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Figure 1. Our method Group Inertial Poser estimates 3D full-body poses and global translation for multiple humans using inertial
measurements from a sparse set of wearable sensors, augmented by the distances between the sensors via ultra-wideband ranging. Our
approach overcomes the challenge of drift in previous inertial pose estimators to track translation, as we leverage information from body
motions across multiple people. Our IMU+UWB method stabilizes and improves individual pose estimates, relative translation estimates
between people, and global translation estimates, thereby preserving meaningful interaction dynamics.

Abstract

Tracking human full-body motion using sparse wearable
inertial measurement units (IMUs) overcomes the limita-
tions of occlusion and instrumentation of the environment
inherent in vision-based approaches. However, purely IMU-
based tracking compromises translation estimates and ac-
curate relative positioning between individuals, as iner-
tial cues are inherently self-referential and provide no di-
rect spatial reference for others. In this paper, we present
a novel approach for robustly estimating body poses and
global translation for multiple individuals by leveraging the
distances between sparse wearable sensors—both on each
individual and across multiple individuals. Our method
Group Inertial Poser estimates these absolute distances be-
tween pairs of sensors from ultra-wideband ranging (UWB)
and fuses them with inertial observations as input into
structured state-space models to integrate temporal motion
patterns for precise 3D pose estimation. Our novel two-
step optimization further leverages the estimated distances

for accurately tracking people’s global trajectories through
the world. We also introduce GIP-DB, the first IMU+UWB
dataset for two-person tracking, which comprises 200 min-
utes of motion recordings from 14 participants. In our eval-
uation, Group Inertial Poser outperforms previous state-of-
the-art methods in accuracy and robustness across synthetic
and real-world data, showing the promise of IMU+UWB-
based multi-human motion capture in the wild. Code, mod-
els, dataset: github.com/eth-siplab/GroupInertialPoser.

1. Introduction

Accurate motion tracking is a long-standing goal in com-
puter vision. Single-person motion tracking has been ex-
tensively studied using camera-based approaches [10, 14,
23, 34, 39, 63, 76]. Extending such tracking to multi-
person motions introduces computational complexity and
new challenges. While vision-based approaches are accu-
rate [13, 19, 40, 43, 58, 71, 77], they struggle with occlusion



in crowded environments and face challenges when individ-
uals are close. Their frequent reliance on stationary camera
setups further constrains the effective tracking range.

Body-worn sensor-based approaches offer a promising
alternative to these challenges. Using sparse sets of wear-
able motion sensors, typically inertial measurement units
(IMUs), has become popular to capture individuals’ move-
ments independent of environmental factors such as light-
ing, occlusion, or dynamic backgrounds. Recent IMU-
based approaches [81, 82, 84] estimate body poses from six
body-worn sensors in controlled environments, but they of-
ten exhibit drift in their predictions and, thus, struggle with
estimating global translation. Extending these approaches
to multi-person constellations would further complicate ac-
curately estimating relative positions between individuals.
This prevents them from capturing inter-personal dynamics
and spatial relationships between people—aspects that are
highly interesting to reconstruct when aiming to understand
interactions in real social scenarios.

In this paper, we introduce Group Inertial Poser (GIP),
a novel approach for robust multi-person 3D pose and
global translation estimation from sparse inertial sensing
with inter-sensor distances (as illustrated in Figure 1). It
first uses structured state-space models to estimate individ-
ual body poses and translations from inertial signals and
same-person sensor distances. Then, a two-step optimiza-
tion process refines the translation estimates: (a) Relative
position optimization aligns individuals in a shared world
frame using between-person distances, eliminating the need
for calibrated starting positions; (b) Trajectory optimization
further improves global translation accuracy.

To validate GIP in real-world settings, we introduce
GIP-DB, a novel motion dataset that captures diverse ac-
tivities from pairs of 14 participants who interacted during
recording. Evaluating GIP on GIP-DB, our results show
that GIP estimates more accurate poses and translations
with reduced drift—despite high noise levels in between-
person distances. Finally, we demonstrate GIP for a four-
person setting, where our method’s performance improves
as it leverages more distances. By analyzing the recon-
structed inter-human motions, we demonstrate that GIP
effectively captures relative spatial relationships and pre-
serves meaningful inter-personal motion dynamics—an es-
sential capability for modeling human-to-human interaction
that previous approaches fail to achieve.

Contributions
1. Group Inertial Poser (GIP), a novel method to incorpo-

rate between-sensor distances and inertial signals to esti-
mate 3D full-body poses and global translations for mul-
tiple people. GIP is the first IMU+UWB-based solution
for estimating multi-person motion in a shared reference
frame and sets new state-of-the-art results.

2. A structured state-space network that efficiently models
sequential data to improve human pose estimation. To
our knowledge, we are the first to adapt state-space mod-
els for inertial-based human motion estimation.

3. An optimization-based method to estimate people’s ini-
tial world positions, allowing tracked users to start at ar-
bitrary locations and eliminating the need for calibration,
manual setup, or aligning synchronized motions.

4. GIP-DB, the first IMU+UWB two-person motion dataset
with diverse activities from 14 participants who in-
teract and perform everyday movements, totaling over
200 minutes of captured motions. GIP-DB comprises
synchronized IMU signals, UWB-based distance mea-
surements, and SMPL body motion parameters.

2. Related Work

Multi-Person Motion Capture. Human motion capture,
for both single and multiple individuals, has traditionally
relied on camera-based approaches, with marker-based sys-
tems [58, 71] offering high precision but requiring costly
setups confined to indoor environments. Recent advances in
computer vision have enabled human pose estimation from
sparse images [8, 10, 14, 34] or videos [23, 35, 39, 70, 77,
86]. Frames from third-person [27], floor [7, 11], or egocen-
tric cameras [32, 66] extend naturally to multi-person sce-
narios, with challenges mainly in accurate person detection,
tracking, and pose estimation. Efforts such as RTMO [50]
and HigherHRNet [15] proposed efficient bottom-up ap-
proaches for multi-actor tracking, while PETR [62] uses
transformer-based models and AlphaPose [19, 42] offers
joint pose estimation-tracking frameworks. However, track-
ing in crowded or occluded scenarios remains challenging
due to obstruction and inconsistent tracking [18], which
wearable inertial motion capture systems can address by
overcoming subject identification and occlusion issues.

Motion Capture with Wearable Sensors. Wearable in-
ertial sensors (IMU) have emerged as an alternative ap-
proach to motion capture, given their low power, small
form factor, and affordability. Commercial systems, such
as XSens [78] or Noitom [56] use 17 to 19 IMUs with
underlying biomechanical models to estimate body pose.
With the availability of large motion capture datasets [52,
68], learning-based methods using only sparsely worn
IMUs [28, 29, 53, 55, 73] are emerging. Recent approaches
use 6 IMUs and estimate both body pose and translation
through ground contact points [33, 81] and physical con-
straints [82, 84, 85]. Several methods have further reduced
input requirements to just the upper body alone [1, 22, 30–
32, 44, 51, 64, 75, 80].

IMUs detect relative acceleration and angular veloc-
ity, so IMU-only methods have lower pose estimation
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Figure 2. Overview of Group Inertial Poser (GIP). Our pipeline consists of three key steps. It begins with individual pose estimation
using an SSM-based model Eθ to generate a full-body SMPL pose and translations. The optimization steps then refine these estimates
by minimizing the discrepancy between predicted and actual between-sensor distances. First, GIP optimizes the initial relative positions
(T 12

0 ); second, it fine-tunes the translations for both users (T 1, T 2).

and translation accuracy compared to vision-based alterna-
tives. To address this, researchers have explored hybrid
approaches incorporating external [59, 65, 74] or body-
worn [26, 45, 83] cameras. Alternative sensing modali-
ties have also been investigated, including wearable ultra-
sonic [48, 72] and electromagnetic sensors [36, 37]. Re-
cently, UIP [5] proposed leveraging distance measurements
from ultra-wideband ranging to constrain IMU drift. Yet,
these approaches focus on single-person tracking as sensors
worn by different actors are treated as disjoint problems.
We propose a novel approach to IMU+UWB-based pose
estimation that, for the first time, enables multi-human rela-
tive pose estimation solely from inertial sensors and UWB.

Ultra-Wideband Ranging. UWB is characterized by its
large bandwidth and very short waveforms, which is well-
suited for ranging applications, such as asset tracking [6,
69, 87], robotic localization [4, 12, 41, 57, 88] and collab-
oration [16, 60]. It is increasingly available in commercial
devices such as smartphones, smartwatches, and tags (e.g.
AirTags) [3, 17, 61]. A challenge in UWB ranging is the
noise in non-line of sight (NLOS) conditions. This is es-
pecially relevant in human motion tracking, where the hu-
man body is an obstacle between two ranging UWB radios.
Researchers have addressed this by analyzing raw channel
impulse response on UWB radios [2, 9, 67] or via sensor
fusion with IMUs [20, 25, 54, 57] or cameras [60, 79], and
effectively filtering distance estimates [4]. Building on this
approach, GIP estimate distances in any constellation of
trackers, worn by one or multiple people.

3. Method
3.1. Problem Formulation
GIP addresses multi-person pose estimation using sparse
inertial sensors and between-sensor distances. GIP is a
generic approach that can be applied to any number of users.
For simplicity and clarity, we consider a scenario with two
users in our notation, each equipped with S = 6 sparse
sensors placed on the head, pelvis, wrists and knees. Each
sensor includes a 6-DoF IMU and a single UWB sensor.
For each user i ∈ {1, 2} and at each frame t, we obtain
3D orientations Ri

t ∈ RS×3 and accelerations Ai
t ∈ RS×3,

both represented in a shared world frame. Additionally,
we denote the pairwise same-person sensor distances as
Di

t ∈ RS×S for user i, and the between-person distances
as D12

t ∈ RS×S at timestamp t. Given a sequence of length
N represented by [A1, A2, R1, R2, D1, D2, D12], we pre-
dict the SMPL [49] pose parameters Θi ∈ RN×3J and the
translation T i ∈ RN×3 for each user i, all in a shared frame
of reference. Here, J = 24 represents the number of joints.

3.2. Method Overview
Figure 2 shows an overview of our proposed method Group
Inertial Poser (GIP). The first step of our pipeline is Indi-
vidual Pose Estimation, which involves estimating each
person’s full-body pose independently using a learning-
based pose estimator. We design a human pose estimator
based on State Space Models [21] to produce sequences of
full-body SMPL poses Θ̂i and root translation trajectories
T̂ i using the acceleration, orientation, and same-person sen-
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Figure 3. Our SSM-based model takes the global acceleration,
rotation, and between-sensor distances to estimate the pose and
translation via SMPL.

sor distances from six IMUs per person. To extend from in-
dividual pose to multi-person pose, our method introduces
two optimization steps: The Initial Position Optimization
refines the initial positions of the two trajectories. We define
one user’s initial position P1 as the world origin (0, 0, 0).
Our goal is to optimize the second user’s position P2, which
is relative to P1. This step aligns trajectories into a shared
world frame and provides a stable initialization for the next
optimizer. The Trajectory Optimization further refines the
full trajectories by integrating between-human distance Dij

constraints through a trajectory optimizer. This step en-
forces consistency with the relative distances between in-
dividuals. Note that, directly optimizing the entire trajec-
tory (without the first optimization step) results in unstable
convergence to unrealistic paths.

3.3. Individual Pose Estimation
GIP starts from individual pose estimation and is performed
separately for each user. As shown in Figure 3, the human
pose estimator (Eθ) is state-space model based, which uses
acceleration Ai, orientation Ri, and same-person distances
Di to predict SMPL pose parameters (joint orientations)
Θ̂i [49] and translations T̂ i which are relative to their own
initial frame:

Θ̂i, T̂ i = Eθ(Ai,Ri, Di) (1)

Since the pose estimator Eθ processes each user indepen-
dently, SMPL poses and translations for each user are esti-
mated separately when multiple users are present.

Inspired by recent advancements in structured state-
space sequence models (S4), which have shown remark-
able proficiency in sequence modeling [21], we design our
pose estimator based on state-space models (SSMs). The S4
model leverages SSMs to efficiently capture complex pat-
terns in sequential data, making it highly effective for mod-
ern, large-scale applications. Compared to traditional mod-
els like LSTMs [24], S4 offers improved scalability, long-
range dependency modeling, and parallelization. SSMs rely
on a classical continuous-time system that maps an input
sequence x(t) ∈ R, through intermediate implicit states

h(t) ∈ RN to an output y(t) ∈ R. The aforementioned
process can be formulated as a linear Ordinary Differen-
tial Equation (ODE): h′(t) = Ah(t) + Bx(t), and y(t) =
Ch(t), where A ∈ RN×N denotes the state transition ma-
trix, while B ∈ RN×1 and C ∈ R1×N represents the pro-
jection parameters. The S4 model discretizes this continu-
ous system, making it suitable for deep learning scenarios.
Specifically, it introduces a timescale parameter ∆ and ap-
plies fixed discretization rules to transform A and B into
discrete parameters A and B. Typically, zero-order hold
(ZOH) is employed as the discretization rule, defined as
follows: A = exp(∆A), B = (∆A)−1(exp(∆ A)−I)·∆B.
After discretization, the SSM can be computed through lin-
ear recurrence, described as

h(t) = Ah(t− 1) + Bx(t),

y(t) = Ch(t)
(2)

Our pose estimator consists of four structured SSM (S4)
modules, one graph convolutional network (GCN) module,
and a physics optimizer. Since GCNs have been effec-
tive in capturing between-sensor distance information [5],
we incorporate a GCN to process orientation and between-
sensor distances, predicting sensor positions. Meanwhile,
the SSM-J module takes orientation and acceleration as in-
puts to estimate sensor positions. We learn adaptive weights
for SSM-J and GCN to fuse their predictions effectively.
Next, given the predicted sensor positions and the input sen-
sor acceleration, orientation, and same-person sensor dis-
tances, SSM-R, SSM-V, and SSM-C predict joint angles,
joint velocities, and foot contact states, respectively. Fi-
nally, these predicted values are passed to a physics-based
optimization module to ensure physical correctness, follow-
ing [5, 82]. This produces the final estimated joint angles
Θ̂i and translation T̂ i.

3.4. Initial Position Optimization
GIP initializes by setting the initial position of the first per-
son, T 1

0 , as the origin in the global coordinate system, while
setting the initial position of the second person as T 2

0 . Given
these two positions, the relative position between them is
represented as T 12

0 . The objective of this step is to deter-
mine the optimal T 12

0 by minimizing the differences be-
tween two sets of between-person distances: one is derived
from prediction (denoted as PDt) and the other is from
UWB sensing (denoted as Dt). Specifically, the predicted
distances are computed with the individual pose estimator
with forward kinematics. The UWB-based distances are di-
rect measurements. Since each user wears 6 sensors, the op-
timization considers only the 6 × 6 between-person sensor
pairs, excluding any within-user pairs, to refine the spatial
alignment of the two users.

To generate the predicted between-person differences, at
each timestamp t, we compute the global positions of all



sensors for each person using forward kinematics applied
to SMPL parameters Θ̂i

t and the translation T i
t , which are

relative to each person’s initial position Pi. The predicted
sensor positions, denoted SP i

t ∈ RS×3, are calculated as
follows:

SP i
t = Pi + T̂ i

t + fk(Θ̂i
t), (3)

where fk(Θ̂i
t) is the forward kinematics function that com-

putes the body mesh based on joint rotations and estimates
sensor positions from the corresponding mesh vertices.
From the predicted sensor coordinates, we calculate the pre-
dicted between-person sensor distances PDt ∈ RS×S . In
detail, each distance is computed as:

PDt(j, k) =
∥∥SP 1

t (j)− SP 2
t (k)

∥∥
2
, (4)

where j and k index the sensors on user 1 and user 2, re-
spectively. The predicted distances are compared with the
actual distances D12

t ∈ RS×S obtained from UWB mea-
surements.

To streamline the full process, we define FK as the com-
posite function that takes SMPL parameters, translations,
and initial positions as input, applies forward kinematics via
fk, and computes pairwise distances PDt:

PDt = FK(Θ1,Θ2, T 1, T 2, T 12
0 ) (5)

The goal here is to adjust T 12
0 so that the predicted and

actual between-person sensor distances align as closely as
possible over the entire trajectory of T timestamps:

(T 12
0 ) = argmin

T̂12
0

T∑
t=1

∥∥∥FK(Θ̂1
t , Θ̂

2
t , T̂

1
t , T̂

2
t , T̂

12
0 )−D12

t

∥∥∥2

2
,

(6)

3.5. Trajectory Optimization
The initial positions optimization effectively aligns the tra-
jectories of two people into a shared world frame. The tra-
jectory optimization step then improves trajectories of both
users simultaneously.

T 1
t , T

2
t = argmin

(T̂1
t ,T̂2

t )

T∑
t=1

∥∥∥FK
(
Θ̂1

t , Θ̂
2
t , T̂

1
t , T̂

2
t , T

12
0

)
−D12

t

∥∥∥2
2

(7)

+ λ1

∑
i=1,2

∥∥∥∆T i −∆T̂ i
∥∥∥2
2

+ λ2

∑
i=1,2

∥∥∥∆2T i −∆2T̂ i
∥∥∥2
2

(8)

In this formulation: The first term (7) enforces alignment
between predicted and observed between-person sensor dis-
tances. The two regularization terms (8) promote translation
smoothness. Let ∆T and ∆2T denote the first- and second-
order differences (velocity and acceleration) of a person’s
translation:

custom sensor case
40x35 mm

UWB radio
DWM3000

reflective markers
for ground truth translation

Xsens MVN Awinda
for ground truth SMPL

a b

IMU
LSM6DSL

Figure 4. (a) Our dataset includes pairs of participants equipped
with (b) various motion capture sensors. These sensors capture
acceleration, orientation, and distance data, along with ground-
truth SMPL pose parameters and translations for each participant.

∆T = T:,2:T −T:,1:T−1 (9)

∆2T = ∆T:,2:T−1 −∆T:,1:T−2 (10)
= T:,3:T − 2×T:,2:T−1 +T:,1:T−2 (11)

One term penalizes the difference between true and pre-
dicted velocities(∆T i vs. ∆T̂ i), and the other does the
same for accelerations (∆2T i vs. ∆2T̂ i). Together, they en-
courage smoother motion by constraining predicted speed
and acceleration.

3.6. Implementation Details
We integrate four S4-based neural networks, namely SSM-
J, SSM-R, SSM-V, and SSM-C (see Figure 3), each de-
signed to process different output features. These models
share a consistent architecture, beginning with a linear en-
coder that maps the input features to a hidden dimension
of 256. The exception is SSM-C, where the hidden dimen-
sion is reduced to 32, due to the smaller output size (2).
Each network then passes through two residual S4 layers,
which incorporate LayerNorm and dropout (0.2) for regu-
larization. Finally, a linear decoder maps the output repre-
sentations to the respective task-specific output spaces. We
train the model on a single NVIDIA 4090 GPU with a batch
size of 256, a sequence length of 200, and a learning rate of
1×10−3, which decays by a factor of 0.33 every 20 epochs.
The initial position optimizer and trajectory optimizer uti-
lize the L-BFGS optimizer [47], with a maximum of four
iterations per optimization step and a history size of 10. We
use strong Wolfe line search to ensure robust step size selec-
tion and stable convergence [47].

4. Group Inertial Poser Dataset (GIP-DB)
To evaluate our method on real-world data, we collected a
motion capture dataset featuring seven pairs of participants



(10 male, 4 female) with heights ranging from 160 cm to
195 cm. The dataset includes everyday movements such as
walking, stretching, and jogging in place, as well as interac-
tive activities like close conversation, sparring, handshakes,
and dancing. Each participant was equipped with an Xsens
MVN Awinda suit [78] consisting of 17 IMUs, which pro-
vided ground-truth SMPL pose parameters via Xsens’ pro-
prietary software. Additionally, they wore six custom wire-
less sensors placed on the head, pelvis, wrists, and knees.
Each custom sensor integrates a UWB radio (DWM3000)
and a 6DoF IMU (LSM6DSL). The UWB system, run-
ning a ranging protocol and filtering pipeline from exist-
ing work [4], measured distances at 40 Hz across 12 sensor
pairs: (15x2) same-person sensor distances and 36 between-
person sensor distances. Meanwhile, each IMU recorded
acceleration At and orientation Rt at 104 Hz. We addition-
ally captured ground-truth translation using a 20-camera
OptiTrack system [58], using the pelvis sensor as the ref-
erence point. All sensors were calibrated according to their
respective documentation [4, 78]. Each recording session
began and ended with a T-pose and a jump to synchronize
data across sources (Xsens, OptiTrack, and custom sen-
sors). Figure 4 illustrates our setup. In our GIP-DB dataset,
the average UWB RMSE is 5 cm for same-person measure-
ments, increasing to 15 cm for between-person measure-
ments due to greater occlusions.

5. Experiments
To assess the advantages of GIP for multi-human inertial
pose estimation, we conduct experiments on both synthetic
and real-world data. We compare our method against previ-
ous inertial sensing-based approaches, namely PIP [82] and
UIP [5]. There are fundamental differences between GIP
and these prior methods. Notably, neither PIP nor UIP was
designed to estimate inter-human translation. To address
this limitation, we initialize their translation at frame zero
using the ground truth. Additionally, PIP was originally de-
signed to work solely with IMU data and does not leverage
between-sensor distances. To ensure a fair comparison, we
provide PIP with additional sensor distance measurements
following the same approach as UIP [5].

Datasets. Our evaluation aims to show the benefits of GIP
in both synthetic and real-world scenarios. All methods are
trained from scratch to estimate individual poses using syn-
thesized AMASS data [52]. Specifically, we generate syn-
thetic data by computing IMU measurements (acceleration
and rotation) and between-sensor distances on virtual sen-
sors, following prior work [5, 28, 82]. We use two datasets
for evaluation: InterHuman [46] and our real-world GIP-
DB dataset, both of which contain two-person interactions.
For InterHuman, we synthesize IMU and UWB data using
the same procedure as for AMASS.

Metrics. Following previous work on human pose esti-
mation from inertial sensors [5, 81, 82], we evaluate the
predicted poses and trajectory of SMPL using the follow-
ing metrics: SIP Error (°) evaluates the global joint angle
error of arms (shoulder angle) and legs (hip angle). Angle
Error (°) evaluates all global joint angle errors. Joint Error
(cm) evaluates the root aligned mean per joint position er-
ror (MPJPE). Trans Error @{3m, 6m} (cm) The global root
translation error is computed over all movement pairs that
span a distance of x meters. This metric quantifies the devi-
ation from the true trajectory over fixed-distance intervals.
Indicates the diversion from the true trajectory over time.
We introduce Dist Err-{4s, 8s, 12s, 16s, 20s}(cm), which
captures the distance error between two individuals over the
corresponding time. It quantifies the multi-human relative
translation error, providing more meaningful insights com-
pared to global translation errors for interaction scenarios.

5.1. Evaluation Results

Quantitative Results on the InterHuman Dataset. As
shown in Table 1, GIP outperforms the baselines across all
pose and translation metrics. Our model, incorporating tra-
jectory optimization, produces significantly more accurate
and consistent relative translations over time. Additionally,
our SSM-based pose estimation method reduces full-body
joint angle error by 22% compared to UIP and 33% com-
pared to PIP. Notably, when initialized using the initial posi-
tion optimizer, GIP closely matches the performance of the
ground-truth-initialized version, further validating the ef-
fectiveness of our approach. Figure 5 shows that our method
achieves the lowest cumulative translation error.

Quantitative Results on the GIP-DB Dataset. Com-
pared to finite difference-based simulations of accelerations
or distances between virtual sensors, GIP-DB’s recordings
of actual UWB distances and IMU values are noisier as it
was recorded from real-world behavior. This in turn makes
accurate predictions more challenging. Table 2 highlights
GIP’s benefits over PIP and UIP when dealing with real
world noisy data. We improve all pose and translation met-
rics by a substantial margin, specifically, we reduce the dis-
tance error by 72% at 20s. Again, the initial pose opti-
mizer proves its benefit and yields comparable results as
the ground truth initialized experiment. We also show that
when we use the GIP-DB data to finetune the model, the
model performance on angular prediction could be signifi-
cantly improved.

General Qualitative Results. Figure 6 presents a visual
comparison of our proposed method, GIP, and the state-of-
the-art method, UIP. It is clear that UIP struggles to esti-
mate relative translations accurately, making it difficult to



Table 1. Results for training on AMASS and evaluation on the InterHuman dataset. When directly comparing with PIP and UIP, we assume
the initial position is known for all methods (upper table), as PIP and UIP cannot predict the initial relative translations. We also report
results when GIP is not initialized with ground truth but using our initial position optimizer, which only affects the translation errors and
shows comparable performance to the ground truth initialization. The best results are in bold.

Method SIP Err Angle Err Joint Err Vertex Err Dist Err-4s Dist Err-8s Dist Err-12s Dist Err-16s Dist Err-20s
(°) (°) (cm) (cm) (cm) (cm) (cm) (cm) (cm)

PIP + D 20.95 14.89 7.98 9.40 48.82 58.25 59.71 63.39 63.72
UIP 19.25 12.89 6.60 7.31 49.61 62.51 59.10 83.16 81.44
GIP (ours) 18.30 9.94 5.74 6.53 3.08 3.73 4.40 1.36 1.91

GIP (ours init.opt.) 18.30 9.94 5.74 6.53 3.19 4.00 4.70 4.90 1.91

Table 2. Results for training on AMASS data and evaluation on the real-world GIP-DB dataset. When directly comparing with PIP and
UIP, we assume the initial position is known for all methods, as PIP and UIP cannot predict the initial translation.

Method SIP Err Angle Err Joint Err Vertex Err Dist Err-4s Dist Err-8s Dist Err-12s Dist Err-16s Dist Err-20s
(°) (°) (cm) (cm) (cm) (cm) (cm) (cm) (cm)

PIP + D 30.55 27.40 11.43 12.37 33.22 37.83 46.65 54.56 73.70
UIP 30.18 26.16 10.88 11.50 31.11 37.49 44.24 55.73 74.93
GIP (ours) 27.77 23.34 9.45 10.21 23.06 23.79 21.86 19.82 20.69

GIP (ours init.opt.) 27.77 23.34 9.45 10.21 23.57 24.40 22.79 19.34 20.71
GIP (finetuned) 18.04 17.57 8.70 9.60 23.36 23.27 22.07 19.56 19.59

Figure 5. Comparison of translation error on InterHuman.

capture inter-personal interactions. In contrast, GIP effec-
tively improves both the relative translations between indi-
viduals and the global translations.

Multi-User Scenarios. We conducted an experiment on
a synthetic four-person EgoHumans [38] dataset. We keep
the test subject fixed and add more people to the optimiza-
tion process. For example, with three people—p1, p2, and
p3—we jointly optimize the group (p1, p2, p3). When a
fourth person, p4, is added, we perform two separate opti-
mizations: first on (p1, p2, p3), then on (p1, p2, p4). Adding
more people improves translation estimation for the same
person thanks to the additional spatial constraints (Table 3).

Table 3. Translation error decreases with more people involved.

Npeople 1 2 3 4

Trans Error (m) 2.34 1.52 1.20 1.15

Table 4. Ablation study on the InterHuman [46] testset.

Method SIP Err Angle Err Trans-3m Trans-6m RMSE MAE
(°) (°) (cm) (cm) (cm) (cm)

w/o init. opt. 18.30 9.94 99.50 116.01 76.50 69.16
w/o traj. opt. 18.30 9.94 76.07 115.32 40.00 36.21
w/LSTM 19.24 12.88 66.60 103.74 42.19 38.53
Ours 18.30 9.94 63.85 98.93 34.86 31.11

6. Ablation Studies

Table 4 shows the impact of GIP’s components on pose and
translation accuracy. All evaluations assume that the initial
position is unknown. The result highlights the importance
of the initial position optimization, as removing this step
significantly degrades translation accuracy (1st row). The
trajectory optimizer further improves the translations in a
shared frame, improving translation accuracy (2nd row), re-
ducing the translation error @6m by up to 16 cm. To assess
the effectiveness of SSM, we substitute SSMs with LSTMs
(4th row) while keeping the rest of the pipeline intact (opti-
mizations included). We demonstrate that LSTMs perform
worse in both angle errors and translations.
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Figure 6. Visual comparison of GIP and UIP. GIP effectively corrects trajectory errors and preserves inter-personal interaction dynamics.

7. Limitations and Discussion
Our method has demonstrated significant improvements
over prior approaches for inertial-based motion capture
across multiple datasets. Nevertheless, several limitations
remain. First, as noted in prior work [5], the UWB noise
remains a significant challenge, particularly in multi-person
interactions where signal obstruction is common. Nonethe-
less, our results suggest that future advancements in UWB
precision could further enhance motion accuracy. Second,
our approach estimates body pose while assuming a mean
body shape, without accounting for inter-individual shape
variation. Future research could extend this work by incor-
porating body shape estimation from sparse observations,
as explored in [32]. Third, the use of optimization-based in-
ference introduces computational overhead. Although our
method converges in fewer than 10 iterations and processes
a 30-second motion sequence in 2.04 seconds, this remains
a limiting factor for resource-constrained applications. Fi-
nally, our method does not explicitly mitigate foot sliding,
which can partially arise from our trajectory optimization.

8. Conclusion
Accurate multi-person tracking using sparse sensing is an
essential step toward generalized motion tracking and cap-
turing meaningful inter-personal interactions. For this pur-
pose, Group Inertial Poser overcomes the drift and lack
of positional references in previous inertial methods and

demonstrates multi-person motion tracking by augment-
ing inertial measurements with between-sensor distances.
We leverage these novel constraints to mitigate drift and
improve relative translation accuracy. Beyond improved
single-person pose estimation with a novel SSM model, GIP
robustly tracks two individuals using sparse IMU+UWB
sensors and accurately estimates relative trajectories. Un-
like previous methods, GIP allows people to start from
arbitrary positions and automatically determines their ini-
tial relative positions via a two-step optimization. GIP of-
fers quantitative and qualitative advantages—it improves
accuracy but also preserves crucial inter-personal interac-
tion dynamics. Additionally, we introduce GIP-DB, the
first IMU+UWB dataset designed for multi-person tracking
using sparse inertial sensors. Evaluated with InterHuman
and GIP-DB, our approach consistently outperforms exist-
ing methods in accuracy and robustness across synthetic and
real-world data. Collectively, our work highlights the poten-
tial of IMU+UWB fusion for multi-person motion tracking,
opening new opportunities for real-world applications.
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