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Fig. 1. BMAR is a novel method to synchronize and align signals across devices without the need for specific user input, action,
or explicit synchronization through wired or wireless communication (e.g., WiFi or BLE). BMAR is capable of synchronizing
(a) independently recorded signals after the fact by (b) first pre-aligning recordings using air pressure as an inexpensive
sensing modality that simultaneously allows us to reject non-simultaneous recordings. (c) In a second step, BMAR produces
a refined signal alignment across sensor devices by cross-correlating accelerometer observations.

A requirement of cross-modal signal processing is accurate signal alignment. Though simple on a single device, accurate signal
synchronization becomes challenging as soon as multiple devices are involved, such as during activity monitoring, health
tracking, or motion capture—particularly outside controlled scenarios where data collection must be standalone, low-power,
and support long runtimes. In this paper, we present BMAR, a novel synchronization method that operates purely based on
recorded signals and is thus suitable for offline processing. BMAR needs no wireless communication between devices during
runtime and does not require any specific user input, action, or behavior. BMAR operates on the data from devices worn by
the same person that record barometric pressure and acceleration—inexpensive, low-power, and thus commonly included
sensors in today’s wearable devices. In its first stage, BMAR verifies that two recordings were acquired simultaneously and
pre-aligns all data traces. In a second stage, BMAR refines the alignment using acceleration measurements while accounting
for clock skew between devices. In our evaluation, three to five body-worn devices recorded signals from the wearer for up to
ten hours during a series of activities. BMAR synchronized all signal recordings with a median error of 33.4ms and reliably
rejected non-overlapping signal traces. The worst-case activity was sleeping, where BMAR’s second stage could not exploit
motion for refinement and, thus, aligned traces with a median error of 3.06 s.
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1 INTRODUCTION
Technological advances have led to a fast increase in the miniaturization of technology, giving rise to many
devices that can be worn throughout the day [8]. Among the main uses of wearable devices are activity tracking [1,
13, 15, 27, 31, 35, 55] and health monitoring [3, 9, 31, 38, 55, 62]. Both these types of devices incorporate multiple
sensors that generate large amounts of time-dependent data that they must process in real-time, store, or transmit
to another device. Oftentimes, the data is processed online to reduce storage or transmission requirements.

When raw recordings obtained on wearable devices are important, however, continuous data streaming places
a large toll on battery power and storing all data for offline processing is preferable. This is especially true of data
collection experiments that enable later research efforts [11]. Beyond the sensor data collected by one device,
data collections commonly include multiple wearable devices, either worn by one individual or across individuals,
such that the collected records can later be combined for joint analysis [42]. To analyze data series stored across
multiple devices, accurate temporal data synchronization is an essential requirement. Wearable sensing devices
usually associate measurements with timestamps, for example, derived from an on-board real-time clock (RTC).
Since timekeeping typically relies on a crystal oscillator with an accuracy of 10–100 ppm [57], the clocks between
two devices may deviate by several seconds after hours of runtime, even if they matched at one point. Repeated
synchronization is therefore essential for accurate data processing at a later point.
A common approach to cross-device time synchronization is using a central reference for timekeeping. The

Global Positioning System (GPS) is a popular choice because it synchronizes time at an accuracy of typically
10 ns [16] which exceeds that of an RTC and is only limited by hardware capabilities [34]. However, GPS signals are
not reliable in locations with no clear view of the sky and the receiver’s power consumption of several milliwatts
renders them little suitable for repeated synchronization in low-power applications. Therefore, many wearables
rely on a wireless sensor network (WSN) that implements an online synchronization algorithm. While there are
no established standards in WSN synchronization, multiple commonly used wireless synchronization protocols
exist, including the timing-sync protocol for sensor networks (TPSNs) [21], the flood time synchronization
protocol (FTSP) [39], and reference broadcast synchronization (RBS) [20]. However, all these approaches are
designed and optimized for accuracy and are not suitable for very low-power applications [37].

A recent trend in low-power systems has been in time synchronization that optimizes for power consumption
and thus limits communication and the amount of online processing [11]. For example, Makara et al.’s synchro-
nization protocol tolerates average time discrepancies of 10ms, enabling two individual wearable devices to
regularly exchange timestamps through Bluetooth Low Energy (BLE) at an average power consumption of just
133 `𝑊 [37]. In contrast, many other efforts have opted to perform data synchronization entirely offline and based
on measurement data alone, which is useful for longitudinal in-the-wild collections. Spilz and Munz and Gilbert
et al.’s methods build on magnetometer recordings to detect a predefined event for clock synchronization [26, 52],
leveraging electromagnets built into a tray on which the devices are placed. In many applications, such as
wearable health sensing or collections of activity data, synchronization is particularly needed when devices are
worn by the same person to obtain a coherent dataset for each wearer. For this use case, researchers have also
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synchronized data series passively, detecting pre-defined events in the signals from inertial measurement units
(IMUs) for synchronization, such as clapping [49] or footsteps [5].

Following from previous efforts in this domain, several key challenges exist for passively synchronizing data
series offline: Synchronization must be able to detect whether or not two data series were recorded at the same
time as a prerequisite. Synchronization cannot rely on pre-defined activities or events that are required to be
performed by a person one or more times. Synchronization cannot assume unique events to be present inside all
data series that passively afford accurate alignment. Synchronization must ensure that data series are aligned
with a global optimum, particularly in the presence of events that manifest in periodic patterns, such as walking,
running, or cycling, and that can lead to locally optimal but overall inaccurate alignment.

To address the challenges above, we propose BMAR, a novel offline synchronization method for devices worn
by one person. BMAR requires no explicit input from users and accurately aligns cross-sensor signal traces
without requiring users to perform particular motions or activities.

1.1 Offline Signal Synchronization across Body-worn Devices
As shown in Figure 1, BMAR synchronizes signal traces individually recorded by wearable devices by aligning
them in two stages: a pre-alignment based on air pressure observations and a refinement step that processes
accelerometer observations.

In Stage 1, BMAR derives a pre-alignment of signal traces based on air-pressure observations.We simultaneously
leverage these measurements for the rejection of non-concurrent recordings. Both are possible because air pressure
recordings are unique over time but near-identical across all devices worn on the same body. Barometers are
inexpensive, small, very low-power, and not affected by motion artifacts, ideally suited for this scenario on
wearable devices.

In Stage 2, BMAR refines alignment based on accelerometer measurements. Building on our pre-alignment
to ensure globally optimal alignment, BMAR produces a refined alignment by cross-correlating accelerometer
recordings. We compute these for patches of data, which makes our method more robust to short-term misalign-
ments and accounts for clock skew between devices. Accelerometers are ubiquitous in wearable devices thanks to
the versatility of their recordings, their low cost, and low power consumption. The distinct high-frequency events
in motion across all on-body locations that these sensors observe are ideal for optimizing BMAR’s pre-alignment
to reduce the alignment error.
To evaluate the effectiveness of our method, we conducted 10 sessions of data collection on 7 separate days.

In each session, between 3 and 5 wearable devices recorded data from the same participant for up to 10 hours,
resulting in 328 hours of total device runtime. The participant performed one of 3 activities: office work, cycling,
or skiing to include a variety of lower and higher-intensity motions. In addition, we included sleep as a 4th
activity to verify how well our method performs on recordings with little to no motion.
Our results showed that BMAR synchronizes signals with a median error of less than 40ms during sessions

with activity. This is well below the period of human activity and physiological signals [14, 36], setting our
method up as a suitable complement to the increasing data monitoring efforts on multi-device platforms.

1.2 Contributions
We make the following contributions in this paper:

(1) BMAR, a novel method for signal synchronization that processes recordings offline through a pre-alignment
and refinement stage, without relying on assumptions about signal content (e.g., specific actions or user input
during recording).

(2) Particular support for (wearable) low-power platforms, requiring no wireless connectivity or communication
during operation, and leveraging only commonplace air pressure and accelerometer measurements.
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(3) An evaluation of our method across 3–5 custom-built wearable devices (with a high-resolution and a low-
resolution sensor) across 4 activities against ground-truth measurements. During activities with human
motion, our method aligned data traces with a median error of 33.4ms, whereas this error was 3 s during
activities without motion (sleep). Our method also reliably detected and rejected recordings that were not
acquired concurrently.

2 RELATED WORK
BMAR is related to wireless synchronization methods, data-based synchronization, and wearable applications.

2.1 Wireless Synchronization
Over recent years, Wireless sensor networks (WSNs) have attracted more and more interest. Time synchronization
performed online or offline between the nodes of a WSN is crucial for the deployment of the Internet of Things
(IoT) [4]. Currently, many time-synchronization methods for WSNs use BLE [4, 44]. Especially in the fields of
ubiquitous computing, sports science, and health applications, BLE is most commonly used since it is integrated
in modern smartphones [44].
With BLE, timestamping errors of less than 50 ns are possible as demonstrated by Asgarian and Najafi with

BlueSync [4]. BlueSync outperforms previous work by several magnitudes [7, 24, 25, 44, 51, 53]. While Rheinländer
and Wehn achieve an accuracy of 0.9 `s [44], Sridhar et al. and Bideaux et al. achieve accuracies of 10 `s [53]
and 14.9 `s [7], respectively. Somaratne et al., Ghoshdastider et al. and Ghoshdastider et al. achieve accuracies of
19ms [51], 37.8ms [24], and 45.1ms [25], respectively. While the above works do not have low power consumption
as their main goal but achieving a low synchronization error, Makara et al. aim also to reduce power consumption
and achieve a 10ms error at a power consumption of 133 `Wwhen using two devices [37].

However, there are also alternatives to BLE, including the work by Li et al., Seijo et al., and Ikram et al. utilizing
GPS [34], Wifi [46], and radio signals [28], respectively. Li et al. achieved synchronization with an accuracy well
below 1ms [34], while Seijo et al. show that their method achieves sub-nanosecond time transfer accuracy [46].

2.2 Data-based Synchronization
Multiple works have introduced data-based synchronization for distributed sensor systems using acceleration
data from IMUs. Most of these works focus either on synchronization between IMUs and motion-capturing
systems/ video data from cameras or between only IMUs. The latter is typically done by subjecting all IMUs to a
sudden acceleration such as shaking multiple IMUs that are held together [22, 41, 45, 49, 59]. With this method,
Shabani et al. obtained a minimum mean lag time bias of 25.56ms [49]. Recently, Spilz and Munz introduced a
novel data-based synchronization method for synchronizing multiple devices by subjecting them synchronously
to a magnetic field impulse generated by an array of inductors causing an event that is detectable by the devices’
IMUs [52] and allowing for synchronization with a maximum offset of below 2.6ms. To synchronize IMUs and
motion capturing systems/ video data sudden movements such as a heelstroke are commonly used. The event
is then visible both in the video and the acceleration data [5, 10, 32, 43, 60]. For video-to-IMU synchronization
without explicit user action, Zhang et al. proposed SyncWISE, an algorithm that achieves a mean error of less
than half a second [61]. When aligning recordings based on data and without distinct events, a measure for signal
synchrony is required. Gashi et al. evaluated several such measures when they explored the synchrony of signals
of electrodermal activity between presenters and audience members to determine engagement [23].

2.3 Applications of Wearable Devices
Activity tracking and health monitoring are among the main use cases for wearable devices. Leutheuser et al.
combine data from four accelerometers in different body locations for human activity recognition [33]. At the
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Fig. 2. Example of aligning a short signal (top, orange) with a longer one (top, gray) based on cross-correlation which
results in an objective function (bottom, orange) that is at its maximum where the longer signal is maximal. Similarly, the
cross-covariance results in an alignment with the section of the longer signal that is the steepest (red). For ’slow’ signals
such as ambient pressure, alignment based on sample-by-sample signal delta is better suited (green).

intersection of health monitoring and activity recognition, Strain et al. perform mortality prediction based on
data collected from a wrist-worn wearable [55]. Similarly, Bari et al. combined synchronized data from separate
devices recording audio, physiological, and inertial signals to detect stressful conversations [6].

3 PROBLEM DEFINITION AND BACKGROUND ON SIGNAL ALIGNMENT
We now discuss preliminary considerations for our proposed method for synchronizing data series as well as the
challenges involved.

3.1 Temporal Alignment of Discrete Finite Signals
The problem we are addressing is specified as follows: Given are discrete sensor recordings from two independent
devices 𝐷1 and 𝐷2 which were acquired with temporal overlap but may be of varying duration. A recording
always comprises traces of barometer, accelerometer, and optionally other sensors. The goal is to temporally
align the two recordings based on the similarities in measurements contained in the sensor traces. We utilize a
mixture of methods based on cross-correlation, cross-covariance, and signal delta.

3.1.1 Cross-correlation and Cross-covariance to Align Discrete Finite Signals. The approximation of the cross-
correlation 𝑅𝑓 𝑔 of two signals 𝑓 and 𝑔 of finite lengths 𝑁𝑓 and 𝑁𝑔 can be used to determine the best alignment of
the two functions by finding the lag𝑚0 of 𝑔 that maximizes 𝑅𝑓 𝑔:

𝑅𝑓 𝑔 [𝑚] = 1
𝑙 [𝑚]

𝑚𝑖𝑛 (𝑁𝑓 −1,𝑁𝑔−𝑚−1)∑︁
𝑛=𝑚𝑎𝑥 (0,−𝑚)

𝑓 [𝑛]𝑔[𝑛 +𝑚] .

Here, the result is scaled relative to the length 𝑙 [𝑚] of the overlap of the two signals:

𝑙 [𝑚] =𝑚𝑖𝑛(𝑁𝑓 , 𝑁𝑔 −𝑚) −𝑚𝑎𝑥 (0,−𝑚).
The quality of this approximation decreases at the edges with shorter window lengths 𝑙 when𝑚 is close to 𝑁𝑔

or −𝑁𝑓 . The cross-correlation is commonly used to align data series such as gyroscope measurements [49] or
accelerometer measurements [17], but it does not work well for all signal types. Most notably, signals with a
characteristic timescale that is longer than the duration of the computation window (i.e., contain few distinct
swings within the computation window) are prone to misalignment [58]. An example of misalignment in such a
scenario is shown in Figure 2.

In some cases, this issue can be resolved by subtracting the mean values `𝑓 ′ and `𝑔′ from the respective signals
prior to multiplication. The resulting formula is an approximation of the cross-covariance of the two signals:
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𝑅𝑓 𝑔 [𝑚] = 1
𝑙 [𝑚]

𝑚𝑖𝑛 (𝑁𝑓 −1,𝑁𝑔−𝑚−1)∑︁
𝑛=𝑚𝑎𝑥 (0,−𝑚)

(𝑓 [𝑛] − `𝑓 ) (𝑔[𝑛 +𝑚] − `𝑔)

However, there are still scenarios in the realm of slow sensing modalities that are misaligned when using this
formula for trace alignment as shown in Figure 2.

3.1.2 Signal Delta to Align Discrete Finite Signals. To align sensor signals with a long characteristic timescale
in scenarios where the sensors have recorded the same underlying signal at the same time bar the impact of
sensing tolerance (as is the case for air pressure measurements), the point-by-point difference of the signals can
be analyzed. Considering the same two signals 𝑓 and 𝑔 of finite lengths 𝑁𝑓 and 𝑁𝑔 and the overlapping length
𝑙 [𝑚] as before, a loss function, say 𝐿, can be formulated as follows:

𝐿[𝑚] = 1
𝑙 [𝑚]

𝑚𝑖𝑛 (𝑁𝑓 −1,𝑁𝑔−𝑚−1)∑︁
𝑛=𝑚𝑎𝑥 (0,−𝑚)

𝐿𝛿 (𝑓 [𝑛] − 𝑔[𝑛 +𝑚])

Where 𝐿𝛿 is the Huber loss function which reduces the sensitivity to measured outliers:

𝐿𝛿 (𝑥) =
{

𝑥2

2 , |𝑥 | ≤ 𝛿

𝛿 ( |𝑥 | − 𝛿
2 ), |𝑥 | > 𝛿

The resulting loss function 𝐿[𝑚] can be minimized to find the lag𝑚0 that aligns the two sensor traces the best.
Alternatively, the standard deviation of the point-by-point difference of the two signals can be used as a loss
function. This makes it invariant to the mean of the signal difference and effectively yields a measure of how
well two signals run in parallel:

𝐿[𝑚] =

√√√√
1

𝑙 [𝑚] − 1

𝑚𝑖𝑛 (𝑁𝑓 −1,𝑁𝑔−𝑚−1)∑︁
𝑛=𝑚𝑎𝑥 (0,−𝑚)

|𝑓 [𝑛] − 𝑔[𝑛 +𝑚] − ` |2

where ` is the mean of 𝑓 [𝑛] − 𝑔[𝑛 +𝑚]:

` =
1

𝑙 [𝑚]

𝑚𝑖𝑛 (𝑁𝑓 −1,𝑁𝑔−𝑚−1)∑︁
𝑛=𝑚𝑎𝑥 (0,−𝑚)

𝑓 [𝑛] − 𝑔[𝑛 +𝑚]

3.2 Clock Offset, Drift, and Skew
The difference between two RTCs 𝛿 (𝑡) can be characterized in three components [57]: (1) offset, the constant
component of 𝛿 (𝑡) caused by different starting points, (2) skew, the first derivative 𝛿 ′ (𝑡) which indicates that
one clock is running faster than the other resulting in a gradual de-synchronization, and (3) drift, the second
derivative 𝛿 ′′ (𝑡) which is the variation in skew. This terminology is consistent with previous definitions as used
by Mills [40] and Sundararaman et al. [56]. For RTCs that rely on quartz crystals, clock drift is mainly caused by
the temperature dependence of the latter which is typically characterized as 𝐸𝑟𝑟 (𝑇 ) = 0.036𝑝𝑝𝑚 · (𝑇 − 25◦𝐶) [57].
This results in only minor clock drift for temperature differences commonly experienced by two wearable devices.
Therefore, we assume clock drift to be 0 and de-synchronization effects to be linear between devices in our
considerations, similar to related work [50].
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3.3 Measurement Errors of Air Pressure Sensors
Air pressure measurements are subject to sensor tolerances. The resulting error can be characterized by an
absolute accuracy (i.e., the absolute difference to ground truth) and a relative accuracy (i.e., the accuracy of the
delta between two measurements by the same sensor). For commercially available barometric pressure sensors,
the absolute accuracy is usually about an order of magnitude larger than the relative accuracy [29, 47, 48].
Therefore, BMAR uses absolute measurements to reject non-simultaneous measurements only and relies on
relative measurements for trace alignment.

3.4 Ensuring within-device Sensor Synchronization
In offline settings, the RTC of a device does not provide absolute time information which could be used for
cross-device synchronization but instead keeps track of the runtime since starting the device more accurately
than internal sensor clocks would. With typical tolerances in the order of several percent, sensor clocks are not
suitable to be used for timekeeping. Hence, a prerequisite for the alignment of multiple sensor traces across
devices is the synchronization of traces with the RTC within each device.

3.4.1 Alignment Offsets Due to Sensor Startup Latency. Starting each sensor of one device at a known RTC
timestamp does not guarantee synchronization. This is due to differences between the latency of each sensor for
activation and starting the acquisition of its first sample. Because this latency is not commonly specified in the
datasheet, it can usually not be compensated for without extensive calibration measurements. However, assuming
that this latency is constant for a specific sensor type and only data from the same sensor type is compared across
devices, the latencies cancel out and have no negative impact on the resulting synchronization results.

3.4.2 Synchronized Sampling. When sensors support external triggering, the RTC can be used to directly initiate
measurements. This keeps sensor data traces perfectly synchronized with the RTC over arbitrarily long periods
of runtime. In systems where sensors do not support external triggers from the RTC, sensors must rely on their
internal clocks. In this case, the relative error in the sampling rate requires compensation.

4 BMAR: METHOD DESIGN FOR OFFLINE SIGNAL SYNCHRONIZATION
Optimal data synchronization across multiple wearable devices worn by a single person requires patterns in the
data that are unique over time and do not depend on the body location where the device is worn. The presence of
such patterns depends on user behavior and sensing modality.
Therefore, BMAR builds on barometric pressure sensors, which observe changes in the environment that

affect all worn devices to a similar extent. This causes the individual on-body location of a sensor to manifest in
a negligible amount and does not require our method to rely on specific user actions or activities. Barometric
pressure sensors are inexpensive, low-power, and are commonly built into wearable devices. The signal they
measure is influenced by changes in the altitude above sea level (e.g., walking up or down stairs, taking elevators,
or performing any other motion not in a flat plane), meteorological changes in atmospheric pressure, or changes
in ambient pressure caused by the immediate environment (e.g., opening a door of a closed room or car).
Our method aligns the data recorded by any two independent devices 𝐷1 and 𝐷2 or rejects the alignment in

case it determines that the devices were not running at the same time or worn by the same person. The goal of
this process is to determine the lag time 𝑡𝑙𝑎𝑔 (𝑡) of 𝐷2 compared to 𝐷1. 𝑡𝑙𝑎𝑔 (𝑡) itself is time-dependent due to RTC
tolerances in 𝐷1 and 𝐷2 but is assumed to be linear.

4.1 Rejection of Non-simultaneous Measurements
The nature of air pressure measurements allows the rejection of two data traces that were not recorded at the
same time. The difference of two temporally independent, single-sample air pressure measurements collected
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Fig. 3. Approximations of the same 𝑡𝑙𝑎𝑔 (𝑡) with different 𝑛𝑤𝑖𝑛 for two pairs of recordings. (a) Fewer windows lead to fewer
outliers and a more accurate approximation for these recordings. (b) More windows lead to a reduction in alignment error for
these recordings.

in the same location are expected to be normally distributed 𝑋1 − 𝑋2 ∼ N(0, 2𝜎2) with 𝜎2 being the variance
of independent air pressure samples for the specific location. The probability of correct rejection of two such
measurements can be calculated as follows:

𝑝𝑟𝑒 𝑗 =
1

2𝜎
√
Π

∫ 2𝐴

−2𝐴
𝑒
− 𝑥2

4𝜎2

Where ±𝐴 is the range of the absolute accuracy of each barometric pressure sensor. When inserting real-world
values such as 𝜎 = 928 𝑃𝑎 [12] and 𝐴 = 100 𝑃𝑎 [47], the probability of correct rejection is 0.83. Using multiple
measurements over time and incorporating a distribution over altitude above sea level, this probability is expected
to increase. Here, the sensor accuracy is assumed to have strict lower and upper bounds and thus the rate of false
rejection is zero when setting the acceptance tolerance to the same boundaries. Modeling the sensor accuracy as
a normal distribution leads to the expected trade-off of minimizing false positives versus false negatives, however,
specifications in datasheets usually do not provide enough information for such calculations.

To determine whether two devices 𝐷1 and 𝐷2 were running at the same time, we consider the alignment of the
air pressure measurement data from both devices that minimizes the mean sample-by-sample difference and
classify them as non-simultaneously recorded if this value surpasses a threshold.

4.2 Stage 1: Air Pressure-based Pre-alignment
BMAR first analyzes air pressure measurement data series to determine whether 𝐷1 and 𝐷2 were running at the
same time and to find an approximation 𝑡𝑃

𝑙𝑎𝑔
of 𝑡𝑙𝑎𝑔 (𝑡).

Since the error of 𝑡𝑃
𝑙𝑎𝑔

is generally larger than the RTC clock skew effects between𝐷1 and𝐷2, it is computed as a
constant value independent of time. We developed two algorithms to compute air pressure-based trace alignment.
The delta-error method computes the mean Huber loss based on the point-by-point difference between two traces
for all possible alignments (Section 3.1.2). The lag time corresponding to the alignment with the minimum mean
Huber loss is selected as 𝑡𝑃

𝑙𝑎𝑔
. For this method, the data from both devices is low-pass filtered to remove noise and

normalized to make the alignment invariant to constant offsets due to absolute sensor accuracy tolerance.
The delta-std method computes the standard deviation of the point-by-point difference between two traces for

all possible alignments and corresponding lag times. The lag time resulting in the minimum standard deviation is
selected as 𝑡𝑃

𝑙𝑎𝑔
. The raw data is used for this method.
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Fig. 4. Top and bottom sides of the electronics of our custom wearable device, which measures 23mm × 22mm. Components:
(a) ADXL355, high-resolution accelerometer, (b) LIS2DH, low-cost accelerometer, (c) power switch, (d) extension connector,
used for synchronization ground truth, (e) CR2032 battery, (f) RTC quartz crystal, (g) DA14695 System-on-a-Chip, (h)
TH58CYG3S0HRAIJ 8Gb flash memory, (i) BME280 barometric pressure sensor.

4.3 Stage 2: Accelerometer-based Refinement and Optimization
Next, BMAR leverages accelerometer signals to refine 𝑡𝑃

𝑙𝑎𝑔
and optimize the alignment. We maximize the cross-

correlation of the magnitudes to find the best alignment 𝑡𝐴𝑐𝑐𝑒𝑙
𝑙𝑎𝑔

(𝑡). To enable the time-dependent approximation
of 𝑡𝑙𝑎𝑔 (𝑡) and to make the algorithm more robust to time-limited measurements that facilitate misalignment, the
available data trace is split into 𝑛𝑤𝑖𝑛 windows for each of which a lag time is calculated separately. The result of
this is a series of 𝑛𝑤𝑖𝑛 calculated lag times temporally associated with the center point of the respective window
that the original trace was split into. We perform ordinary least squares regression (OLS) on these lag times and
remove outliers using the Bonferroni outlier test. This results in a linear approximation 𝑡𝐴𝑐𝑐𝑒𝑙

𝑙𝑎𝑔
(𝑡).

The optimal 𝑛𝑤𝑖𝑛 depends on the data. Therefore, we repeat the computation, starting with 𝑛𝑤𝑖𝑛 = 4 and
increase the number of windows by a factor of 2 until the window size drops below 1 second or 𝑛𝑤𝑖𝑛 > 512. The
result of this is a set of linear approximations of 𝑡𝑙𝑎𝑔 (𝑡). We use the 𝑟 2 adjusted for residual degrees of freedom of
the OLS to select the most promising approximation. This is based on the assumption that local misalignments
within some of the windows do not appear linear over the whole trace, making 𝑟 2 an indicator of alignment
quality. Figure 3a shows an example where the linear approximation with a smaller 𝑛𝑤𝑖𝑛 is more accurate while
Figure 3b shows an example of an alignment where a larger 𝑛𝑤𝑖𝑛 leads to a better result.

5 SYSTEM IMPLEMENTATION OF BMAR
To implement and evaluate BMAR, we devised a miniaturized wearable platform that embeds multiple sensors
and runs on a small battery. As shown in Figure 4, our platform is coin-sized and affords wear at multiple locations
of the user’s body.

5.1 Device
The low-power sensor device we developed comprises a 23mm × 22mm printed circuit board (PCB), which
is powered by a CR2032 coin-cell battery (Figure 4e). It centers around a System-on-a-Chip (SoC) (DA14695,
Renesas [19], Figure 4g) and logs sensor data to an 8Gb serial NAND flash memory (TH58CYG3S0HRAIJ, Kioxia
America [2], Figure 4h). The data can later be downloaded to a USB port on a PC through a serial port connection
on the extension connector of the PCB (Figure 4d). The RTC of the SoC relies on a 32.768kHz external quartz
crystal (ECS-.327-7-16-C-TR, ECS Inc. International [30], Figure 4f) with a tolerance of ±20 ppm. Our platform
accommodates a series of sensors that are common on wearable devices for the purpose of evaluating our method.
Depending on the activated sensors and their sampling frequencies, the device consumes between 2 and 4.5mW
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resulting in a battery life of 35–80 hours. The device runs autonomously and does not require user interaction or
wireless communication for operation. It can be turned on and off by a power switch on the board (Figure 4c).

5.1.1 Sensors. For later pre-aligning of all data series, the device houses a digital barometric pressure sensor
(BME280, Bosch Sensortec, Figure 4i). The sensor is operated in forced mode to enable synchronization to
the RTC of the SoC, which triggers a measurement every 100ms, leading to a sampling rate of the barometer
of 10Hz. We used no oversampling or internal IIR filter. As per the datasheet, the absolute accuracy of the
measurements lies within a range of ±1.0 hPa (±3𝜎) and the relative accuracy is ±0.12 hPa (±3𝜎) [47] which are
low-end characteristics compared to pressure sensors currently available commercially.
For refining synchronization during our optimization stage, we included two accelerometers for comparison.

First is an ADXL355 (Analog Devices, Figure 4a), a high-resolution 3-axis digital accelerometer. It operates in
FIFO mode, receiving triggers for measurements from the RTC of the SoC. This results in a sampling frequency of
128Hz. We set the range to ±2 g at a resolution of 20 bit (4 `g/LSB) [18]. Second is a LIS2DH (STMicroelectronics,
Figure 4b), a low-cost 3-axis digital accelerometer that is found in lower-end wearables such as fitness bands. It
also operates in FIFO mode, but does not support external triggers. The accelerometer was configured to sample
at 200Hz using the internal clock source, at a range of ±2 g and a resolution of 8 bit (4mg/LSB) [54].

5.2 Encasing
We created a 3D-printed case that comprises an insert to house all the electronics and the battery as well as an
outer casing with a strap for wear as shown in Figure 5b. The case supports different straps to support wear at
different locations on the body.

5.3 Synchronization
The firmware of the SoC was implemented in C++, building on freeRTOS to drive all sensors and repeatedly
download and store the contents of their FIFO buffers. We implemented all synchronization algorithms in Python
3.11 to process all recordings offline after download.

5.3.1 Buffered Sampling With Compensation. Since the low-cost accelerometer does not support external mea-
surement triggering from the RTC but relies on its internal clock source, its measurements require compensation
to preserve the synchronization of all sensors within the device. When the SoC retrieves buffers from a sensor, it
additionally logs an RTC-based timestamp to memory. During offline processing, the expected total data length
after each FIFO readout can be calculated based on the logged RTC timestamps of the readout and the sensor
activation. To account for the latency between sensor activation and data availability in the FIFO, we calculate
the expected length relative to the first FIFO readout:

𝑙𝑒𝑥𝑝 (𝑡𝑛) = (𝑡𝑛 − 𝑡0) · 𝑓𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑙 (𝑡0)

With the sampling frequency of the sensor 𝑓𝑠𝑒𝑛𝑠𝑜𝑟 , the expected length 𝑙𝑒𝑥𝑝 at the RTC timestamp 𝑡𝑛 of the 𝑛𝑡ℎ
FIFO readout after the initial readout at RTC timestamp 𝑡0 after which a total of 𝑙 (𝑡0) samples were present.
Because FIFO readouts are usually not performed on a perfectly regular basis, a lack of samples after a FIFO
read-out at 𝑡𝑛 (i.e., 𝑙 (𝑡𝑛) < 𝑙𝑒𝑥𝑝 (𝑡𝑛)) may automatically be compensated for by a sample which narrowly slipped
into the next FIFO readout. We account for this by only adding or removing samples to match the expected length
when no inverse operation is necessary in close temporal proximity. This results in a sensor data trace which is
synchronized to the device’s RTC with a tolerance of 1/𝑓𝑠𝑒𝑛𝑠𝑜𝑟 .

5.3.2 Hyperparameters. For the rejection of non-simultaneous traces (Section 4.1), we set the threshold of the
mean delta between two traces to the absolute tolerance of the used barometric pressure sensor of 100 𝑃𝑎 [47],
trying to achieve a recall close to 1. Lowering it increases precision and lowers recall. We use the same value for
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Table 1. For our evaluation, the experimenter recorded data during these activities, wearing multiple devices at the respective
locations on the body for the given durations. Each activity was repeated two or more times.

activity # locations runtime rep

sleep 5 head, chest, ankle, wrist 9.9 h 4
work 3 head, chest, ankle 3.8 h 3
cycle 4-5 head, chest, ankle, wrist 1.4 h 2
ski 3 chest, wrist 8.8 h 2

the 𝛿 of the Huber loss in the delta-error method (Section 4.2) such that it only affects rarely occurring outliers in
the measurements. We set the maximum range of the accelerometer-based refinement (Section 4.3) to ±5 seconds.
If the pre-alignment differs more than that, the refinement cannot fully compensate for it. On the other hand,
increasing this range increases the risk of misalignment caused by this stage.

6 EVALUATION
To quantify the performance of BMAR, we conducted a data recording experiment during everyday activities,
using between 2 and 5 devices at once with several repetitions. Table 1 shows an overview of the configurations
in our evaluation. Since there is no impact of individual users’ behavior on our method, all recordings were
conducted by one experimenter.

To analyze the performance of our method, we consider pairs of devices that either did or did not record data
at the same time while worn by the experimenter. This means that if 3 devices were worn at the same time,
we considered them as 3 pairs of simultaneously running devices in our evaluation (𝐷1 and 𝐷2, 𝐷1 and 𝐷3, 𝐷2
and 𝐷3) and also included pairings of each device with a random device from another recording which was not
acquired at the same time.

6.1 Procedure
6.1.1 Locations. As shown in Figure 5c, devices were attached to the following locations for a recording session:
strapped onto the forehead, strapped onto the sternum, on one of the wrists like a watch, or above one of the
lateral malleoli.

ba c

Fig. 5. Apparatus implementation for the evaluation. (a) Board to connect multiple devices and trigger ground-truth
synchronization events, (b) 3D printed case for the custom wearable sensing devices, here shown with a wrist strap, (c) the 6
sensor locations used in the evaluation of BMAR.
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6.1.2 Activities. The experiment included two categories of sessions: active wearer and passive wearer. For active
sessions, the experimenter performed activities such as cycling, skiing, or office work over the full duration. For
this session type, we collected 31 pairs of device recordings running at the same time, with an average runtime of
3.73 hours.
For passive sessions, the experimenter remained stationary over the full duration. We recorded these data

during sleep, turning on the devices after getting into bed and turning them off before exiting. For this session
type, we obtained 40 pairs of devices with simultaneous recordings and an average runtime of 9.9 hours. Due to
the lack of activities and motion, this session type can be considered a worst-case baseline for our analysis.

6.2 Ground-truth Synchronization
We devised an apparatus to establish repeated ground-truth synchronization across all devices. The experimenter
manually attached this apparatus to all devices at the beginning and the end of each session. This resulted in two
ground-truth synchronization events in our logs for reference. The apparatus is shown in Figure 5a. It sends a
trigger from a manual, debounced push-button to a digital pin of the SoC in each device. The tethered connection
ensured accurate reference values without any impact of wireless communication.

To ensure that each device could register the precise moment of a button press, we used a timer block on the
SoC to support more finely-grained timing resolution between the RTC ticks. The incoming synchronization
signal was logged through the timers event capture functionality, which logs the exact timestamp and triggers
an interrupt to process the event. In theory, the accuracy of this mechanism is limited by our timer clock of
32.768 kHz, which corresponds to a tolerance of 0.03ms. However, the tolerance of the timer event trigger capture
is not specified by the SoC manufacturer. Hardware limitations (e.g., stray capacitances and tolerances in logic
voltage level detection) may also increase this error.

6.2.1 Accuracy of Ground-truth Synchronization. To evaluate the accuracy in practice, we sent multiple syn-
chronization signals to all connected devices in short succession within a few seconds. Assuming no clock skew
between the first and last synchronization signal, we compared the alignment of the multiple detected events on
the time axis. Across 349 such synchronization sequences with 3 signal triggers each, we found a mean error of
ME = 1.2ms (𝜎 = 1.1ms) for a single signal trigger. To improve accuracy in the evaluation, we always used the
mean across 3 consecutive signal triggers.

6.3 Duration of Recordings
For temporal alignment evaluations, the duration of the recording has an impact on the results (i.e., the probability
of correct temporal alignment increases with longer recordings). We conducted the evaluations considering
various different lengths of recordings by cropping recordings to the respective length. If a recording was multiple
times the desired length, we split it and used up to 5 non-overlapping splits separately. The number of traces
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Fig. 6. Median alignment error of BMAR’s synchronization. The band denotes the range between 10th and 90th percentile.
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Table 2. Median alignment error in seconds of the complete synchronization method. The number of pairs of recordings
used is stated in brackets.

length of recording
5min 10min 15min 30min 1 h ≥ 6 h

active 0.442 (155) 0.074 (155) 0.044 (155) 0.041 (107) 0.028 (73) 0.034 (31)
passive ≫60 (200) ≫60 (200) ≫60 (200) 20.2 (200) 5.42 (200) 3.06 (40)

for different lengths is shown in Table 2. When aligning traces, we only cropped or split one of the two traces
and preserved the length of the other trace. We considered the length of the shorter trace to be the minimum
overlapping time of the two traces to prevent negative effects on the edges. Effectively, this means we measured
the accuracy of aligning a trace of a specific length to a longer one that overlaps it.

6.4 Results
Wefirst report the results of our completemethod spanning both air pressure-based pre-alignment and accelerometer-
based refinement.We then report the results of the rejection of non-simultaneously recorded data, of pre-alignment,
and of refinement separately.

6.4.1 Overall Synchronization Accuracy. As shown in Figure 6 and Table 2, the synchronization of active sessions
achieved a median alignment error of 33.4ms for recording durations of 15min and longer, 73.6ms for durations
of 10min, and 443ms for durations of 5min. The synchronization of passive sessions (i.e., a worst-case baseline
without user motion or activity) resulted in a median alignment error of 3.06 s for recording durations of 6 h
and longer, 5.42 s for durations of 2 h, and 20.2 s for durations of 30min. Figure 7 shows the percentage of
synchronizations that our method aligned within a given error tolerance.
We report the errors of unconstrained synchronizations with median and percentiles because the error of

alignment for outliers (i.e., failed, effectively random alignments) can be up to four orders of magnitude larger
than the median error of all alignments. The impact on the mean error and standard deviation makes them less
informative for evaluation.

6.4.2 Accuracy of Stage 1: Pressure-based Pre-alignment. In stage 1, air pressure measurments were used to detect
non-simultaneous measurements and do a first trace alignment of simultaneously acquired traces.

Elimination of non-simultaneous measurements. When using a sensor tolerance of 100 Pa as the threshold
for the maximum mean difference between two traces to detect simultaneously recorded air pressure data, we
reach a precision and recall of 1.0 for recordings of active sessions that contain at least 35minutes of data and
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Fig. 7. Percentage of traces that BMAR correctly aligned with a given error tolerance.
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Fig. 8. Precision and recall rates for BMAR’s detection of simultaneously acquired recordings.

recordings of inactive sessions of at least 8 hours of recording time. Figure 8 shows the precision and recall rates
for recordings of different lengths.

These results are based on tests with the barometric pressure sensor recordings of each device 𝐷𝑛 both paired
with simultaneously and randomly selected, non-simultaneously recorded data. There is a trade-off between
precision and recall: Lowering the threshold improves precision but lowers recall. However, such a lowered recall
can generally not be compensated for by increasing the duration of the recording.

Trace alignment based on air pressure. Aligning active sessions produced a median alignment error of 1.14 s for
recording durations of 10min and longer, 1.53 s for durations of 5min, and 3.8 s for durations of 3min, as shown
in Figure 9. The synchronization of passive sessions (i.e., our worst-case baseline) resulted in a median alignment
error of 3.36 s for recording durations of 3 h and longer, 12.4 s for durations of 1 h, and 25.3 s for durations of
30min.
Of the two tested alignment methods, the delta-std method performed better than the delta-error method.

Across all recording lengths greater than 0.5 hours (i.e., after initial convergence), the median alignment error of
the delta-std is on average 48ms lower for active sessions and 237ms lower for passive sessions.

6.4.3 Accuracy of Stage 2: Accelerometer-based Refinement. Testing the accelerometer-based synchronization
refinement in isolation for active sessions and under the assumption of a pre-alignment tolerance of ±1 𝑠 , produced
a median alignment error of 32.0ms for recording durations of 15min and longer, 40.6ms for durations of 5min,
and 218ms for durations of 1min, as shown in Figure 10a. The refinement of passive sessions (i.e., worst-case
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Fig. 9. Median alignment error of BMAR’s first stage (air pressure-based pre-alignment). The band denotes the range between
the 10th and 90th percentile.
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Fig. 10. Median alignment error after BMAR’s second stage (accelerometer-based refinement) for different pre-alignment
errors.

baseline) resulted in a median alignment error of 274ms for recording durations of 15min and longer, 580ms for
durations of 5min, and 606ms for durations of 1min. As shown in Figure 10a, the median error increases with
higher pre-alignment tolerances.

We tested the refinement with data from both a high-resolution accelerometer (ADXL355, Analog Devices) and
a standard-resolution accelerometer (LIS2DH, STMicroelectronics). The high-resolution accelerometer produced
better results, yielding an average alignment error that was 21.5ms lower when analyzing all recording durations,
which resulted in a median alignment error below 0.1 s.

As shown in Figure 10b, the results we obtained with the standard-resolution accelerometer for active sessions
and under the assumption of a pre-alignment tolerance of ±1 𝑠 , produced a median alignment error of 44.2ms for
recording durations of 15min and longer, 71.9ms for durations of 5min, and 276ms for durations of 1min.
The refinement of passive sessions (i.e., worst-case baseline) based on the standard-resolution accelerometer

resulted in a median alignment error of 345ms for recording durations of 15min and longer, 685ms for durations
of 5min, and 703ms for durations of 1min.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK
Our evaluation confirmed the robustness of our method to detect recordings that were acquired simultaneously
to synchronize data stemming from multiple wearable devices. The accuracy our method achieved for recordings
during active sessions is high enough to correctly match each occurrence of fast repetitive events across devices.
This includes the fastest vital sign (i.e., heartbeats of a child at 3.5 Hz) and fast body motions (i.e., the cadence of
a professional sprinter at 4 Hz or the catch rate of the world’s fastest juggler at 9Hz). Faster motions by humans
usually occur with longer intervals in between, making cross-device analysis easier. Unsurprisingly, the results
were worse for our baseline recordings, which did not include any activity other than sleeping. However, given
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long recordings of multiple hours, non-simultaneous recordings are still rejected reliably and the synchronization
tolerance reaches 3.06 seconds which may be sufficient for the analysis of changes in sleep position.

7.1 The Relevance of Pre-alignment Using Air Pressure Measurements
Due to differences in the motion characteristics across body parts, IMU data does not lend itself well to aligning
data traces without additional constraints. Using cross-correlation, for example, the resulting objective function
exhibits many maxima and trace alignment without restrictive constraints on the search window or specifically
performed motions by the wearer is challenging. For a more general, rough alignment, the use of a sensing
modality with a longer characteristic timescale is more effective to produce a cost function that monotonically
converges to a global minimum.
Temperature, perhaps the most commonly logged sensing modality, does include features common across

devices worn in different body locations. Events like moving from indoors to outdoors with an abrupt change in
ambient temperature could be used for synchronization, but they may be attenuated or delayed due to varying
thermal insulation of the devices by clothing.

Air pressure is thus a suitable modality for cross-device synchronization: Air pressure measurements are barely
affected by anything other than the geographical location, time of recording, and sensor tolerance. The former
two are identical for multiple devices worn simultaneously.

7.2 Impact of Sensor Accuracy
As mentioned in Section 6.4.3, our standard-resolution accelerometer performed similarly well as the high-
resolution accelerometer during refinement, indicating that our method does not require an expensive accelerom-
eter for accurate signal synchronization. The range of commercially available barometric pressure sensors is
smaller compared to accelerometers and the sensor used for the evaluation can be considered to be at the low
end of the spectrum in terms of accuracy: In the relevant temperature and measurement range, the BME280
we evaluated BMAR with has an absolute and relative accuracy of ±100𝑃𝑎 and ±12𝑃𝑎, respectively [47]. This
compares to ±30𝑃𝑎 and ±6𝑃𝑎 for the recently released BMP581 (Bosch Sensortec) [48] as well as ±50𝑃𝑎 and
±3𝑃𝑎 for the inexpensive SPL07-003 (Goertek Microelectronics Inc.) [29]. This suggests that our results likely
generalize to most available pressure sensors, including inexpensive commodity barometric pressure sensors.
We expect a better absolute accuracy to improve the rejection of non-simultaneous recordings and a better

relative accuracy to improve the pre-alignment of the recordings. In the future, we plan to characterize the
specific impact of sensor characteristics (accuracy, sampling rate, resolution, noise, and RTC synchronization) on
the synchronization error.

7.3 Needed Overlap of Cross-sensor Signal Recordings
In our current design, BMAR aligns signals of a specified duration 𝑙1 to a recording of length 𝑙2, which fully
contains the former (Section 6.3). However, our method also works in scenarios where signals only partially
overlap. In these, the effectively smaller overlap decreases the amount of data for calculating synchronization
cost and may lead to a higher risk of misalignment. Considering a minimum overlap of 𝑙 ′ ≤ 𝑙1, the expected error
is in the range of our evaluation results for total recording lengths between 𝑙1 and 𝑙 ′.

7.4 Limitations of Accelerometer-based Refinements
The improvement in refining synchronization based on accelerometer signals depends on the signal characteristics.
For our method, we cannot give worst-case guarantees; if recordings contain no events or asynchronous patterns,
our refinement may worsen the result of the pre-alignment.
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To prevent potentially negative effects of our refinement, BMAR limits the range within which pre-alignment
sequences may be refined as part of our synchronization method. Since the loss of the accelerometer-based
alignment does not generally decrease monotonically to a correct global minimum, the refinement may worsen
the result of a pre-alignment that was successful but with an error larger than the range of the refinement. 10a
shows how our refinement for short recordings during inactive sessions is close to a random offset within
alignment tolerance and only decreases for longer recordings. Future work could improve our approach by
leveraging the pre-alignment confidence and suitability of the accelerometer data to dynamically determine the
range of the refinement.

7.5 Devices across Multiple Users and Locations
BMAR is currently designed to synchronize signals captured on devices worn by a single person. However, our
method of aligning signal traces based on air pressure recordings could extend to synchronizing signal streams
captured across multiple people and beyond the realm of wearable devices. We expect the method to produce
accurate results if all devices are in the same location or move collectively (i.e., in a car, train, or elevator), but we
anticipate a negative impact of movements that are spread out between devices, such as when groups of people
who wear them do not transition between building floors at the same time.Depending on the setting, the use of
different sensing modalities may be appropriate such as sound or temperature. We tested the latter early on in
our project but found that for wearable devices, the impact of clothing and body temperature makes cross-device
synchronization challenging. It may, however, be a viable option when synchronizing non-wearable devices.

7.6 Limitations of BMAR’s Evaluation: Single Participant vs. Breadth of Activities for More Insight
We acknowledge that in our evaluation, multiple devices collected data on a single participant only. While such
an evaluation may be uncommon, it is important to point out that BMAR is not specific to human factors or
capabilities; rather, the performance of the method depends on the type of activities.Therefore, the breadth of
assessed activities and environments is considerably more important in evaluating our method than the number
of participants, each of which would perform activities only slightly differently.
In our evaluation, the sensor devices were affixed to five locations on the participant’s body, without a strict

enforcement of inter-device distance, which covered a range of device constellations and variability similar to
varying body heights across participants. Our results showed no notable impact of the body location on the
accuracy of trace alignment.
Most importantly, our evaluation has shown that the most challenging activity for our cross-sensor synchro-

nization approach is no activity (i.e., resting and sleeping). While we believe that our results generalize and an
evaluation with multiple participants would not change the findings, we acknowledge that for assessing this
conclusively, our evaluation could be extended to multiple participants in the future.

7.7 Speculative Comparison with Online Synchronization
Online synchronization through a wireless network may be a viable alternative to BMAR to reach higher accuracy
(Section 2.1). A main advantage of BMAR is its low power consumption: At the sampling rates used in our
evaluation, a barometric pressure sensor operates on less than 35 `𝑊 [48] and the low-resolution accelerometer
uses less than 70 `𝑊 [54]. Of the commonly used wireless protocols, currently, only Bluetooth low energy reaches
comparable values: Makara et al. synchronized two nodes with a power consumption of 133 uW with a typical
accuracy of 10ms.

However, producing reliable implementations in practice is challenging, limiting the choice of SoC, and no prior
work has shown synchronization of more than two nodes with power consumption in this order of magnitude. In
such a scenario, a more powerful device such as a smartphone may be needed as central device for the other
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nodes to remain in the stated range of power consumption while BMARs power requirements are unaffected by
the number of devices.

Generally, most existing synchronization algorithms are optimized for low error—not low power consumption,
which has thus often not been evaluated in prior work. Because most wearable devices already routinely sample
acceleration and/or air pressure from built-in sensors, our method imposes no additional power consumption
during runtime. Additionally, our method may be used with devices that are not engineered to be compatible to
be used in the same wireless network.

8 CONCLUSION
Wehave presented BMAR, a novel method to synchronize sensor data across multiple wearable devices without the
need for communication or explicit user interaction during runtime. BMAR leverages barometric pressure sensors
and accelerometers, which are inexpensive, low-power, and commonly found in wearable devices. Therefore, they
represent a simple solution to synchronizing wearable devices without the need for inter-device communication,
allowing data recording and device operation to focus on low power consumption in miniaturized devices.
BMAR’s two-stage process comprises pre-alignment, which we use to avoid latching on to local but not a

global optimum in alignment, and refinement. We evaluated BMAR using custom-built, low-power wearable
sensing devices that recorded a series of signals across a variety of activities over the course of up to 10 hours.
Our method achieved accurate synchronization with a median error of 33.4ms, which is low enough for most
practical purposes. Even during activities with little to no motion such as sleeping, our method synchronized
signals with an error of 3 s, all while reliably rejecting signals that were not concurrently recorded across devices.
We believe that BMAR is a practical approach for supporting cross-device data collections that build on

unobtrusive miniaturized devices, focus on duration, and ease of use.
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