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Fig. 1. We study the passive detection of users’ emotions while they consume social media content. Our predictive model
analyzes the behavior of phone use as well as physiological dynamics to estimate users’ emotions. In our study, 29 participants
interacted with a controlled social media feed that established a supervised learning setting. For our emotion detection
model, we evaluated signals from behavioral and physiological sensors as well as demographic, personality-related, and
content-related information. We also investigated several emotion models for the representation of subjective ratings.

The widespread use of social media significantly impacts users’ emotions. Negative emotions, in particular, are frequently
produced, which can drastically affect mental health. Recognizing these emotional states is essential for implementing effective
warning systems for social networks. However, detecting emotions during passive social media use—the predominant mode
of engagement—is challenging. We introduce the first predictive model that estimates user emotions during passive social
media consumption alone. We conducted a study with 29 participants who interacted with a controlled social media feed.
Our apparatus captured participants’ behavior and their physiological signals while they browsed the feed and filled out
self-reports from two validated emotion models. Using this data for supervised training, our emotion classifier robustly
detected up to 8 emotional states and achieved 83% peak accuracy to classify affect. Our analysis shows that behavioral features
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were sufficient to robustly recognize participants’ emotions. It further highlights that within 8 seconds following a change in
media content, objective features reveal a participant’s new emotional state. We show that grounding labels in a componential
emotion model outperforms dimensional models in higher-resolutional state detection. Our findings also demonstrate that
using emotional properties of images, predicted by a deep learning model, further improves emotion recognition.

CCS Concepts: • Human-centered computing → Empirical studies in ubiquitous and mobile computing; Social
media.

Additional Key Words and Phrases: Affective computing, emotion detection, classification, social media

ACM Reference Format:
Christoph Gebhardt, Andreas Brombach, Tiffany Luong, Otmar Hilliges, and Christian Holz. 2024. Detecting Users’ Emotional
States during Passive Social Media Use. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 8, 2, Article 77 (May 2024),
30 pages. https://doi.org/10.1145/3659606

1 INTRODUCTION
Social media, as one of the most prevalently used services on the internet [11], holds a dual-edged influence on
users’ emotional well-being. On one hand, users share pleasant experiences that can evoke positive affective
responses in others seeing this content [5]. These positive emotions can help relax [62], better cope with stress [8],
and are even purposely utilized by some to regulate their mood throughout the day [93]. On the other hand, the
use of social media is also linked with negative emotions, which, according to user perceptions, often overshadow
its positive effects [10]. Users frequently encounter feelings of dissatisfaction, envy [12] and anxiety [2]. In
combination with excessive usage patterns, these experiences can manifest in serious mental health problems,
such as depression [48], suicidal thoughts [2], and body dysmorphia [87]. They are also recognized as catalysts
for “doomscrolling” [3], permanent social comparison [12], and addictions [2].

Previous research has found emotions to be the perpetuating factor of social media use [77]. Elicited emotions
increase user engagement [25], which, in turn, leads to more content being posted and consequently to more
exposure to emotions [23]. This cycle is well-understood and exploited by big tech companies to maximize user
screen time and, consequently, advertising revenue [100].

The centrality of emotions in the dynamics of social media use underscores the necessity for systems capable
of recognizing users’ emotional states. Effective emotion detection systems could serve as backbone for tools
that support users’ digital well-being. For instance, these systems could support digital self-control tools [49] in
choosing interventions that decrease exposure to emotions during social media use, thus aiding users in reducing
their time online. They could also transmit detected emotional states to emotion regulation platforms [82] to
support users in becoming self-aware, empowering them to effectively regulate their emotions.
In active social media use, emotion recognition has been a subject of extensive research. This form of en-

gagement encompasses behavioral patterns in which users actively participate in interactions on social network
platforms [41]. This may involve activities such as creating and sharing their own content, or commenting on the
content of others. Analyzing active social media usage provides a straightforward approach to discerning users’
sentiments, as it allows for the visual examination of posted images [86], the linguistic assessment of posts [60], or
the analysis of the dense behavioral traces users leave when they are, e.g., writing a comment [45, 72]. However,
the prevalent mode of social media engagement is passive [91], where users predominantly consume content
without generating noticeable behavioral traces [41]. This input-sparse setting presents a challenge in detecting
an individual’s emotional state, and has not yet been specifically addressed in emotion recognition research.
In this paper, we are the first to investigate emotional state recognition during passive social media use—the

predominant mode of engagement. We conducted an experiment with 29 participants who navigated a controlled
social media experience on a smartphone (Figure 1). In an Instagram-like feed, participants saw and scrolled
through images of standardized emotional databases [52, 99] that feature common social media content (e.g.,
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people, landscapes, faces, animals, and food [44]). Participants reported their emotions via dimensional ratings
(Russell’s Circumplex Model of Affect [74]) and a set of basic emotions (Mikel’s Wheel [57]). Our apparatus
passively monitored participants behavior using the smartphone’s built-in sensors. Using wearable sensors, we
also collected physiological signals of their cardiac, electrodermal, and respiratory activity similar to commercial
smartwatches (e.g., Apple Watch, Fitbit, or Garmin).

Emotion detection during passive social media use: Approach and preview of findings (Figure 1)
Our study contributes a deeper understanding of the problem space of supervised emotion detection during
passive social media use and beyond. Based on the collected data, we train supervised machine learning models
to detect emotional states using objective features extracted from the captured signals and other inputs that
are known to influence social media behavior (e.g., gender [92], nationality [50], sexual orientation [19], and
personality [37]). For data augmentation, we incorporate a deep learning-based model that predicts elicited
emotions exclusively from images as input into our emotion classifier. We analyze the data in four steps, each
addressing a key factor of emotion recognition:

(1) A comparison between participants’ physiological responses and their behavioral response. We first analyze the
predictive power of the features we derive from participants’ behavior, such as their movement of the phone,
touch interaction, facial expressions, and eye movement. We compare this to the performance using the features
we extract from their physiological signals, such as heart rate, respiratory rate, and electrodermal activity.

We find that behavioral features outperform physiological features as input to emotion classifiers. This holds
true even when we compare the performance of behavioral features with a combination of behavioral and
physiological features. This finding shows the potential practical implications of our study: behavioral features
are easy to collect on the devices that are used for social media consumption (e.g., smartphone) and, in contrast
to physiological features, do not require additional wearable devices (e.g., smartwatch). The insight can inform
and simplify the design of future digital self-control and emotion regulation systems.

(2) The delay between a change in social media content and a discernible response in participants’ behavior. We
examine the temporal evolution of behavioral and physiological recordings, particularly in response to changing
content as participants scrolled through the social media feed. Following a change in the content’s affect, we
investigate how the timing of feature extraction impacts the performance of the emotion classifier.
Our analysis shows that within 8 seconds following a change in media content, objective features reveal

a participant’s new emotional state. This novel insight shows the potential for social media apps to link the
user’s current emotional state to a specific post for observation times of 8 seconds and more, allowing them to
implement strategies to better support the user’s mental health.

(3) The effect of the emotion model used for subjective rating representation. We investigate two validated emotion
models to represent participants’ subjective ratings: (a) the established Circumplex Model of Affect [74], founded
on the dimensional ratings of valence and arousal, and (b) Mikel’s Wheel [57], a recent model that is based on a
person’s discrete reports of emotions. We were particularly interested in the granularity of detecting participants’
emotional states. For this, we compare the performances of our emotion classifiers based on report representations
at three abstraction levels: low (2 classes), medium (3–4 classes), and high (up to 8 classes).

We demonstrate that representing self-reports in the polar coordinate space of Mikel’s Wheel improves emotion
detection in settings of a high state granularity. We attribute this finding to the model’s capacity to allow users to
select multiple basic emotions, enabling them to express the nuances and ambiguities in their feelings. In a low
or medium granularity of emotional states, we find that the two dimensions of the Circumplex Model—valence
and arousal—provide more comprehensive insights into the specific constitution of a user’s emotional state.
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(4) The effect of user-specific and content-specific context information as classifier input. Finally, we show the impact
of additional information about the user and the content on the performance of emotion classification. We find
that the emotions associated with images as predicted by a deep-learning-based classifier [101] provide a strong
additional feature for emotion recognition in our classifier, boosting the classification accuracy significantly.

Contributions
In summary, we make the following contributions in this paper:

(1) A controlled study of passive social media consumption on a mobile phone that monitored 29 participants’
physical and physiological behavior in response to emotional content.

(2) An analysis of the impact of behavioral and physiological data on the detection of the emotional state.
(3) A temporal analysis of the delay between a change in the content’s affect and its recognizability by a classifier.
(4) A comparison of two emotional models to represent participants’ states: the traditional continuous valence-

arousal model (Russell’s Circumplex [74]) vs. a componential model (Mikel’s Wheel [57]).
(5) An investigation into the impact of employing a deep learning-based approach to establish user-independent

emotional priors for content, and utilizing them as input for the classifier.

Taken together, our findings have the potential to inform the design and development of future guidance and
warning systems for passive social media consumption to help users manage their mental health.

2 RELATED WORK

2.1 Emotion models
Emotion models in psychology are classified into discrete, continuous, and componential models [39]. Discrete
models define emotions as a set of basic states, such as Ekman and Friesen’s six basic emotions [17] and Izard’s
ten core emotions [32]. Participants quantify their feelings by selecting combinations of these basic emotions.

Continuous models represent emotions in a coordinate system. The Circumplex Model of Affect by Russell [74]
uses a 2D space with valence and arousal axes. To differentiate closely related emotions, the pleasure-arousal-
dominance (PAD) model introduces dominance as a third dimension [55]. Emotions in this model are quantified
using the self-assessment manikin (SAM) [7] or the Positive and Negative Affect Schedule (PANAS) [98].
Componential models, like Plutchik’s Wheel of Emotions [68] and Mikel’s Wheel [57], express emotions as

combinations of basic states with varying intensities. Quantification is similar to discrete models, with participants
selecting combinations of basic emotions. We contrast the robustness of labels represented in Russell’s Circumplex
Model of Affect [74], a widely used model, and in Mikel’s Wheel [57], leveraging a novel parameterization for
affect detection from images [101].

2.2 Emotion recognition from behavioral data
Emotion recognition from behavioral data is a central topic in affective computing [66], recent studies on emotion
recognition from behavioral data highlight touchscreen and inertial measurement unit (IMU) data as key features
for emotion detection during smartphone use [40]. Mottelson and Hornbæk [58] classified positive and negative
affect using these sensors. Zualkernan et al. [107] and Wampfler et al. [96] further explored this approach to
classify various emotional states. Other studies have utilized phone interaction logs. Sneha et al. [84] predicted
seven emotions using typing metrics and context information. Mehrotra et al. [56] and Pielot et al. [67] examined
the relationship between phone interactions and emotional states.
Eye-tracking data has also been used for this purpose. Matsuda et al. [53] combined gaze data with IMU and

interaction logs to classify emotions. Pupillary response, was used by Heimerl et al. [29] to detect affect. Kosch
et al. [35] and Le and Vea [43] used cameras to recognize users’ emotions by analyzing their facial expressions.
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2.3 Emotion recognition from physiological signals
Emotion’s influence on physiological signals has been explored across disciplines. William James posited that
emotions emerge from physiological reactions to external stimuli [33]. Building on this, Fairclough identified
physiological signals as indicators of a user’s psychological state, including emotions [21]. This concept underpins
physiological computing, where systems respond to users’ physiological reactions. We outline studies recognizing
emotions from these signals in both controlled and real-world settings.

2.3.1 Laboratory environments. For studying affect, researchers have examined autonomic nervous system
(ANS) activity and key psychophysiological variables, including electrocardiogram (ECG), photoplethysmogram
(PPG), electordermal activity (EDA), respiration (RSP), electromyograph (EMG), and electroencephalogram
(EEG) [42, 80]. Guo et al. explored ECG-based emotion recognition [26], while Abdullah et al. investigated PPG’s
valence distinction, correlating it strongly with ECG [1]. Silveira et al. used EDA in movie emotion estimation [81].
Petrantonakis and Hadjileontiadis identified basic emotions with EEG and Adaptive Filtering [64].

Efforts combining modalities show promise, such as Yin’s EDA-PPG fusion for valence-arousal clustering [104].
HRV and EDA combined with facial expressions enable fine-grained emotion recognition [79]. Various studies
integrate EEG, PPG, and EDA with machine learning [90, 97] and deep learning [46, 47]. Respiration and
EMG were also considered, both for emotion identification [30] and assessing emotional stimuli impact on
psychophysiological variables [88]. Recent comparisons between medical-grade and consumer-grade sensors
show similar recognition rates for valence and arousal in electrodermal and cardiac activity [70]. Panganiban
identified stress using PPG data from smartphone cameras and high-quality wearable sensors [61].

2.3.2 Real-world environments. Consumer-grade devices like smartwatches and wristbands have emerged as
reliable sources for robust emotion detection in real-world environments [75]. Healy et al. used data from
wireless galvanic skin response, heart rate, activity sensors, and a mobile phone to recognize binary valence and
affect [28]. Pham et al. fused PPG data from a mobile phone’s back-facing camera with facial expressions from
the front-facing camera to predict six discrete emotions, noting the respective strengths of each modality [65].
Quiroz et al. combined data from an IMU sensor, a smartwatch, and a heart rate monitor strap to determine affect
from a set of three emotions [69]. Subsequent research improved their approach with deep learning on the same
dataset [89]. Contrastive Representation Learning was also found to enhance emotional state detection [15].
Schmidt et al. explored CNNs for affect classification using the Empatica E4 wristband, equipped with EDA,

PPG, IMU, and skin temperature sensors [76]. Other wristbands with similar sensor modalities have also proven
effective for emotional state detection [78]. Expanding the modalities to include EMG and behavioral data, recent
research demonstrates the feasibility of reliably classifying binary valence and affect using deep learning-based
approaches with signals from consumer-grade mobile devices [103].

2.4 Emotion Recognition in social media use
Research also investigated emotions in the context of social media. Mauri et al. investigated the effect of social
media use on physiological signals in a controlled setting, revealing high positive valence and arousal states [54].
Šola et al. analyzed eye movements and facial expressions to study how subconsciously processed stimuli in
social media affect emotions, showing that negative emotions decrease when posts contain human faces [108].
Several studies have explored emotion detection during smartphone-based social media use. Lee et al. used

Bayesian Networks and phone interaction data to identify seven distinct user emotions during Twitter typing [45].
Ruensuk et al. identified binary states of arousal and valence in both laboratory and real-world experiments using
smartphone behavioral data [72]. Their subsequent work focused on negative affective experiences related to
appearance comparison and envy, demonstrating the feasibility of identifying such states in various settings [73].
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While the studies above span passive and active forms of engagement, our work uniquely focuses on passive
usage—the predominant mode of social media use. In addition, our research is first to leverage physiological
signals exhibited during social media use for the purpose of emotion recognition.

3 EMOTION RECOGNITION DURING PASSIVE SOCIAL MEDIA USE
Our overview of previous work in this area showed that recognizing users’ emotions during social media use
is challenging, particularly when monitored passively due to sparse behavioral traces. Our study thus aims to
enhance emotion recognition in this context by investigating several key factors:
(F1) Physiological Signals: Since physiological signals are known to respond quickly to stimuli, we collect them
during our study to improve emotion recognition during passive social media use.
(F2) Response Delays: Comprehending the time it takes for participants to exhibit a noticeable emotional response
after viewing specific social media content is crucial. We conduct a temporal analysis of the delay between a
change in the content’s affect and its recognizability by a classifier.
(F3) Emotion Models:We study the impact of emotion models on prediction performance, comparing dimensional
models, Russell’s Circumplex Model of Affect, and Mikel’s Wheel.
(F4) Additional Information: We analyze the potential benefits of using user-specific factors (e.g., gender,
nationality, personality traits) for emotion prediction. Additionally, we investigate if computationally inferred
emotions from images enhances emotion prediction.
In summary, our study examines the impact of emotion models, time delays, physiological data, and additional

user and content information on emotion recognition during passive social media use. We collect physiological
signals that are attainable from consumer-grade devices, including EDA (Fitbit), PPG (smartwatches like Apple
Watch), ECG (heart ratemonitor straps like Polar’s H10), and respiration tracking (available onmany smartwatches
like Garmin). By systematically investigating these factors, we aim to improve the accuracy of emotion recognition
in the unique context of passive social media engagement.

4 METHODS
We designed an experiment to investigate the defined factors. The following subsections detail the experimental
setting, including stimuli presentation, collected data, procedure, study apparatus and participants. This study has
received approval from the Institutional Review Board of the host university ensuring compliance with ethical
standards and protection of human subjects participating in the research.

4.1 Curated social media feed
The design of our experiment balances external validity (i.e., resembling a real-world setting of passive social
media use) and internal validity (i.e., maintaining control over observed stimuli). We developed a curated social
media feed that allows us to regulate the emotionality of stimuli while emulating a typical social network page.

4.1.1 Stimuli. We retrieved the stimuli for our feed from the NAPS, a standardized emotional database containing
high-quality images along with their corresponding emotional ratings [52]. Additionally, we sourced images
from NAPS-ERO, a complementary database that incorporates erotic images to induce positive valence and high
arousal [99]. We manually ensured that all selected images adhere to the community guidelines of Instagram.
The image categories present in the NAPS (animals, faces, landscapes, objects, and people) align closely with
the most prevalent categories of images typically found on social media platforms. These categories encompass
self-portraits (featuring only the face or the entire person), group portraits, scenes (including human-made and
urban settings, both indoor and outdoor activities), animals, and food1 [31, 44]. With the stimuli form NAPS-ERO,

1While "food" is not explicitly categorized in the NAPS, images related to food are encompassed within the broader "object" class.
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(a) Average ratings from NAPS dataset. (b) Average ratings from NAPS-ERO dataset.

Fig. 2. Image ratings of NAPS [52] and NAPS-ERO [99] displayed in the valence-arousal space, annotated with clusters

we could reflect the high proportion of erotic and semi-erotic content on social media in our feed [16]. As no
significant difference in the elicitation of emotion between videos and images within a social network context
was shown in prior work [72], we limited our stimuli set to images.

To regulate the emotional content of stimuli, we specified clusters based on the emotional ratings which we
then used to sample images during the study. We defined these clusters as non-overlapping circles around a fixed
point in the valence-arousal space [74], each with a radius of 1.25 (scales reach from 1 to 9). Figure 2a shows the
distribution of ratings of NAPS in this space and the position of the defined clusters. Specifically, for the NAPS set,
we positioned the negative cluster at <val=3.5, aro=6.5>, the neutral cluster at <val=5.5, aro=5.0>, and the positive
cluster at <val=7.5, aro=3.5>. For the NAPS-ERO set, the positive-high cluster was placed at <val=7.0, aro=6.0>
(Figure 2b). For each NAPS image category (animals, faces, landscapes, objects, and people), we then sampled 60
to 80 images for the negative, neutral, and positive cluster, resulting in 15 sets of images. To attain images for
the positive-high cluster, we sampled four more image sets from the social media-compliant NAPS-ERO subset,
each representing the highest-rated images by heterosexual male, homosexual male, heterosexual female, and
homosexual female raters respectively. This results in a total of 19 distinct category-cluster image sets to which
participants were exposed during the study.

4.1.2 User interface. To present stimuli to participants, we developed an Android application that displays the
sets of images in a vertical, Instagram-like feed layout (Figure 3). To ensure that elicited emotions arise solely from
the controlled stimuli while maintaining a resemblance to real-world social media feeds, we augmented images
with Lorem Ipsum text (Figure 3a). In a trial, the app operates as follows: when the first image from a set becomes
visible in the feed, a 20-second timer is activated. Throughout this period, participants can scroll through the feed
at their preferred pace, while the application randomly samples images from the corresponding cluster-category
image set. After the timer expired, the app automatically inserts the self-assessment questionnaires into the feed
(Figure 3b), so that no further images can be displayed. Thus, emoticon representations of SAM and the distinct
emotions of Mikel’s Wheel are used (Figure 3c, 3d). After completing the self-reports, the next feed becomes
available and an arrow at the bottom of the screen prompted the participant to continue (Figure 3e).

We purposely designed the app such that no neutral stimuli are presented between two feeds stemming from
different cluster-category image sets. Thus, stimuli experienced in the previous feed continue to influence a
participant’s current emotional state. With this departure from highly controlled experimental settings where
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(a) View of curated feed
to scroll through.

(b) Self-reports appear
in feed after timeout.

(c) SAM items adopted
from [94].

(d) Emoji items based
on Mikel’s Wheel [57].

(e) Next feed is shown
after self-reports.

Fig. 3. User interface of the curated social media feed (images are not from NAPS and shown for illustrative purposes).

neutral stimuli are inserted between different stimulus groups, we better reflect the dynamic nature of social
media. In social media, various other factors than images influence user emotions (e.g., captions, relationship to
the poster, likes) which are constantly affected by brief exposures to new content [108]. By introducing emotional
contagion across stimuli groups, our experimental design moves closer to realism, allowing us to investigate the
time delay at which a change in content can robustly be detected in users’ emotional state.

4.2 Collected data
4.2.1 Behavioral & physiological signals. Table 1 provides an overview of the behavioral and physiological data
collected during our study, categorizing it into feature groups, and specific features. It furthermore references
examples of related work where these feature groups have been used for emotion recognition. For a more detailed
description of each feature and its computation, we refer to Section 4.5.

4.2.2 Subjective ratings. We asked participants to report their affective state on two different type of ques-
tionnaires. The first questionnaire is the self-assessment manikin (SAM) [7], which returns ratings in the
valence-arousal space of Russell’s Circumplex Model of Affect [74]. Specifically, we used emoti-SAM [27], a
validated 5-point-scale version of the SAM that is better suited for smartphone screens [96] (see Figure 3c).
The second questionnaire allowed participants to select one or more of the eight emotional categories from
Mikel’s Wheel: fear, sadness, disgust, anger, contentment, amusement, awe, and excitement [57]. To increase its
ease-of-use, we added icons of the Noto Emoji Library2 to the textual descriptions of the distinct emotions (see
Figure 3d). From the multiple emotional categories selected in such a self-report, a composite emotional state
needs to be computed to use as a label in supervised learning for emotion recognition. Thus, we leveraged recent
research in Computer Vision, which has introduced a parameterization of Mikel’s Wheel in a 2D polar coordinate
space [101]. With this parameterization, we computed a compound emotional vector for each subjective rating of

2https://github.com/adobe-fonts/noto-emoji-svg
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Table 1. Data type, feature groups and specific features of the collected data. If not stated differently, the references point to
examples of related work where respective feature groups have been used for emotion recognition.

Type Group Features

Behavioral

Phone interactions
(e.g., [56, 67])

timestamps of visible elements, duration of each set,
number of images displayed until timeout,
total display time of each image

Motion
(e.g.,[58, 96])

acceleration (x,y,z)
angular speed (x,y,z)

Touch
(e.g.,[59, 95])

number of gestures, duration, length, speed,
acceleration, time interval between gestures,
pressure, change in pressure,
direction and directness of stroke

Facial expressions
(e.g., [36, 65]) distribution over distinct facial expressions

Eye-tracking
(e.g., [53, 72]) eye blinks, eye aspect ratio of left and right eye

Physiological

ECG
(e.g., [1, 106])

heart rate,
heart rate variability (mean and st. dev of RR intervals)

PPG
(e.g.,[70, 104] heart rate, heart rate variability

EDA
(e.g., [28, 70])

phasic/tonic amplitude,
for the phasic signal: number of peaks, time to first onset,
rise time, peak amplitude, half-way recovery time

RSP
(e.g., [30, 103]) respiration rate, amplitude

User

Demographics
(e.g., [84]) gender, nationality, sexual orientation

Traits
(e.g., [38])

personality traits (according to [85])
self-esteem (according to [71])

Content Image emotions predicted image emotions

participants where the vector’s angle represents the valence and its radial distance from origin the emotional
intensity (see [101] for details of the algorithm).

As we are interested in the effect of the emotion model on performance across different number of emotional
states to be detected, we summarized the subjective ratings of the different scales into affective states of varying
levels of resolution. This is straightforward for SAM, where divisions of the ordinal scale can function as distinct
levels of resolution. Specifically, we divided the scales of valence and arousal into low resolution (two negative
scale points vs. rest), medium resolution (two negative scale points vs. neutral scale point vs. two positive scale
points), and high resolution (each individual scale point, Figure 4a). To attain different levels of detail for the
emotional vectors of Mikels’ Wheel, we specified reference angles in the polar coordinate space and mapped each
self-report vector to the nearest one. The resolutions of Mikel’s wheel that we utilized in our analysis include low
resolution (positive vs. negative emotions), medium resolution (fear, sadness vs. disgust, anger vs. contentment,
amusement vs. awe, excitement), and high resolution (the eight distinct emotions, Figure 4b).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 2, Article 77. Publication date: May 2024.



77:10 • Gebhardt, et al.

(a) State resolutions of the
Circumplex Model. (b) State resolutions ofMikel’sWheel.

Fig. 4. Visualization of how the different state resolutions are attained in the respective emotion model. For the Circumplex
Model, the ordinal ratings are split between different scale points. For Mikel’s Wheel, reference angles were specified
according to the respective resolution. Emotional vectors that represent self-reports were then mapped to the nearest one.

4.2.3 Demographic & personality-related data. Prior to the study, we asked participants to fill out a demographic
questionnaire asking for basic demographic information, such as age and education level, as well as gender,
nationality and sexual orientation. We also inquired about participants usage patterns of the most popular
social network platforms. Following related work [72, 73], we queried frequency of use, daily time spent, content
preferences, and if their usage behavior is primarily active or passive. Finally, we assessed participants’ self-esteem
using the Rosenberg Self-Esteem Scale [71] and their personality traits with the Big Five Inventory 2 [85].

4.2.4 Predicted image emotions. To attain emotional priors for the content participants observed during the study,
we employed a deep-learning-based approach [101]. This method predicts the emotions evoked in observers
based on the self-reports it was initially trained on. We re-implemented the approach, using the same training
procedure and losses. Subsequently, we trained it on two social media datasets, namely Flickr_ldl and Twitter_ldl,
which were labeled with emotions by a population of viewers [102]. Employing the trained network, we predicted
a distribution over discrete emotions for each image in NAPS and NAPS-ERO. To use these distributions as input
for a classifier, we aggregated the images shown in the feed over each time window for which features were
computed and then normalized the sum by its number of images. Figure 5 explains this procedure visually.

Fig. 5. To attain emotional priors for the content participants observed during the study, we used a neural network to predict
a distributions over discrete emotions for each image in NAPS and NAPS-ERO (left). To train a classifier, the distributions of
images shown in the feed were aggregated over each time window for which features were computed and then normalized
by its number of images. The resulting emotional distribution was used as input to the classifier (right).
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4.3 Procedure
Before the start of the study, each participant was led to a separate room where they signed the consent form and
completed the pre-questionnaires. It was emphasized that participants did not have to answer any subsequent
questions that they felt were too private or personal. Participants were then asked to mount the physiological
sensors in an isolated space with blinds. They were told that they are free to leave at any time if wearing sensors
directly on their skin makes them feel uncomfortable. After that, the experimenter gave a short introduction
to the study and showed participants the Android app with the curated social media feed. They could then
familiarize themselves with the app, which displayed images in the feed that were not utilized in the actual
experiment. Participants were told to scroll through the images at their own pace, as if it were a feed from a
social media platform they frequently use.
After finishing the briefing, participants had to complete a relaxation session, in which a calming video of a

beach was shown for two minutes. Participants were then instructed on-screen to begin with the experiment. In
the experiment, participants were exposed sequentially to the 19 cluster-category image sets. The order of image
sets was randomized to ensure that no two consecutive sets were sampled from the same cluster. Additionally, for
each set and trial, the images were arranged in a random order. After each block of browsing the feed they went
through the self-assessments. Upon conclusion of the study, participants were instructed to unmount the sensors,
and the experimenter conducted a short debriefing session. Overall, a trial took between 60 and 90 minutes.

4.4 Apparatus
4.4.1 Platform. The experimental platform consisted of two smartphones and a data collection backend. On the
first phone (Huawei P9 Plus), participants interacted with the curated social media feed (see Section 4.1). The
feed was implemented using the JavaScript framework Vue.js and was accessed within an Android app using a
web-view widget. The Android application also collected camera, IMU and touch screen data in the background.
We chose the Huawei P9 Plus for its pressure-sensitive display. Pressure features have been identified as robust
predictors of arousal in related studies [95]. The second phone (Xiaomi Mi A3) was solely used to log the data
collected by the various physiological sensors (participants did not engage with it). Thus, we developed another
Android application that accessed the sensors’ Android SDKs. Both applications transmit the logged data to a
dedicated Python backend, which stores the logs and also serves as the host for the web service delivering stimuli
for the curated social media feed. Participants used a separate tablet to answer the pre-questionnaires.

4.4.2 Sensors. EDA and PPG were recorded with a Shimmer3 GSR+ unit at a sampling rate of 128Hz. A Polar
H10 belt was used to record ECG, sampled at 130Hz. Breathing rate was monitored with a Vernier Go Direct
Respiration Belt at a sampling rate of 20Hz. In addition, images were recorded from the camera of the smartphone
at a frequency of 10Hz. Similarly, the smartphones’ IMU was recorded at a frequency of 100Hz. We used
experimental sensors to collect physiological data to establish an upper bound in terms of signal quality when
compared to the sensors on consumer-grade devices. Thus, we only considered sensor that are integrated in
consumer-grade wearable devices.

4.5 Data preprocessing
We split the 20 second time windows that participants are exposed to a cluster-category image set into four
sub-windows, ranging from 0-8 seconds, 4-12 seconds, 8-16 seconds, and 12-20 seconds. The sub-windows were
selected to maintain a 50% overlap, ensuring both significant signal variation and comprehensive temporal
coverage. For comparison purposes, we included the full 20 seconds in our analysis. We chose the length of 8
seconds based on findings of prior work related to the response time of physiological variables to a stimulus (3-5
seconds for EDA [6], 6 seconds for HR data [4]). The 20-second time duration of exposure to specific groups of
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emotional stimuli ensures that participants are influenced by them (related work uses 5-10 seconds [94]) and
allows for the detection of effects in behavioral data (related work uses 15 seconds [72, 73]).

4.5.1 Physiological signals. Signals from the individual physiological sensors (ECG, EDA, PPG, RSP) were pre-
processed using the Neurokit2 library [51]. First, to eliminate small fluctuations caused by randomly occurring
transmission or processing delays, the recorded data was imputed and re-sampled to match the respective target
sampling frequency of the sensor. Then, we removed noise from the signals by using a Butterworth filter with a
sensor-specific order as well as lower and higher cutoff frequencies (ECG: 5th-order, cutoff > 0.5Hz; PPG: 3rd
order; cut off < 0.5Hz and > 8Hz; EDA: 4th-order, cutoff > 3Hz; RSP: 2nd-order, cut off < 0.05Hz and > 3Hz).
For the ECG signal, an additional filtering step is included to remove powerline noise by applying a moving
average kernel with the width of 1/50Hz. For the ECG signal, we detected the location of the R-peaks (maximum
amplitude in the R wave) as local maxima in the signal to calculate the NN intervals (time between two detected
heartbeats). From the NN intervals, we then computed the heart rate (HR) and heart rate variability (HRV) using
the Neurokit2 library. PPG data is processed by performing systolic peak detection [18] to mark their positions in
the signal. HR and HRV are then computed analogously to the ECG signal. Using a Butterworth filter, the EDA
signal is decomposed into its phasic and tonic components. To find the skin conductance response to a stimulus,
peaks are then located as local maxima in the phasic component. From the location of peaks, the rise time (time
it takes to reach peak amplitude from onset), the peak amplitude, and the half-recovery time (time it takes from
peak to decrease to half amplitude) are computed using NeuroKit2. For respiration, we detect peaks [34] and
then calculate breathing rate and amplitude from their locations.
Finally, we split all signals into the 20-second cluster-category time window and subsequently into the four

corresponding sub-windows. For each sub-window and signal, we then compute summary statistics, i.e., number
of peaks, mean, standard deviation, minimum, maximum. These features were then normalized by subtracting the
respective statistics of the recorded signals of the last 30 seconds of the relaxation phase prior to the experiment.

4.5.2 Behavioral data. In a first step, all collected behavioral signals underwent a cleaning process and were
imputed, wherever feasible. Within the browser, user interactions such as button presses, or page scrolling were
recorded. The corresponding timestamps of elements entering or leaving the viewport were then used to calculate
the number of images displayed in a set, average image display duration, as well as overall rating duration.
Individual touch data points were grouped into coherent strokes for which distance, duration and pressure
was computed. The speed and acceleration of a stroke was then calculate by dividing its distance and duration.
Additional stroke features were determined by measuring the disparity between the straight-line distance from
the start to the endpoint of a stroke and its total distance. The direction of a stroke is computed as the angle of the
line between the endpoints. We also recorded the pressure value of each touch point and used pressure differences
of the first and last point of a stroke as additional feature. Similarly, differences in speed and acceleration between
the first and last segment in a stroke were computed. For the signals attained from the inertial measurement
unit (IMU) of the smartphone, i.e., acceleration, rotation, and magnetic field strength, the magnitudes and the
differences in magnitude were computed. Facial expressions were predicted based on the captured images from
the front-facing camera of the phone using an implementation of the method described in [105], which provides
a distribution over seven distinct facial expressions. For eye blink detection, we predicted facial landmarks on the
same images and then followed the approach in [9] to compute eye aspect ratios and blinks.
Like for physiological signals, we aggregated the behavioral features to their mean, standard deviation,

minimum, maximum and absolute number for any given time window. As participants did not engage with the
phone during the relaxation phase, we standardized the behavioral data on a per-participant basis. Thus, for
each feature, we subtracted the mean of collected data over the whole experiment and divided the result by their
standard deviation. The predicted distributions of facial expressions were aggregated over a time window and
then normalized by the number of recorded frames.
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4.6 Participants
Participants were recruited using snowball sampling in social media channels related to the host university (e.g.,
channels of student associations). They needed to confirm that they were not taking tranquillisers, psychotropic
drugs (e.g., anti-depressants), or narcotics, and were not diagnosed with cardiovascular diseases. A total of 29
participants (12 female, 17 male) between ages 18–32 (M=25.48, SD=2.84) were recruited. 22 participants identified
as heterosexual, 4 participants as bisexual and 3 as homosexual. They possessed 8 different nationalities. All of
them were frequently using at least one social media application, spending on average 2.59 hours (SD=1.37 h) per
day on social media. 23 participants stated to use social media predominantly passive, 5 participants to use it
equally active and passive, and one person indicated primarily active use. We had to exclude the data of three
participants due to connection problems with the physiological sensors. The data of the other 26 participants
were used in our analysis.

5 RESULTS
In the following, we present the results of our experiment. For significance testing, we performed anANOVA if data
was normally distributed (Shapiro-Wilk 𝑝 > .05) and exhibited equal variances between groups (Levene’s 𝑝 > .05).
Pairwise comparisons were performed using t-tests with Bonferroni-adjusted p-values. If either assumption was
violated, we assessed differences with the non-parametric Aligned Rank Transform (ART) ANOVA. Post-hoc
comparisons were then performed using the ART-C algorithm and Bonferroni corrections. If not stated differently,
independent variables were considered as within-subject factors and participants as a random factor.

5.1 Statistical analysis of self-reports
In a first step, we assessed whether the distinct clusters indeed provoked varied emotional responses among
participants. Thus, we regarded them as independent variables and treated the different categories as repetitions.
We then examined their impact on valence and arousal, as measured through the SAM self-reports. Figure 6
shows the distributions of valence and arousal ratings averaged per participant and grouped by cluster. Due
to the ordinal nature of these dependent variables, we assessed differences with the repeated-measures ART
ANOVA and the respective post-hoc test.

We found a significant effect of clusters on valence ratings [𝐹3,446 = 239.77, 𝑝 < .0001]. Post-hoc tests have shown
that clusters caused the intended increase of valence according to the experimental design (𝑝 < .0001 for all). No
significant differences were observed solely between the positive-high and positive clusters. Similarly, the effect
of clusters on arousal ratings was significant [𝐹3,446 = 50.13, 𝑝 < .0001]. The pairwise comparison has shown that
differences in arousal between all clusters were significant (𝑝 < .0001 for all). The only non-significant difference

Fig. 6. Subjective ratings of participants for valence (left) and arousal (right) per cluster (negative, neutral, positive, pos.-high),
averaged over category according to emoti-SAM [27].
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Table 2. Fraction of physiological and behavioral features for each time period where a significant difference between clusters
of a particular magnitude (* 𝑝 < .05, ** 𝑝 < .01) was identified.

Type Group 0 - 8 sec 4 - 12 sec 8 - 16 sec 12 - 20 sec 0 - 20 sec
* ** * ** * ** * ** * **

physiological

ECG 0.43 0.14 0.62 0.52 0.62 0.52 0.43 0.43 0.62 0.43
PPG 0.48 0.33 0.43 0.24 0.38 0.33 0.33 0.33 0.52 0.33
EDA 0.04 - 0.12 0.04 0.23 - 0.54 0.23 0.08 -
RSP 0.33 - 0.33 - 0.44 - 0.28 0.11 0.39 0.11
All 0.26 0.09 0.30 0.16 0.37 0.17 0.36 0.22 0.36 0.17

behavioral

Phone interactions 0.50 0.50 0.80 0.80 0.90 0.60 0.60 0.50 1.00 0.90
Eye tracking - - - - - - 0.67 0.33 - -
Facial expressions - - 0.57 0.14 0.71 0.57 0.57 0.43 0.57 0.14
Motion 0.12 - 0.44 0.19 0.31 0.25 0.31 - 0.50 0.06
Touch 0.35 0.16 0.54 0.32 0.43 0.30 0.53 0.31 0.63 0.40
All 0.19 0.13 0.47 0.29 0.47 0.34 0.54 0.31 0.54 0.30

in the case of arousal was observed between the positive-high and negative clusters, as was intended by the
experimental design (see Figure 2). In summary, the analysis confirmed that our experimental design effectively
evoked distinct emotions within participants.

5.2 Statistical analysis of features
After verifying that the clusters did evoke varied emotions, we statistically analyzed their effect on the distributions
of the summary statistics of features for each time window. Thus, the subject ID was considered a repeated
measure. Table 2 provides a summary of the fraction of physiological and behavioral features for each time
period where a significant difference between clusters was identified. Results show that both physiological and
behavioral features immediately react to the change in the emotional content and already in the initial time
window an effect of clusters on features of each group (other than eye tracking) can be observed. Interestingly,
there is a difference in the fraction of features that show a main effect of clusters in the different time windows
between PPG and ECG, even though the sets are identical. In general, physiological and behavioral features
appear to exhibit an increasing reactivity to clusters over time with the 8 - 16 window (physiological) and the 12 -
20 window (behavioral) showing the highest fraction of significant features. For both feature types, the entire
20-second period tends to exhibit a similar ratio of significant features than the late 8-second windows.
Similarly, we conducted a correlation analysis between physical and behavioral features and participant’s

valence and arousal ratings. No distinct temporal correlation pattern is observable (see Appendix A).

5.3 Emotion model (F3)
We applied various classifiers to the defined model-dependent resolutions of collected self-reports and the
extracted features from all time windows. Thus, we selected six classifiers that have demonstrated superior
performance in prior studies [24, 72, 73, 75]: AdaBoost (AB), Logistic Regression (LR), Random Forest (RF),
RBF-kernel Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and XGBoost (XGB). We also included
a baseline classification strategy (ZeroR) that predicts the class that is most frequent in the distribution of the
training data. For all classifiers, we used their scikit-learn implementation with default parameters. To provide a
robust and unbiased evaluation of models, we assessed the performance of each classifier using leave-one-subject-
out cross-validation. As class balancing is crucial for an adequate performance in emotion recognition [75],
we over-sampled minority classes in the training data using the Synthetic Minority Oversampling Technique.
Finally, we standardized the data by employing scikit-learn’s MinMaxScaler, fitting it to the training data, and
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(a) low resolution (b) medium resolution (c) high resolution

Fig. 7. Classifier accuracy for the different emotion models (valence, arousal, and mikel) per resolution.

subsequently applying its transformation to both the training and test sets. The accuracies of the different
classifiers is summarized in Appendix B.

We compared the effect of the different emotion models (Mikel, valence, and arousal) across all time windows
on classification accuracy for each resolution. The ANOVA found a significant effect of the emotion model
on classification performance for the medium resolution [𝐹2,87 = 7.74, 𝑝 < .0001]. In terms of medium resolutions
(Figure 7b), valence and arousal caused a better classification performance than Mikel (both 𝑝 < .0.004). This can
be attributed to the difference in number of states in the resolutional setting (three for valence and arousal, four
for Mikel). For low- (Figure 7a) and high resolutions (Figure 7c), we found no main effect of the different emotion
models on accuracy.

In high resolutions, classifiers had to predict eight distinct emotional states with Mikel as opposed to five with
valence and arousal. Nevertheless, no difference in accuracy between the emotion models was found. Thus, we
constrain the remainder of this analysis to use Mikel for the high range of predicted states. For low and medium
resolutions, we use valence and arousal due to their lower variance of accuracies and as their dimensional nature
provides more insights into the specific constitution of a user’s emotional state.

5.4 Physiological signals (F1) and response delays (F2)
We analyzed the effect of the different feature types (phys: physiological; behav: behavioral; all: combination
of both) across all time windows on classification accuracy for the previously specified resolution-model pairs
(valence-low, arousal-low, valence-medium, arousal-medium, and Mikel-high). Time windows were considered as
within-subject factor and feature types as between-subject factors.

The ANOVA revealed a main effect of the feature type on accuracy for valence-low [𝐹2,75 = 18.04, 𝑝 < .0001],
arousal-low [𝐹2,75 = 19.44, 𝑝 < .0001], valence-medium [𝐹2,75 = 48.80, 𝑝 < .0001], and arousal-medium [𝐹2,75 = 62.91,

(a) valence-low (b) arousal-low (c) valence-medium (d) arousal-medium (e) Mikel-high

Fig. 8. Classifier accuracy for the different feature types (all, phys., behave.) per model-resolution pair.
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𝑝 < .0001]. Pairwise comparisons have shown that, in all these settings, all and behav caused a higher accu-
racy than phys (all 𝑝 < .0001; Figure 8a-8d). No effect of the feature type was found in Mikel-high (Figure 8e).
The ANOVA also showed that there was a significant effect of the time window on accuracy in the settings of
valence-medium [𝐹4,75 = 15.15, 𝑝 < .0001] and arousal-medium [𝐹4,75 = 11.99, 𝑝 < .0001]. Post-hoc tests have shown
that in both cases, the 0-8 sec time window caused a lower classification performance than all other windows for
valence-medium (𝑝 < .02) and than all other windows but 0-20 sec for arousal-medium (𝑝 < .03). Our analysis did
not find an effect of the time windows on classification accuracy in other settings. Similarly, the ANOVA found
interaction effects between feature type and time window for valence-medium [𝐹8,75 = 2.57, 𝑝 < .02] and arousal-
medium [𝐹8,75 = 3.0, 𝑝 < .006]. Results of post-hoc tests are in line with previously reported pairwise comparisons
of other main effects, i.e., behavioral features outperformed physiological features for the same time windows.
To confirm how changes in cluster-category image sets impact emotional state detectability, we assessed the

prediction performance of self-reports within the current set by comparing features computed over the 0-20 sec
time window of the previous and current sets. A Wilcoxon signed-rank test revealed that there was a significant
difference between the accuracy of the features attained from the current and previous valence-arousal cluster
for valence-low [𝑍 = 0.0, 𝑝 < .001], arousal-low [𝑍 = 1.0, 𝑝 < .001], valence-medium [𝑍 = 11.0, 𝑝 < .001] and
arousal-medium [𝑍 = 15.0, 𝑝 < .002]. No significant difference was found for Mikel-high.

To further unpack the indicated differences in terms of feature types, we inspected the impurity-based feature
importances computed for the Random Forest classifier trained on all feature types in all model-resolution
settings and time windows. We utilized the Random Forest for this analysis, as it exhibited the highest accuracy
among classifiers across the various settings (see Appendix C). Table 3 shows the 30 most representative features
according to their impurity-based feature importance averaged over all runs. Results affirmed that behavioral

Table 3. Summary of the 30 most representative features according to their impurity-based feature importances of the
Random Forest, trained on and averaged over all model-resolution settings and time windows. The table shows their data
type, feature group, the feature and its summary statistics. It reports the median rank and average importance score per
feature group and data type.

Type Group Features
(summary statistics) Ranks Median

rank
Average
score

Phone int.
screen times (mean, st. dev., max, min),
number images,
time stamps (max)

1,2,4,8,
18,20 6 0.037

Motion acceleration (max)
angular speed (max) 13,19 16 0.030

Touch

speed (mean, min, max),
duration(mean, st. dev., min, max),
pressure decline (min),
pressure (st. dev., min),
number, acceleration (mean, min)

5,6,7,9,10,
11,12,15,16,
17,23,25,26,
29,30

15 0.031

Facial exp. angry expression 3 3 0.041
Eye tracking right eye’s aspect ratio (mean) 14 14 0.030

behavioral

All 13 0.034
ECG HR (max) 21 21 0.028
PPG HRV (st. dev.) 27 27 0.027
EDA phasic component 28 28 0.027
RSP respiration rate (min, max) 23 23 0.028

physiological

All 24 0.028
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features exhibit a greater predictive capability compared to physiological features. They possessed a higher count
(despite being balanced in total number), a higher median rank and a superior average feature importance score.

We observed that only two features computed from images captured by the front-facing camera are on the list.
To assess the impact of not utilizing the camera, we trained the Random Forest using the same configuration as
previously, but this time excluding all features derived from the camera’s images. Results show a slight decrease
in the mean accuracy across all time windows and resolution-model pairs (with cam: 0.48; with no cam: 0.46)

5.5 Additional information (F4)
In the final stage of our analysis, we contrasted classification performance across different settings with varying
degrees of available information in different dimensions. Thus, in terms of emotion model and resolution, we

Table 4. Results attained by systematically varying available information when training the Random Forest classifier. The
table shows results for 5 model-resolution pairs (Valence-low, Arousal-low, Valence-medium, Arousal-medium, Mikel-high),
2 feature sets (all, behavioral), 2 time windows (0-8 sec, 8-16 sec), and 5 different settings of additional information (no
additional information [no], demographic data, personality-related data, image emotions, their combination). The best
performance per combination of a model-resolution pair, feature set and time window is highlighted in bold. If in one of
these combinations two settings perform similarly, the one using the lower amount of information is highlighted.

Model Res. ZeroR Info.
0 - 8 sec 8 - 16 sec
all behav. all behav.
acc. F1 acc. F1 acc. F1 acc. F1

Valence low 0.28

no 0.72 0.7 0.71 0.7 0.73 0.7 0.7 0.7
demographic 0.73 0.7 0.75 0.8 0.72 0.7 0.73 0.7
personality 0.75 0.7 0.72 0.7 0.72 0.7 0.7 0.7
image emotions 0.76 0.8 0.76 0.8 0.74 0.7 0.83 0.8
combination 0.75 0.7 0.76 0.8 0.77 0.7 0.77 0.8

Arousal low 0.28

no 0.72 0.7 0.7 0.7 0.69 0.7 0.72 0.7
demographic 0.68 0.7 0.67 0.7 0.69 0.6 0.73 0.7
personality 0.73 0.7 0.7 0.7 0.7 0.7 0.72 0.7
image emotions 0.73 0.7 0.76 0.8 0.77 0.7 0.78 0.8
combination 0.72 0.7 0.78 0.8 0.79 0.8 0.8 0.8

Valence med. 0.28

no 0.42 0.4 0.47 0.5 0.46 0.4 0.47 0.5
demographic 0.46 0.5 0.34 0.3 0.53 0.5 0.52 0.5
personality 0.39 0.4 0.44 0.4 0.51 0.5 0.51 0.5
image emotions 0.49 0.5 0.48 0.5 0.58 0.5 0.6 0.6
combination 0.51 0.5 0.53 0.5 0.59 0.6 0.59 0.6

Arousal med. 0.28

no 0.47 0.4 0.46 0.4 0.49 0.5 0.53 0.5
demographic 0.35 0.3 0.42 0.4 0.51 0.5 0.52 0.5
personality 0.35 0.4 0.39 0.4 0.52 0.5 0.47 0.5
image emotions 0.49 0.5 0.54 0.5 0.59 0.6 0.59 0.6
combination 0.54 0.5 0.51 0.5 0.62 0.6 0.57 0.5

Mikel high 0.08

no 0.45 0.4 0.48 0.4 0.53 0.4 0.53 0.4
demographic 0.52 0.4 0.55 0.4 0.53 0.4 0.53 0.4
personality 0.52 0.4 0.52 0.4 0.56 0.5 0.53 0.4
image emotions 0.52 0.4 0.55 0.4 0.56 0.4 0.53 0.4
combination 0.52 0.4 0.52 0.4 0.5 0.4 0.5 0.4
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again used our five previously selected model-resolution pairs (valence-low, arousal-low, valence-medium, arousal-
medium, and Mikel-high). To vary information regarding type of features, we decided to compare the full feature
set with behavioral features, as the latter outperformed physiological features. All time windows were considered
for this analysis as comparison of accuracies was inconclusive in this case (0-8 sec, 4-12 sec, 8-16 sec, 12-20 sec,
0-20 sec). Finally, we considered the additional information that we have identified as promising for enhancing
emotion recognition (see Section 3). In particular, we decided to analyze the influence of demographic data
(gender, age, sexual orientation), personality-related information [71, 85], predicted image emotions [101] and
their combination on classification performance. Subsequently, we trained the Random Forest on the resulting
250 distinct settings (5 model-resolution pairs x 2 feature sets x 5 time windows x 5 different type of additional
information). To ensure optimal performance, we conducted a grid search on its parameters including the number
of trees, tree depth, and whether boosting is employed. Table 4 summarizes the results of this analysis. For the
sake of clarity, the table only shows results from the 0-8 sec (shortest time period after stimulus change) and the
8-16 sec time windows (best performance).

Results revealed that for low resolutions of valence and arousal behavioral features outperformed or performed
on par with the full feature set for both time windows. This observation holds for medium resolutions except
for the case of arousal classification in the 8 - 16 sec time window. In terms of high resolution, no clear trend in
terms of feature set can be observed. The analysis also showed that the later time window resulted in higher
classification accuracies across all resolutions and models. However, these differences are minor, with an average
difference in accuracy of 0.04 across all setting and 0.09 for medium state resolutions, for which a significant
difference in the pairwise comparison of the these time windows was found (Section 5.4). Furthermore, it was
observed that including predicted image emotions in the feature set boosted classification performance across
all emotion models, time windows and resolutions. In contrast, for the other forms of additional information
(demographic, personality-related), we did not observe a clear trend.

6 DISCUSSION
Our experiment assessed the effect of four key factors on the performance of emotion recognition during passive
social media use: (F1) data of physiological activity, (F2) the time window for data collection, (F3) the impact of
emotion models, and (F4) user-specific factors as well as inferred emotion distributions from images. We discuss
our findings in the light of these factors and their implication for future work on emotion recognition during
passive social media use.

(F1): Emotion recognition using behavioral versus physiological data
Results revealed that across emotionmodels, timewindows, and the predicted range of emotional states, behavioral
features were sufficient to recognize participants’ emotions during passive social media use, even outperforming
the combination of behavioral and physiological features in some settings. Combined with the fact that both
feature types displayed a similar response to cluster configurations and a comparable correlation with valence
and arousal ratings, our findings suggest that behavioral features hold greater predictive power for this task.

We hypothesize that the observed finding could be due to the delayed manifestation of responses to a stimulus
in physiological signals compared to behavioral signals. In terms of behavioral signals, facial expressions adjust
to stimuli within only 0.3 to 0.4 seconds [14] and fixation behavior changes within 0.5 seconds after exposure
to an image [83]. In our study, fixation behavior is captured by the various screen time metrics, e.g., the time a
participant looked at a post. In contrast, physiological features demonstrate a longer reaction time, with heart rate
requiring approximately 6 seconds to respond [4] and EDA varying between 3 to 5 seconds upon exposure to a
stimulus [6]. These response times were derived from conventional stimulus-response studies where emotionally
distinct stimuli are presented after neutral ones. Our study design excludes a neutralization phase between stimuli
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of differing polarity to better reflect real-world social media use. We believe that this adjustment further amplified
the disparities in stimulus responses of physiological and behavioral features, offering a potential explanation
for why behavioral data proved to be more indicative of participants’ emotions across settings. Future research
should explore how omitting a neutralization phase between two consecutive emotional stimuli effects responses
in physiological and behavioral signals, in a more controlled setting.
As behavioral data can be gathered directly from the devices used for social media consumption (e.g., smart-

phones), our findings demonstrate that users’ emotional states during passive social media use can be reliably
identified solely based on information that is immediately available on these devices. This eliminates the necessity
of equipping the user with additional wearables. Note that, in this study, experimental sensors were used to collect
physiological data, for which a superior signal quality in comparison to the sensors found on consumer-grade
devices can be assumed. Thus, we expect found differences in terms of feature type to even be more pronounced
in real-world settings where, furthermore, motion artifacts will affect signal quality.

(F2): Response delays to changing content
Our results show that stimuli from different valence-arousal clusters caused differences in self-reported affect
and in distributions of collected physiological and behavioral features. They also show that physiological and
behavioral features did not serve as reliable predictors across distinct valence-arousal clusters. This indicates the
dependency of participants’ emotional state on observed content and, further, suggests emotional contagion across
different stimuli groups. Nevertheless, the analysis of peak performances revealed that the classifier achieved
similar levels of performance for emotion recognition with features from just the initial 8 seconds as input as it
did with features from the best-performing time window (8–16 seconds). The consistent but slight improvement
in emotion detection performance in the later time window, along with the difference in performance between
the initial 8 seconds and the subsequent time frames in medium-resolution settings, characterize an interesting
trade-off between the promptness at which emotional states can be detected and the accuracy of their recognition.
While these findings stand in contrast to the peak-end rule [22], they are in line with Di Lascio et al.’s results,
who observed that different time windows can be most indicative for self-reported experiences [13].

Our results indicate that during passive social media use, users’ responses to changes in content can be detected
with sufficient robustness as early as within 8 seconds. This discovery holds significant implications for social
media applications supporting users’ mental health. It enables the association of a user’s current emotional state
with a specific post, provided the observation time exceeds 8 seconds. Subsequently, these applications could
dynamically respond to the content and tailor interventions accordingly. On social media, users typically spend
less than 3 seconds on a piece of content [20]. Despite these brief durations of exposure, they can still influence
their emotional state [108]. Future research should, thus, extend our research by investigating the association of
content and users’ emotional state for even shorter durations of exposure.

(F3): Effect of emotion model on emotion recognition
For a high state granularity, our analysis showed no discernible differences between emotion models despite
the higher number of predicted states of Mikel’s Wheel compared to the Circumplex Model. This indicates the
superiority of Mikel’s Wheel in high-resolutional settings. We explain this finding by the compound nature of
the emotion model. By enabling users to select multiple basic emotions, the model facilitates the expression of
the nuances and ambiguities in their feelings.

Representing these subjective ratings in polar coordinate space (using a recent parameterization [101]), allowed
us then to attain robust labels from these compound emotional states.
In settings of a low- or medium range of predicted emotional states, our results indicated no definite answer

on which emotion model to use. However, we argue that the two dimensions of the Circumplex Model, valence
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and arousal, provide more comprehensive insights into the specific constitution of a user’s emotional state. The
model further detects states of neutral affect—a capability that Mikel’s Wheel does not possess. In addition, it
caused lower variances of accuracy in the prediction of the emotional state.
Mikel’s Wheel also allows attaining multi-class- as well as distributional labels from self-reports. Its positive

impact on emotion recognition accuracy in our task and this representational flexibility, suggests testing Mikel’s
Wheel in other domains of affective computing as an interesting direction for future work.

(F4): Effect of additional inputs on emotion detection
Our findings reveal that using the emotional properties of images participants observed in the feed as input to
the classifier increases emotion recognition peak performances across emotion models and resolutions. These
properties were attained through an existing deep-learning-based approach [101], which predicts the distribution
over discrete emotions experienced by a population of viewers in response to an image. Their positive impact on
detection accuracy indicates that these distributions provide meaningful priors for the task of emotion recognition
during passive social media use. This suggests their potential as a valuable feature for emotion detection in other
application areas where users’ emotions towards images are of interest.
In contrast, for the other forms of additional information (demographic, personality-related), we could not

observe a clear trend. While participants varied in gender, nationality, and sexual orientation (see Section 4.6),
minority groups were underrepresented. Future research needs to consider larger participant pools with balanced
groups across different factors to establish conclusive findings.

Comparison with active social media use
To understand how the form of engagement, active or passive, impacts the recognition of emotions, we compare
our results with the accuracies of binary emotional state estimation reported in closely related work [72, 73].
Both studies present accuracies in unconstrained settings of engagement (active and passive) in the range of
92–96%. The best result in terms of binary emotional state prediction in our experiment was 83% (binary valence,
behavioral data, predicted image emotions, 8–16 sec). This minor decrease in performance holds despite the
fact that passive social media use is a more challenging setting as users’ behavioral traces are more sparse
than in active social media use. In particular, passive use does not comprise typing behavior, which has been
demonstrated to be a strong indicator of users’ emotional state [95]. In the two studies of active social media
use [72, 73], participants exhibited this behavior through activities such as commenting on posts. In our study
of passive social media use, models cannot capitalize on this behavioral cue, potentially explaining the decline
in performance compared to the settings of active use. Future work should further investigate differences in
emotion recognition between active and passive use, by comparing them with identical feature sets and settings.

Privacy- & ethical considerations
In our study, we leveraged features computed from images captured by the front-facing camera as inputs to the
classifier, as they have demonstrated utility in emotion detection during active social media use [72]. Similarly,
we analyzed factors that are known to influence social media behavior, i.e., gender [92], nationality [50], sexual
orientation [19], and personality [37].We recognize the sensitivity of this information and the severe consequences
if it were to be misused. Fortunately, our results indicated that excluding camera-based features led to only a
marginal 2% decrease in emotion detection accuracy. Excluding demographic- and personality-related information
resulted in an even smaller performance decrease of 0.3% (averaged across settings in Table 4). This suggests
that emotions during passive social media use can robustly be detected even without these features.

While our aim to use emotion detection systems for enhancing digital well-being, we underscore the potential
of this research to be misused in manipulating users’ emotions in accordance with malicious objectives. By
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increasing the understanding of the factors that contribute to a robust emotion detection, our research can inform
legislators in creating laws to protect user data that might otherwise be exploited for emotional manipulation.
This could become relevant, e.g., in the development of legislation under the European Union AI Act, which also
plans to regulate emotion detection systems [63]. Moreover, our research constitutes to raising awareness among
users about exposing their emotional state when browsing online. Both aspects are crucial, as already in today’s
internet, black-box algorithms utilize content that triggers highly arousing emotions to increase people’s time
online for the financial benefit of platform providers [100].

7 LIMITATIONS & FUTURE RESEARCH
Our study was conducted in a controlled social media environment with fewer features and influences than found
on actual platforms. In social media, various factors in addition to the shown content influence users’ emotions,
such as captions, relationships to the author of a post, likes, reposts, recency, prior exposure, and others. To select
from this high-dimensional space a manageable subset of factors for controlled evaluation, we used affective
images and replicated key interaction features like infinite scroll to establish an simulated real-world social media
scenario. While this design choice impacted the external validity of our study, it increased its internal validity
by allowing us to control the stimuli presented to participants. Thus, we could ensure that all participants saw
the same posts and reduce external influences, e.g, familiarity with a stimulus. Recognizing the significance of
unexplored dimensions and features, we recommend future research to investigate their influence on emotion
detectability during passive social media use to complement our current assessment.

One limitation of our study is the small sample size of 26 participants that may limit the reliability of observed
effects. Although we gained valuable preliminary insights into the emotional state detection during passive social
media use, future studies with larger participant pools are warranted to validate and extend our findings.
While our study sheds light on the emotional state detection of users aged 18 to 35 years, the limited age

range restricts the generalizability of our findings to other age groups. Given that problematic internet use
predominantly affects adolescents [2, 48], they stand to gain the most from applications that facilitate digital
health based on the detected emotional state. Therefore, expanding the age range to encompass this group would
be particularly insightful. Future research should include a broader spectrum of ages to capture nuances in the
emotional state detection across different age periods.
Our model attains accuracies comparable to those reported in other recent studies on wearable emotion

recognition, addressing both binary [15] and three-class emotion detection problems [15, 96]. However, more
advanced models for emotional state recognition exist that further improve prediction performance [46, 47].
Future studies should explore whether our findings on supervised emotion detection also hold for these methods.

8 CONCLUSION
In this study, we addressed the challenge of robust emotional state recognition during passive social media
engagement, a mode of interaction that has not been extensively explored in previous research. Our experiment
involved 29 participants browsing a controlled social media feed, where they were exposed to typical content of
social media stemming from a standardized emotional database.

Our findings show that behavioral features, derived from participants’ interaction with the phone, outperform
physiological signals in informing emotion classifiers. This underscores the practicality of utilizing behavioral
data, attainable on every smartphone, for informing, e.g., digital self-control tools. Additionally, we observed
that within 8 seconds following a change in media content, objective features can discern a participant’s new
emotional state. This would allow social media applications supporting mental health to link a user’s current
emotional state to a specific post for observation durations of 8 seconds or longer.
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Our investigation of two validated emotion models, the Circumplex Model of Affect and Mikel’s Wheel, shed
light on their respective strengths. Mikel’s Wheel proves particularly effective in high state granularity settings,
allowing users to express nuances and ambiguities in their feelings by selecting multiple basic emotions. In
contrast, the Circumplex Model’s dimensions of valence and arousal offer more comprehensive insights into a
user’s emotional state in low- or medium-granularity settings. Lastly, we examined the impact of supplemental
user- and content-specific information on emotion detection performance. We found that leveraging image
emotions predicted by a deep learning model significantly boosts classification accuracy.

In summary, our study provides valuable insights for robust emotional state recognition during passive social
media use. These findings have implications for the development of systems that support users’ digital health,
emphasizing the importance of considering behavioral features for accurate emotion detection.
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A CORRELATION OF FEATURES WITH VALENCE AND AROUSAL
We conducted a correlation analysis by computing Spearman’s rank correlation coefficient between physical and
behavioral features and participant’s valence and arousal ratings. Table 5 show the fraction of physiological and
behavioral features for each time period that correlate significantly with valence respectively arousal. In terms of
correlations, no distinct temporal pattern is observable. Interestingly, the fraction of physiological features that
correlate with Arousal ratings is higher than for valence ratings. The opposite is true for behavioral features
where a higher fraction correlates with valence than with Arousal self-reports.

B EMOTION MODEL AND RESOLUTION
In Table 6, we summarize the results of our classifier analysis.

C TEMPORAL AND FEATURE TYPE DEPENDENCY ON EMOTIONAL CONTENT CHANGES
Table 7 summarizes our comparison of the classification accuracy for each resolution for different feature types,
time windows, and resolutions. Results confirm that the highest state detection accuracy per resolution is always
either achieved by a classifier trained on behavioral- or all features. In terms of temporal dependency, results
show no clear pattern. However, none one the best performing classifier per resolution was trained on data from
the first sub-time-window (0-8 sec).
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Table 5. Fraction of physiological and behavioral features for each time period where a significant Spearman correlation
between features and Valence- and Arousal ratings of a particular magnitude (* 𝑝 < .05, ** 𝑝 < .01) was identified.

Dim. Type Group 0 - 8 sec 4 - 12 sec 8 - 16 sec 12 - 20 sec 0 - 20 sec
* ** * ** * ** * ** * **

Va
le
nc

e

ph
ys
io
l.

ECG - - - - - - 0.05 - - -
PPG 0.10 0.10 0.24 0.05 0.19 0.14 0.24 0.14 0.33 0.24
EDA - - - - 0.38 0.08 0.19 0.08 - -
RSP 0.06 - - - - - - - - -
All 0.03 0.02 0.05 0.01 0.11 0.04 0.10 0.04 0.07 0.05

be
ha

vi
or
al

Phone interactions 0.40 0.40 0.90 0.50 0.50 0.20 0.30 0.20 0.90 0.90
Eye tracking 0.67 0.33 0.67 0.67 0.67 0.33 0.67 0.67 0.67 0.67
Facial expressions 0.14 - 0.57 0.29 0.71 0.57 0.57 0.57 0.43 -
Motion 0.06 - 0.06 - 0.06 - 0.06 - 0.19 0.06
Touch 0.43 0.22 0.46 0.26 0.51 0.23 0.43 0.17 0.56 0.32
All 0.34 0.19 0.53 0.34 0.49 0.27 0.41 0.32 0.55 0.39

A
ro
us

al

ph
ys
io
l.

ECG 0.29 0.05 0.57 0.38 0.52 0.29 0.43 0.19 0.48 0.24
PPG 0.14 0.05 0.43 0.33 0.33 0.29 0.48 0.29 0.33 0.24
EDA - - 0.35 0.12 0.31 0.12 0.08 0.04 0.04 -
RSP - - 0.06 - 0.11 - 0.06 - - -
All 0.21 0.10 0.44 0.21 0.37 0.22 0.33 0.18 0.33 0.14

be
ha

vi
or
al

Phone interactions - - 0.20 0.20 0.70 0.60 0.30 0.20 0.60 0.20
Eye tracking 1.00 0.67 1.00 0.67 0.67 0.33 0.67 0.33 1.00 0.67
Facial expressions 0.43 0.14 0.14 0.14 0.14 - 0.29 0.29 0.29 0.14
Motion - - 0.06 - 0.06 - - - - -
Touch 0.01 - 0.17 0.06 0.10 0.04 0.01 - 0.10 0.06
All 0.29 0.16 0.31 0.21 0.33 0.19 0.25 0.16 0.40 0.21
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Table 6. Accuracy of emotional state detection over resolutions of emotion models. The table shows the best (Max) and mean
(M) accuracy and its standard deviation (SD) of each classifier over all time windows. The best performing classifier for each
emotion model and resolution is highlighted in bold.

Model Res. ZeroR SVM RF MLP AB LR XGB
Acc. Max

M±SD
Max
M±SD

Max
M±SD

Max
M±SD

Max
M±SD

Max
M±SD

Valence
low 0.28 0.68

0.65±0.02
0.67
0.67±0.01

0.65
0.64±0.01

0.65
0.63±0.02

0.64
0.63±0.01

0.70
0.66±0.03

med. 0.28 0.46
0.40±0.05

0.43
0.40±0.03

0.43
0.40±0.04

0.44
0.38±0.04

0.45
0.40±0.05

0.45
0.41±0.02

high 0.1 0.29
0.26±0.02

0.29
0.26±0.02

0.26
0.24±0.02

0.29
0.26±0.02

0.27
0.25±0.02

0.29
0.27±0.01

Arousal
low 0.28 0.68

0.65±0.02
0.69
0.67±0.02

0.67
0.65±0.02

0.65
0.63±0.02

0.64
0.63±0.01

0.70
0.66±0.03

med. 0.28 0.46
0.40±0.05

0.43
0.41±0.02

0.43
0.40±0.02

0.44
0.38±0.04

0.45
0.40±0.05

0.45
0.41±0.02

high 0.1 0.29
0.26±0.02

0.27
0.26±0.01

0.29
0.25±0.03

0.29
0.26±0.02

0.27
0.25±0.02

0.29
0.27±0.01

Mikel
low 0.26 0.69

0.65±0.06
0.72
0.67±0.03

0.64
0.59±0.04

0.65
0.60±0.04

0.64
0.58±0.05

0.71
0.65±0.05

med. 0.14 0.53
0.49±0.03

0.53
0.51±0.02

0.46
0.41±0.05

0.58
0.48±0.09

0.45
0.39±0.06

0.47
0.44±0.02

high 0.08 0.37
0.35±0.01

0.51
0.49±0.02

0.30
0.28±0.02

0.15
0.10±0.04

0.31
0.27±0.03

0.43
0.40±0.02
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Table 7. Accuracy of feature types over different time windows and model-resolution pairs (Valence-low, Arousal-low,
Valence-medium, Arousal-medium, and Mikel-high). The table shows the accuracy of the ZeroR baseline (ZeroR) and the best
performing classifier (Max; low=XGB, medium&high=RF). The time window in which the best-performing classifier was
trained is indicated in bold. If it is also the best-performing classifier for a given resolution, it is additionally marked in italics.

Res. Model Typ. ZR 0-8 sec 4-12 sec 8-16 sec 12-20 sec 0-20 sec
M
SD

Max
Clf

M
SD

Max
Clf

M
SD

Max
Clf

M
SD

Max
Clf

M
SD

Max
Clf

low Va
le
nc

e all 0.28 0.63
±0.0

0.66
RF

0.65
±0.0

0.67
RF

0.64
±0.0

0.67
SVM

0.65
±0.0

0.70
XGB

0.65
±0.0

0.68
SVM

phy. 0.28 0.56
±0.1

0.65
RF

0.58
±0.0

0.63
RF

0.59
±0.1

0.67
RF

0.60
±0.0

0.66
XGB

0.59
±0.0

0.66
RF

beh. 0.28 0.64
±0.0

0.66
XGB

0.64
±0.0

0.69
RF

0.64
±0.0

0.66
RF

0.64
±0.0

0.67
XGB

0.66
±0.0

0.69
SVM

A
ro
us

al

all 0.28 0.62
±0.0

0.64
RF

0.65
±0.0

0.67
XGB

0.65
±0.0

0.69
RF

0.66
±0.0

0.70
XGB

0.66
±0.0

0.69
RF

phy. 0.28 0.55
±0.1

0.63
RF

0.57
±0.0

0.63
RF

0.58
±0.1

0.65
RF

0.60
±0.0

0.66
RF

0.59
±0.0

0.66
RF

beh. 0.28 0.64
±0.0

0.66
XGB

0.64
±0.0

0.67
RF

0.63
±0.0

0.66
RF

0.64
±0.0

0.67
XGB

0.66
±0.0

0.69
SVM

med. Va
le
nc

e all 0.28 0.34
±0.0

0.39
XGB

0.40
±0.0

0.42
RF

0.43
±0.0

0.46
SVM

0.42
±0.0

0.45
LR

0.41
±0.0

0.44
SVM

phy. 0.28 0.33
±0.0

0.36
XGB

0.36
±0.0

0.38
SVM

0.36
±0.0

0.38
RF

0.38
±0.0

0.41
MLP

0.35
±0.0

0.37
RF

beh. 0.28 0.39
±0.0

0.42
XGB

0.41
±0.0

0.44
XGB

0.41
±0.0

0.44
XGB

0.42
±0.0

0.48
RF

0.44
±0.0

0.46
SVM

A
ro
us

al

all 0.28 0.35
±0.0

0.39
XGB

0.40
±0.0

0.42
RF

0.42
±0.0

0.46
SVM

0.42
±0.0

0.45
LR

0.41
±0.0

0.44
SVM

phy. 0.28 0.33
±0.0

0.36
XGB
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