removing all groups. We further tested whether adding any

combination of features changesmodel performance significantly compared to removing all four feature groups in the column on the very right.

When removing all four feature groups, VAS fatigue ratings aremodeled only based on features related to daily routines such as the time of

day or sleep duration, which resulted in the highest performance when modeling all participants at once. The high performance when

removing all feature groups indicates that the calculated effects might not generalize well across all subgroups of participants. For MS pa-

tients with a dysfunctional ANS, we observed the greatest improvement in explained variance when including all four feature groups (27.8

versus 22.9). This highlights that for MS patients with a dysfunctional ANS changes in biosignals might have the strongest effect among

the three subgroups. Adding the four feature groups resulted in significantly higher model performance only when modeling the control

group, MS patients with a functional ANS and MS patients with a dysfunctional ANS separately. This highlights that while changes in bio-

markers seem to affect VAS fatigue ratings for all participants, the effects likely do not generalize across the three groups. Generally, adding

all four feature groups affects R2 by at most 4.9% (MS II), highlighting that features about participants’ daily routines are already very infor-

mative toward VAS fatigue ratings.

Daily routine

For all three subgroups of participants, either the time of day or the time that passed since participants last woke upwere selected as predictors

of VAS fatigue ratings indicating that VAS fatigue ratings increase the longer participants are awake. Only for MS patients with a functional ANS,

sleep duration was selected as a predictor for state fatigue indicating a potentially increased importance of sleep toward state fatigue.

Cardiac activity

Wefind various significant effects related to cardiac andANS activity. However, they are not always consistent across all subgroups as outlined

in the following sections in more detail.
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Heart rate

For MS patients with a dysfunctional ANS, only the average heart rate (HR) while asleep was calculated to increase state fatigue, matching

previous studies for patients with chronic fatigue syndrome.32 Interestingly, a more positive trend of HR while asleep was calculated to reduce

state fatigue for the control group but increase state fatigue for MS patients with a functional ANS.

Heart rate variability: Overall activity

We have found various effects related to HRV metrics for the three groups of participants. There are many potential reasons, as to why ANS

activity and, subsequently, HRVmetricsmight change. This includesmomentary effects of deep breathing,33 as well as disease progression of

MS patients in the long run.19 HRVmetrics also vary between different sleep stages and due to stress, pain, or changes in mood.34 Given that

we aggregate HRV metrics across the course of 1 h to a maximum of roughly 16 h, stress, changes in mood, pain, physical activity, or sleep

stages are likely causes for changes in HRV metrics.

SDNN is ameasure of overall HRV influenced by both the sympathetic and parasympathetic part of the ANS. For the control group, we find

that SDNNmetrics up to 6 h prior to a VAS fatigue rating affect state fatigue. ForMS patients with a dysfunctional ANS, the calculated effect of

increased variability in SDNN activity during 1 h prior to a VAS fatigue rating hints at an immediate effect of changes in ANS activity that in-

crease state fatigue. ForMS patients with a functional ANS, increases inmaximumSDNNwhile awake are calculated to decrease state fatigue,

while increases in maximum SDNN while asleep are calculated to increase state fatigue the following day.

Heart rate variability: Parasympathetic activity

Besides measuring general ANS activity, SD1 provides information about the activity of the parasympathetic part of the ANS, responsible for

relaxation after stress (rest and digest).

Interestingly, parasympathetic activity does not seem to affect state fatigue for MS patients with a functional ANS. For MS patients with

a dysfunctional ANS, however, average and minimal parasympathetic activity impact state fatigue up to 3 h before a VAS fatigue rating.

Further, the constructedGAMs indicate that increased parasympathetic activity increases state fatigue for MS patients with a dysfunctional

ANS but decreases it for the control group. For the control group, a decrease in state fatigue given increased parasympathetic activity

might be linked to the reaction of the ANS to mood changes. Parasympathetic activity increases given a positive mood, which seems

to contradict for MS patients with a dysfunctional ANS. While asleep, parasympathetic activity was calculated to affect state fatigue

throughout the following days only for the control group, hinting at a possible relationship to sleep behavior and the time spent in different

sleep stages.35

Heart rate variability: Sympathetic activity

SD2 is a measure of general ANS activity but more specifically is influenced by activity of the sympathetic part of the ANS—responsible for

alertness in dangerous or stressful situations (fight or flight response). For the control group, increases in minimal SD2 while asleep and awake

(3h prior) are linked to increased VAS fatigue ratings indicating a relationship between experienced stress and state fatigue.While increases in

variability of sympathetic activity while awake are calculated to increase state fatigue for MS patients with a functional ANS, a positive trend in

sympathetic activity is linked with decreased state fatigue for MS patients with a dysfunctional ANS. For increased variability while asleep,

however, we find that it is linked to increased VAS fatigue ratings throughout the next day for MS patients with a dysfunctional ANS. Given

the variability of HRVmetrics while asleep, we believe the sleep behavior ofMS patients and their reaction to negative emotions such as stress

should be studied more closely in the future.

Table 5. Ablation study for VAS fatigue ratings

Features

CAR

EDA

ACC

WEA

EDA

ACC

WEA

CAR

ACC

WEA

CAR

EDA

WEA

CAR

EDA

ACC

CAR

EDA

ACC

WEA

ALL 26.2 26.2 26.1** 26.5 26.5 26.3 26.4 26.8 26.0 26.6

Control 33.6*** 29.7 33.1*** 32.3* 33.7*** 30.1 31.3* 29.4 29.4 29.8

MS 25.9 25.3* 25.1 24.5 25.8 24.5 24.0 25.2 24.8 24.6

MS I 27.6** 26.2* 27.6*** 24.0** 27.8*** 25.3 24.8 25.6 26.5** 25.6

MS II 27.8*** 23.3 25.9*** 22.8 26.9*** 21.8 23.1 22.7 22.7 22.9

We assessed model performance in terms of explained variance (R2) when removing one of the four feature groups: cardiac activity (CAR), electrodermal

activity (EDA), physical activity (ACC), or weather (WEA). We further assessed model performance when removing all of the four feature groups, and all

apart from one. Features related to participants’ daily routine (time of day, sleep duration, etc.) were always included and they form the baseline perfor-

mance in the very right column. We tested whether model performance differs significantly from this baseline in the very right column using Wilcoxon

signed rank tests across 100 perturbations of participants. Differences in performance at a significance level of p<0:05, p<0:01, and p<0:001 are marked

with *, **, and ***.
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Electrodermal activity

The variation in the number of peaks in the EDA signal was calculated to significantly affect VAS fatigue ratings for MS patients with a

dysfunctional ANS and the control group. For MS patients with a dysfunctional ANS, a higher variability in the number of peaks during

1 h prior to the VAS fatigue rating was calculated to increase state fatigue. For the control group, higher variability in the number of

EDA peaks while asleep was calculated to decrease state fatigue the following day. EDA peaks, especially if they form, so-called, EDA

storms indicate arousal. While asleep, they are most common in non-REM sleep phases,36 potentially highlighting the importance of

different sleep phases and completed cycles for lower state fatigue for healthy individuals. While awake, EDA peaks indicate cognitive

and emotional stress,34 indicating that MS patients with a dysfunctional ANS might be particularly affected by stressful events. Further,

EDA is an alternative biomarker for sympathetic activity. For MS patients with a dysfunctional ANS, the effects of EDA and SDNN are

thus aligned.

Physical activity

For MS patients and the control group, we generally observed that an increase in physical activity (step count or total movement) while awake

increases state fatigue. An increase in maximum total acceleration of the arm is associated with decreased fatigue for all participants, how-

ever. Since armmovement might be observed also while the participants sit, this might indicate that not all types of physical activity increase

state fatigue and that walking might, for instance, decrease it.

While asleep, variables about physical activity might relate to sleep continuity. For MS patients with a functional ANS, the associated in-

crease in state fatigue throughout the day due to an increase in themaximum acceleration of the arm observedwhile asleepmight be related

to decreased sleep continuity.

Weather

The weather, and temperature in particular, was shown to impact MS patients’ cognitive and motor skills.37 It is thus not surprising

that minimal and mean temperature was selected as a predictor for VAS fatigue ratings for MS patients with a dysfunctional ANS and

MS patients with a functional ANS respectively. Interestingly, however, an increase in felt minimal temperature was associated with

an increase in state fatigue for MS patients with a functional ANS hinting at a possible interaction between objective and felt minimal

temperature.

For MS patients with a functional ANS and the control group, we found that days with increased amounts of dew were associated with

decreased fatigue, while days with high humidity were associated with higher state fatigue for MS patients with a dysfunctional ANS.

Concluding remarks

In this paper, we have highlighted that state fatigue can bemodeled at a time resolution ofmultiple times a day for healthy individuals andMS

patients alike. Based on passively collected data alone, our models clearly outperformed baseline regressors predicting each participant’s

average response over our two-week study duration. Dysfunction of the ANS affects the relationship between biomarkers and state fatigue.

For healthy individuals, MS patients with a functional ANS, and MS patients with a dysfunctional ANS, state fatigue thus has to be analyzed

separately.

VAS fatigue ratings follow a daily upward trend and the time of day and the time participants spent awakewere the strongest predictors for

state fatigue. Deviations from this daily upward trend might be explained by changes in biomarkers related to cardiac, ANS, electrodermal,

and physical activity. The calculated effects linked to the activity of the sympathetic nervous system indicate that emotional states, such as

stressful or particularly calming experiences, might affect state fatigue. Further, we find changes in biosignals while asleep to predict state

fatigue throughout the following day. This highlights that sleep behavior and its relation to state fatigue should be studied more closely

for healthy individuals and MS patients alike.

Limitations of the study

Toward the goal of analyzing fatigue inMS patients continuously, our study has several limitations. Firstly, all our findings need to be verified in

more large-scale efforts representative of a broader population of MS patients. While the study is somewhat balanced between healthy con-

trols, MS patients with a functional ANS andMS patients with a dysfunctional ANS, age and gender distributions are not fully matched within

these groups and are unlikely to accurately represent the broader population. Secondly, while VAS fatigue ratings form a low-effort assess-

ment of fatigue that is easy to integrate onmobile devices and does not pose a major effort for study participants, they do not necessarily link

to other commonly used measures of fatigue such as FSMC,10 or EDSS.38 Besides fatigue, they might capture feelings of exhaustion due to

recent physical exercise, for instance. Further, VAS fatigue ratings do not separate motoric and cognitive aspects of fatigue. For MS patients,

VAS fatigue ratings capture what is often described as perceived fatigue or state fatigue. Thirdly, our study’s time horizon of 2 weeks is argu-

ably too short to capture slower long-term changes in fatigue. We believe the continuous assessment of fatigue across long periods accom-

panied by wearable sensors would be a most interesting avenue for future research. Lastly, since our modeling approach using GAMs simply

aims to identify biomarkers with large explanatory power toward VAS fatigue ratings, the causality of the effects derived in this fully obser-

vational study requires further assessment.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Christian Holz

(christian.holz@inf.ethz.ch).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The data reported in this study cannot be deposited in a public repository due to the approved study protocal. The data reported in this

study is available from the lead author upon reasonable request and signing a data-sharing agreement.
� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We recruited 74 participants aged between 18 and 65 without concomitant diseases via convenience sampling at the neuroimmunology

department outpatient clinic of the University Hospital Zurich, Switzerland. The study protocol was reviewed and approved by the Cantonal

Ethics Committee of Zurich (SNCTP000003494). MS patients (n=51) and a control group (n=23) were recruited between the 29th of November

2019 and the 29th of July 2021. Upon inclusion, MS patients were scored on the Fatigue Scale for Motor and Cognitive Functions (FSMC),

completed the COMPASS-31 questionnaire,23 measured their handgrip strength 10 times using a handgrip dynamometer (with the dominant

hand), performed 4 consecutive 9-hole peg tests (2 with each hand), and reported their medical history including any medication they were

taking. Also, 8 members of the control group performed 10 consecutive handgrip strength tests, 4 9-hole peg tests, and were scored on the

FSMC. Overall, participants were 34.7 years old (SD=10.1), and 48 were female (sex assigned at birth). 32% of all participants scored higher

than 17 on the abbreviated COMPASS questionnaire indicating dysfunction of the ANS.23,24 Baseline characteristics of all participants and

information about MS patients’ medical condition can be found in Table 1. Table S3 further compares ANS activity between MS patients

with a dysfunctional ANS andMS patients with a functional ANS while awake and asleep. SomeMS patients were on disease-modifying treat-

ment (DMT) ormedication that is known to affect HRVmetrics.We have listed the number of MS patients and the respectivemedication in the

Appendix in Tables S1 and S2. Participants’ ancestry, race, ethnicity, education, and socioeconomic status were not reported.

METHOD DETAILS

For the duration of two weeks, participants wore a wearable sensor (Everion, Biofourmis AG) on the arm recording HR at 1Hz, inter-beat-in-

tervals (IBIs), skin temperature at 1 Hz, electrodermal activity at 1 Hz, step count, and total acceleration at 1 Hz. The Everion sensor in use

demonstrated high agreement with a gold-standard Holter ECG device.39 We further collected information about the weather such as tem-

perature (actual and felt), solar energy, cloud coverage, and time between sunrise and sunset. Participants were equipped with two wearable

sensors and instructed to swap them for charging once per day. The respective sensor in use streamed data via Bluetooth to a smartphone

upon which a custom-built application was installed. If necessary, participants were equipped with a Google Pixel 3a phone for the study

duration.

Continually throughout the day, participants rated their level of fatigue on a VAS from one to ten. Participants were instructed to complete

at least three VAS fatigue ratings daily. On average, every participant reported their perceived fatigue nearly 51 across the two-week study

duration. The average rating was 3.9. Participants’ average ratings varied with a standard deviation of 1.4. On average, the VAS ratings varied

with a standard deviation of 1.5 per participant. Figure S2 shows a histogram of all VAS fatigue ratings.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

R statistical software The R foundation Version 4.2.2

Mixed GAM Computation Vehicle with

Automatic Smoothness Estimation

https://cran.r-project.org/web/packages/

mgcv/index.html

Version 1.9.0
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QUANTIFICATION AND STATISTICAL ANALYSIS

Feature extraction

We extracted and aggregated features across five different time intervals before each VAS fatigue rating: during one hour prior, three hours

prior, and six hours prior, while participants were asleep at night, and since participants woke up. Four out of the five intervals are identical, if a

participant rated their fatigue level less than one hour after waking up. If a participant rated their fatigue level between one and three hours

after waking up, three out of five intervals are identical. Given that participants reported on average 3.8 VAS ratings per day, features extracted

for different VAS fatigue ratings will also be aggregated over partially overlapping time intervals.

Based on the inter-beat intervals (IBIs) from the arm-worn wearable sensor, we calculated heart rate variability (HRV) features according to

recommendations of theHRV Task Force40 using the opne-source library ‘pyHRV’.41Weonly computedHRVmetrics during 5-minutewindows

with nomeasurable continuous armmotion, with less than 4 IBIs that we linearly interpolated due to artifacts,42 and when participants were at

rest. We classified participants to be at rest when their heart rate was less than 55% of their maximum heart rate (220 BPM - age). To measure

HRV, we calculated the standard deviation of the IBIs (SDNN), the standard deviation of the distance to the 45
�
and -45

�
line of the point-caré

plot of consecutive IBIs (SD1 and SD2, respectively). We did not calculate RMSSD (rootmean squared difference of consecutive IBIs), since it is

mathematically identical to SD1.43 For HR and HRV features, we calculated the minimum, maximum, and average values as well as the stan-

dard deviation across the five time horizons outlined above. Additionally, we calculated the slope of the linear regression line of each variable

fitted across these time intervals. We will refer to these regression coefficients as the slope of the respective signal over a given time interval.

Similarly, for the skin temperature and EDA signals, we extracted the slopes, standard deviation, as well as average, minimum, and

maximum values across the five different time horizons outlined above. For the EDA signal, we also extracted the number of peaks.44

We summed the step count over all five time horizons as a measure of physical activity. We further extracted the average, minimal, and

maximum values of the total magnitude of the accelerometer and also approximated the integral of the total magnitude over the five

time horizons.

We estimated the sleep and awake times based on the accelerometer signal and the participants’ heart rates. In addition to defining the

five time horizons based on the sleep and awake times, we also extracted further sleep-related features. In particular, we extracted the dura-

tion of participants’ sleep in the night before each VAS fatigue rating, the time that participants spent awake before each VAS fatigue rating,

and if participants woke up or went to bed later or earlier than on average across the two weeks of the study.

Missing data imputation

At least one variable wasmissing in 927 out of all 3733 data points. This occurredmost often when signals were aggregated over a single hour.

Metrics about cardiac activity were missing particularly frequently since we required 5-minute windows with little motion when participants

were at rest in order to accurately computemetrics about ANS activity. Synchronization errors between the two sensors that participants wore

in alternating order are another reason formissing data. Per participant, we imputedmissing values using their correspondingmean recorded

value for each variable over the two weeks. We trained models on the dataset without any imputed values (2234 data points) and evaluated

them on this smaller dataset as well as on the full dataset including data points with mean imputed variables. Both approaches (mean

imputing and removing data points with missing information) are known to produce biased estimates if data are not missing completely

at random. The suitability of either approach depends heavily on whether there is an underlying cause for missing data (i.e., non-random se-

lection) that might influence the model fit.45 Recent literature has proposed several more sophisticated techniques for imputing missing in-

formation.46,47 In literature across various domains mean imputation is commonly used as a relatively simple imputation technique that has

shown comparative performance to other imputation techniques.48–50 By evaluating ourmodels without any imputation andwithmean impu-

tation, we aim to demonstrate the general feasibility of our approach. Assessing different imputation approaches to maximize the perfor-

mance of our models might be an interesting route for future work.

Per-participant normalization

To analyze how relative changes in calculated features affect the VAS fatigue rating relatively compared to participants’ average ratings, we

normalized the calculated features and the fatigue rating per participant.We did so by subtracting themean value and dividing by the respec-

tive standard deviation per participant. We performed the normalization ignoring any missing values and imputed the missing values with

zero, which equals the mean value per participant since we normalized per participant.

Generalized additive models

We modeled the data using Generalized Additive Models (GAMs).51 As so-called glass-box models with high flexibility, GAMs have been a

popular modeling technique in the environmental sciences, health sciences, and recently also to model subjective responses based on

passively collected sensor data.52–54 For our use case, we compare the performance of GAMs to Generalized Linear Models (GLMs), and

commonly chosen modeling techniques such as random forests, support vector machines, and small neural networks.

We constructed theGAMs for the VAS fatigue rating using the ‘‘MGCV’’ library.55We fitted all effects using smoothing splines, allowing for

non-linear relationships. The non-linear effects were fitted as thin-plate regression splines, as generally recommended.55,56 We included a

further penalty on the null space of the regression splines shrinking effects to zero and effectively removing them from the model in case

of low explanatory power. This automatically performs variable selection and reduces the danger of overfitting—promoting amore robust fit.
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Weperformed a sequential backward elimination procedure to extract the set of variables with explanatory power towards the VAS fatigue

rating. At each iteration, we fitted the model on 1000 sub-samples of the data randomly removing all samples from two participants. Aver-

aging the estimated degrees of freedom of the fitted smoothing splines and respective p-values across the 1000 splits, we removed all vari-

ables where the fitted smoothing spline required on average less than 0.1 estimated degrees of freedom. This removes all variables where the

effect was automatically shrunk to zero on a large proportion of the splits due to low explanatory power. Further, if at least one variable had an

average p-value higher than 0.05, we removed the variable with the highest average p-value across the 100 splits. We repeated the process

until all included fitted effects required on averagemore than 0.1 estimated degrees of freedom and were significant at a significance level of

0.05. We then fitted the model on all participants at once, again now removing any effects according to the rules outlined above.

To compare the effects in different groups of the dataset and identify differences between MS patients, the control group, or different

types of MS, we performed the model fitting process for five different groups. Once, we performed the model fitting process for all partic-

ipants together (n=74), once for the control group (n=23), once for all MSpatients (n=51), and once forMSpatients with andwithout a dysfunc-

tional autonomic nervous system, separately (n=24 and n=27, respectively).

Alternative learning algorithms

For the comparison of different modeling techniques in Table 2, we trained a random forest regressor (RF) sing the ‘Ranger‘ software pack-

age,25 a boosted tree ensemble regressor (BTE) using the ‘Model-BasedBoosting‘ software pacakge,26 a linear support vectormachine (SVM)

using the ‘Kernel-BasedMachine Learning Lab‘ software package,27 and a neural network (NN) suing Keras.28 For the RF, BTE, and linear SVM,

we used the default settings as recommendedby each software package.We optimized the neural network structure across two hidden layers

with either 16, 32, or 64 neurons each. We found the highest performing using the smallest architecture of two hidden layers with 16 neurons

each. For each alternative learning algorithm,we used the variables pre-selected in the iterativeGAMfitting process described in the previous

subsection of STARMethods section. All model performances were averaged across 100 fitting processes where each time all observations of

1 randomly selected participant formed the test set.
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