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Figure 1. We propose egoPPG as a novel computer vision task: tracking a person’s heart rate (HR) on unmodified egocentric vision
headsets. Taking eye tracking videos as input, our method PulseFormer estimates the photoplethysmogram (PPG) from areas around
the eyes to derive HR values. For training and validation, we introduce egoPPG-DB, a dataset of eye tracking videos while participants
performed everyday activities with synchronized ground-truth PPG (via nose-based contact sensor) and HR values (via ECG chest strap).

Abstract

Egocentric vision systems aim to understand the spatial
surroundings and the wearer’s behavior inside it, includ-
ing motions, activities, and interactions. We argue that
egocentric systems must additionally detect physiological
states to capture a person’s attention and situational re-
sponses, which are critical for context-aware behavior mod-
eling. In this paper, we propose egoPPG, a novel vision
task for egocentric systems to recover a person’s cardiac
activity to aid downstream vision tasks. We introduce Pulse-
Former, a method to extract heart rate as a key indicator of
physiological state from the eye tracking cameras on un-
modified egocentric vision systems. PulseFormer contin-
uously estimates the photoplethysmogram (PPG) from ar-
eas around the eyes and fuses motion cues from the head-
set’s inertial measurement unit to track HR values. We
demonstrate egoPPG’s downstream benefit for a key task
on EgoExo4D, an existing egocentric dataset for which we
find PulseFormer’s estimates of HR to improve proficiency
estimation by 14%. To train and validate PulseFormer, we

collected a dataset of 13+ hours of eye tracking videos from
Project Aria and contact-based PPG signals as well as an
electrocardiogram (ECG) for ground-truth HR values. Sim-
ilar to EgoExo4D, 25 participants performed diverse every-
day activities such as office work, cooking, dancing, and ex-
ercising, which induced significant natural motion and HR
variation (44–164 bpm). Our model robustly estimates HR
(MAE=7.67 bpm) and captures patterns (r=0.85). Our re-
sults show how egocentric systems may unify environmental
and physiological tracking to better understand users and
that egoPPG as a complementary task provides meaningful
augmentations for existing datasets and tasks. We release
our code, dataset, and HR augmentations for EgoExo4D to
inspire research on physiology-aware egocentric tasks.

1. Introduction
Egocentric vision systems, such as Mixed Reality (MR)
glasses by Meta [56], Magic Leap [43], and others have
emerged as powerful devices for capturing and analyzing a
person’s behavior and their environment from a first-person
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perspective. The wider availability of promising wearable
capture platforms has sparked a large amount of research
on egocentric vision tasks for environment understanding
and navigation [18], including localization [39, 71, 74],
and simultaneous localization and mapping [15, 33, 68].
Since egocentric systems simultaneously capture parts of
the wearer’s behavior in addition to their environment, prior
work has investigated egocentric action recognition [51, 87,
89, 96] and hand-object interaction [26, 73, 97] to under-
stand user behavior. Several large-scale datasets now ac-
celerate data-driven research in this domain with multi-
modal data for training and evaluation (e.g., Ego4D [26],
Nymeria [50], EgoExo4D [27]).

Most recently, Meta’s Project Aria 2 introduced a
contact-based heart rate (HR) sensor, with which egocen-
tric systems can gauge the wearer’s cognitive performance,
attention, and situational responses [13, 20, 52, 76, 83]. Nu-
merous additional conditions manifest in a person’s HR,
such as emotions, stress and fatigue [1, 9, 59, 65, 80]—
capturing these dynamics can thus benefit models of human
behavior to enable a richer understanding of user behavior.

In this paper, we introduce a method to make such HR
estimates available to many existing egocentric systems and
already recorded large datasets, such as EgoExo4D [27] or
Nymeria [50]. Our method PulseFormer accurately recov-
ers a person’s HR from the eye tracking videos in egocentric
headsets. PulseFormer first estimates the person’s photo-
plethysmogram (PPG) from the subtle fluctuations in skin
intensity due to pulsatile artery expansion beneath the sur-
face following a blood volume pulse (BVP), in particular
deriving it from regions around the wearer’s eye for robust
tracking. Our spatial attention module ensures that PPG is
estimated from robust regions around the eye, while our
cross-attention fusion with the system’s inertial measure-
ment unit (IMU) learns a motion-informed temporal atten-
tion to optimally weight the eye tracking images for more
accurate PPG estimates in scenarios with heavy motion.

We validate our method’s efficacy on a novel dataset
that we collected to capture some of the activities included
in large-scale egocentric datasets alongside physiological
reference recordings. Our dataset egoPPG-DB contains
13 hours of recordings from 25 participants, who wore
Project Aria glasses and performed six real-world tasks with
varying motion and intensity, causing their HR values to
reach levels between 44–164 bpm.

Downstream benefits for egocentric vision tasks

A key contribution of our paper is that we demonstrate that
knowing a person’s continuous HR values benefits egocen-
tric vision tasks downstream. We augment an existing ar-
chitecture with PulseFormer’s HR estimates and show its
impact on EgoExo4D’s proficiency estimation benchmark,
which improves accuracy on this task by 14.1%.

Contributions

We summarize our key contributions as follows:
1. egoPPG as a novel task and PulseFormer as an HR es-

timation method for egocentric systems that operates on
eye tracking videos. Our method robustly predicts con-
tinuous HR across a series of activities and interactions
(MAE=7.67 bpm), with a 23.8% lower error than current
state-of-the-art rPPG models [10, 45, 90, 92, 93].

2. egoPPG-DB, a dataset of eye tracking videos and syn-
chronized BVP (contact-based) and ECG recordings
(chest strap-based) to verify all physiological signals.
We captured these across diverse everyday activities that
were inspired by those included in existing large-scale
egocentric datasets, such as EgoExo4D [26, 27, 50].

3. a validation of egoPPG’s downstream benefits for ego-
centric vision tasks. We demonstrate the implications of
our method PulseFormer on the proficiency estimation
benchmark of the EgoExo4D dataset, which increases
the accuracy by 14.1% when augmenting EgoExo4D
with our continuously predicted HR values.

2. Related work

Egocentric vision. In recent years, research in egocentric
vision has surged, driven by advances in AR/VR glasses [4,
18, 31, 43, 56, 57], which provide new ways for understand-
ing user interaction from a first-person perspective. Much
of this work has focused on tasks such as action recogni-
tion [41, 51, 87, 89, 96] and anticipation [14, 25, 87], full-
body pose estimation [36, 37, 75], responding to user needs
[67, 69, 91], and social behavior analysis [21, 26, 35]. Ad-
ditionally, tracking vital signs in AR/VR settings and for af-
fective computing applications [1, 9, 59, 65, 80] has become
an important tool for understanding users’ physiological
states [53], their behavior, attention, and intent [3, 58, 88].
Physiological measurements. Wearable sensors have had a
tremendous impact on health monitoring in recent years, en-
abling continuous measurement of key physiological met-
rics, such as heart rate (HR), oxygen saturation, and ac-
tivity levels [11, 17, 55, 61, 62]. HR, in particular, is a
key measure for assessing an individual’s health and per-
formance [19, 23, 40, 48, 72]. In parallel to wearable sen-
sors such as smartwatches, recent research has extensively
explored using cameras as an unobtrusive, non-contact al-
ternative for measuring HR, generally called remote pho-
toplethysmography (rPPG) [34, 66, 84]. rPPG measures
HR based on the BVP via subtle color changes of the skin.
Generally, rPPG methods can be broadly divided into tradi-
tional signal processing techniques [7, 16, 34, 66, 85] and
deep learning-based approaches [8, 10, 45, 78, 90, 92]. So
far, rPPG has been mostly applied to facial videos with the
camera and user being stationary, such as while sitting in
front of a laptop, as it requires a continuous video feed
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of the same skin region. This limitation is shown in cur-
rent rPPG datasets, which primarily capture individuals in
seated positions with either a stationary camera directed at
their face [6, 29, 70, 79] or requiring users to hold a smart-
phone steadily in front of their face [82]. As a result, rPPG
is not feasible to be deployed in more dynamic settings.
Eye tracking cameras. Eye tracking in egocentric vision
systems is mostly done using inward-facing cameras di-
rected at the eyes [2]. Even during motion, eye tracking in
VR devices demonstrated accurate performance showcas-
ing that the cameras remain almost stationary relative to the
user’s eyes [12]. Furthermore, IR illumination makes them
robust to lighting variations and low-light conditions [49].
To the best of our knowledge, videos from eye tracking
cameras have not yet been explored for HR estimation.

3. Overview
Our aim is to enable egocentric vision systems i) to model
a person’s physiological state via continuously estimated
HR and ii) to integrate these HR estimates into downstream
tasks that benefit from knowledge of the user’s state. Sec. 4
first describes our dataset of synchronized eye tracking
videos and ground-truth HR measurements. Sec. 5 intro-
duces our method PulseFormer for recovering continuous
HR from eye tracking videos. Sec. 6 outlines the down-
stream benefits of our novel task, using HR as input for
modeling user proficiency on the EgoExo4D dataset.

4. egoPPG-DB
The egoPPG-DB dataset was developed to support HR es-
timation from eye tracking videos under real-world condi-
tions and contains significant motion and HR fluctuations.
By including diverse everyday activities, we provide a chal-
lenging benchmark for egocentric HR estimation models.

4.1. Recruiting and recording
We recruited N = 25 participants (12 female, 13 male, ages
19–32, µ = 25.1 and σ = 3.3) on a voluntary basis, re-
sulting in over 13 hours of video recordings. Based on the
Fitzpatrick scale [22], 9 participants had skin type II, 8 had
skin type III, 3 had skin type IV, and 5 had skin type V.
All participants signed a consent form before the data col-
lection, agreeing with using and sharing their data for aca-
demic and non-commercial purposes. The data collection
was approved by the ETH Zurich Ethics Commission (no.
2023-N-08). In terms of duration, egoPPG-DB is among the
longest rPPG datasets as listed in Tab. 10 (Supplementary).
Participants of egoPPG-DB are not included in EgoExo4D.

4.2. Apparatus
Fig. 2 illustrates our experimental setup. We used Project
Aria glasses [18] with Profile 21 to record eye tracking

nosepad
PPG sensor
for ground truth

blood volume pulses

eye tracking camera
on Aria glasses

movisens ECGMove 4 chest belt
for verifying the PPG signal and
ground-truth heart rates 

Figure 2. Apparatus used to record the egoPPG-DB dataset.

videos at 30 fps with a resolution of 320 × 240 pixels
per eye. To capture ground truth PPG measurements, with
which we train our model, we developed a custom sen-
sor that records PPG data offline at 128 Hz. The sen-
sor consists of a main board, mounted on the left side of
the frame, featuring a DA14695 system-on-chip interfacing
with a MAX86141ENP+ PPG sensor. The LEDs and pho-
todiodes used by the PPG sensor are embedded in the left
nose pad and connected to the main board using a flat flex-
ible cable. For each participant, we individually adjusted
the nose pad position to ensure the sensor aligned with their
left angular artery [30]. To validate our custom PPG sensor,
we also recorded gold-standard ECG data using a movisens
ECGMove 4 chest belt sampling at 1024 Hz. We synchro-
nized all devices at the start and end of each recording with
a synchronization pattern, using their built-in IMUs.

4.3. Capture protocol
The average recording lasted 32 minutes. The capture pro-
tocol comprised 5 activities (Tab. 1): watching a video, of-
fice work, kitchen work, dancing, and exercising on an in-
door bike (Fig. 1). We included these activities for three
purposes: (1) Incorporate everyday activities including the
corresponding HR changes and motion artifacts; (2) cover
a wide range of HR values (low HR when watching a video
vs. high HR when exercising), and (3) resemble activities
that were captured in large-scale egocentric vision datasets,
such as EgoExo4D [27]. In Tab. 11 (Supplementary), we
give a detailed description of all activities. Tab. 3 shows
mean HR values for each activity. Exercising on the bike
produced the highest mean HR values (113 bpm), whereas
watching the video resulted in the lowest (71 bpm).

4.4. Dataset and signal quality verification
To ensure the contact PPG sensor, whose signal we later
use as the target for model training, produces accurate HR
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Activity Actions Minutes

Watch video Watch a documentary 5

Office work
Work on a computer 4
Write on a paper 2
Talk to the experimenter 2

Walking Walk to the kitchen 1

Kitchen work
Cut vegetables

5Prepare a sandwich
Wash the dishes

Walking Walk to the dancing room 1.5
Dancing Follow random dance video 5
Exercise bike Ride an exercise bike 5
Walking Walk back to the start 1.5

Table 1. Capture protocol for recording the egoPPG-DB dataset.

values, we evaluate it against the gold-standard ECG. We
calculated the MAE and Pearson correlation between HR
estimates from the ECG and PPG signals for each partici-
pant using a 30-second sliding window. For activity label-
ing, we manually annotated the start and end times of each
task (see Tab. 1) for each participant using the Point of View
(POV) RGB videos recorded by the Project Aria glasses. To
ensure that the signal quality of the contact PPG is sufficient
for model training, we excluded all tasks with an MAE over
3.0 bpm between the PPG and ECG (e.g. when the PPG
sensor moved). This applied to 20 of 150 tasks (13%, see
Tab. 6 in Supplementary). During the remaining tasks, our
custom-built PPG nose sensor achieved very high accuracy,
with an MAE of 1.3 bpm and a correlation of 0.94 compared
to the ECG signal, showing its suitability as ground truth.

5. PulseFormer method
5.1. Problem definition
Our objective is to estimate BVP and HR from periodic
changes in pixel intensity in eye tracking video frames
F ∈ Rw×h. Physically, this means extracting physiolog-
ical signals from the information in the light reflected by
the arteries and arterioles that carry blood beneath the skin.
This light reflection can be modeled as a combination of
diffuse and specular reflections. Wang et al. [85] model the
reflected light intensity C(t) as:

C(t) = I(t)(vs(t) + vd(t)) + vn(t) (1)

where I(t) is the luminance intensity, vs(t) the specular re-
flection, vd(t) the diffuse reflection, and vn(t) the sensor
noise. While the specular reflection vs(t) lacks pulsatile
information, the diffuse reflection vd(t) contains informa-
tion about the absorption and scattering of the light in skin

tissue [85]. Thus, vd(t) can be further decomposed as:

vd(t) = udd0 + upp(t) (2)

where ud is the unit color vector of the skin, d0 the station-
ary reflection strength, up the relative absorption, and p(t)
the signals of interest. p(t) is in our case the BVP, which
our model aims to learn from the camera recordings.

5.2. Deep learning model
Our architecture is built upon a 3D CNN backbone (Phys-
Net) [92] with a temporal input length of T = 128 frames
(corresponding to 4.3 seconds) downsampled to (h = 48)×
(w = 128) pixels, resulting in an input of dimensions
(T,C,w, h). The channel is C = 1 in our case, as our in-
put is from monochrome videos. The input in our network
is the consecutive standardized frame differences (per par-
ticipant frame-wise differences divided by the STD of the
frames) of the eye tracking videos to help the network fo-
cus on the changes between frames [10]. As labels, we use
the standardized consecutive differences of the PPG signals.
Since eye tracking videos offer additional challenges com-
pared to facial videos, usually used for rPPG tasks, we have
designed our model to address these challenges (see Fig. 3).
Motion-informed temporal attention (MITA). Egocen-
tric glasses are body-worn and subject to considerable mo-
tion artifacts when the user moves. Therefore, we propose
to leverage the IMU within the glasses to obtain a motion-
informed temporal attention. We employ a cross-attention
module to integrate the IMU data with the video input, al-
lowing our model to weigh each frame differently along the
temporal dimension based on the motion intensity encoded
by the IMU. This allows the model, e.g., to give less empha-
sis to frames heavily affected by motion. Given the input
feature map Fin ∈ RT×1×w×h, we use ResNet18 [28] and
a linear layer to obtain the image embeddings Fe ∈ RT×D,
where D = 128 is the embedding dimension. Given IMU
measurements Iin ∈ RT×1, we use two 1D convolutional
layers to obtain the IMU embeddings Ie ∈ RT×D. We then
calculate the cross-attention A ∈ RT×D as:

A = softmax
(
QK⊤
√
D

)
V (3)

where Ie serve as queries Q and Fe as keys K and values V .
Using a linear layer, we obtain the motion-informed tempo-
ral attention T ∈ RT×1×1×1, which we multiply with Fin.
Spatial attention (SA). While the bulbar conjunctiva
(white of the eyes) contains many blood vessels from which
the BVP could theoretically be estimated, eyes typically
move strongly during everyday situations and are closed
while blinking (see participant 2 in Fig. 4). Consequently,
extracting the BVP from the eye regions would introduce
substantial motion artifacts and reduce the signal-to-noise
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Figure 3. Architecture of our model for continuous BVP estimation from eye tracking videos and consecutive HR computation.

ratio (SNR). In contrast, when qualitatively analyzing eye
tracking images, we see that the skin around the eyes ex-
hibits considerably less motion than the eyes themselves
and could thus provide a more stable source of BVP in-
formation. To address this, we introduce spatial attention
modules [32, 64, 86] before each pooling (see Fig. 3) to
allow our network to focus on high-SNR regions, such as
the skin, and reduce the influence of low-SNR regions with
frequent motion, like the eyes. Given some feature map
F ∈ RT×C×w×h, the spatial attention modules infer a spa-
tial attention map Ms ∈ RT×1×w×h as:

Ms(F ) = σ ∗ (f7×7([Favg;Fmax])) (4)

where σ is the sigmoid function, f7×7 a 7 × 7 convo-
lution operation and Favg ∈ RT×1×w×h and Fmax ∈
RT×1×w×h are the average-pooled and max-pooled feature
maps respectively. The final output Fout ∈ RT×C×w×h of
each attention process is then the product of Ms and F .
Data augmentation. Furthermore, individual variations in
the fit of the glasses result in different parts of the skin
around the eyes being visible. For some individuals, the
eye tracking cameras capture only the areas above the eyes,
for others, only below, and in some cases, the glasses sit
at an incline (see Fig. 4). To account for such variations,
we apply three targeted data augmentations during train-
ing that reflect these specific differences in camera angles
and coverage: (1) random rotation between -20 and +20 de-
grees to account for slight inclinations; (2) random horizon-
tal cropping to help the network distinguish between high
and low SNR regions across various skin areas and camera
positions; and (3) horizontal and vertical flipping to further
increase robustness to differences in skin region visibility.
Our model requires approximately 399 GFLOPS per batch
and has about 12M parameters. The frame rate is 2.9k fps
on an RTX 4090 and 180 fps on an AMD EPYC CPU.

5.3. Experiments setup
Training. We trained all models using five-fold cross-
validation split by participants to ensure a strict separation

participant 2

participant 5

participant 3

eye tracking video spatial attention map

40 x 440

eye region
50 x 150

skin region

Figure 4. Left: Head geometry determines the regions that the eye
tracker captures. Right: Learned spatial attention maps show that
eye regions are excluded and PulseFormer instead extracts BVP
from the surrounding skin regions, which moves less than the eyes.

between training, validation, and test sets. We iteratively
held out the data from five participants (20%) as the test set,
two as validation, and trained on the remaining with a batch
size of 4 for 100 epochs, a learning rate of 0.0009, and mean
squared error (MSE) as loss. In addition to our model, we
used ten state-of-the-art rPPG baseline networks to compare
the performance of our proposed model to these established
models. Our model was trained on a GeForce RTX 4090,
with a total runtime of about 20 hours for all folds.
Evaluation. To calculate the HR, we filter the predicted
BVP with a Butterworth filter (0.5–2.8 Hz) and then detect
peaks. To assess model accuracy, we use the mean absolute
error (MAE), root mean squared error (RMSE), mean abso-
lute percentage error (MAPE), and Pearson correlation (r)
using a non-overlapping 60-second window [16, 45, 46].
Video sampling rate. While we recorded the eye
tracking videos with 30 fps, large-scale datasets such as
EgoExo4D [27] or Nymeria [50] used only 10 fps. To assess
the impact of reduced fps, we evaluated model performance
when (1) downsampling our videos to 10 fps by retaining
only every third frame and (2) downsampling to 10 fps, then
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linearly interpolating between frames to upsample to 30 fps.

6. Downstream use for proficiency estimation
To demonstrate the utility of predicting a user’s physio-
logical state for egocentric vision applications, we use the
user proficiency estimation benchmark from the EgoExo4D
dataset, which contains over 5000 videos from 740 partici-
pants performing skilled human activities [27]. This bench-
mark aims to classify the proficiency of a user (novice, early
expert, intermediate expert, late expert) using only ego-
centric videos (Ego), only exocentric videos (Exo), or all
videos together (Ego + Exo). Our goal was to assess if we
can improve the performance of the current baseline model
(TimeSFormer [5]) when integrating our predicted HR data
into the network. This results in three additional configu-
rations: using egocentric/exocentric videos and HR (Ego +
HR/Exo + HR) and using all videos and HR (Ego + Exo
+ HR). To predict the continuous HRs for all EgoExo4D
videos, we use PulseFormer, pre-trained on egoPPG-DB.

We implement the TimeSFormer model in exactly the
same configuration as for the benchmark results [27] with a
clip size of 16 frames and a sampling rate of 16, trained for
15 epochs. We use all videos of the EgoExo4D dataset, for
which the proficiency estimation labels are available (using
the official benchmark training/validation sets) and which
have at least 16 frames at a sampling rate of 16, resulting in
2044 videos. From the official training set, we use 10% as
validation, and the held-out official validation set for test-
ing. We summarize our predicted HR data by calculating
five features (mean, STD, minimum and maximum HR, and
mean HR change) for the corresponding videos. We inte-
grate these features via normalization and a 50-parameter
linear layer whose output we concatenate with the output of
TimeSFormer’s backbone before feeding it into the classifi-
cation head. We train all models from random initialization
and evaluate using top-1 accuracy per EgoExo4D protocol.

7. Experiments
7.1. Heart rate estimation
7.1.1. Signal-processing baseline
We employed signal processing to verify that the BVP sig-
nal is present in the eye tracking videos, to determine in
which regions the SNR is highest, and to establish a base-
line (see Tab. 2). Since the glasses remain mostly stable
throughout the recording, we manually define two spatial
cropping regions per participant. One region that includes
mostly skin, and one region that includes mainly eyes (see
Fig. 4). We calculate the mean pixel intensity for both re-
gions, remove motion artifacts by discarding any changes
outside the interquartile range and finally filter the signal
with a 4th order Butterworth bandpass filter (0.5 to 2.8 Hz)
to obtain the BVP (see Fig. 5 in Supplementary).

7.1.2. PulseFormer method
Using our proposed network PulseFormer, we obtain an
MAE of 7.67 bpm and a correlation of 0.85 between our
predicted HR and the ground truth HR (see Tab. 2). This
is an improvement of 2.40 bpm (23.8%) of the MAE and
0.13 for the correlation compared to the current SOTA
FactorizePhys [38]. Split by activity, we obtain the low-
est MAE while the participants are watching a video
(MAE=5.52 bpm) and the highest MAE during exercising
on a bike (MAE=12.91 bpm), which is the task with the
highest mean HR (113.1 bpm) and the second highest mo-
tion magnitude. In addition, the MAE decreases for all ac-
tivities when adding MITA, with the greatest performance
improvement for dancing. We define the motion magnitude
as the root-mean-squared sum of the absolute differences
across the 3-axis IMU recorded by the Aria glasses and
normalize it between zero and one across all activities to
get a measure of motion of each activity. See Fig. 6 (Sup-
plementary) for a boxplot of the MAEs of PulseFormer’s
predictions. Using signal processing, we obtain an MAE
of 12.40 bpm when using the skin region around the eyes
and an MAE of 14.60 bpm using the eye regions as input.
This is also reflected in the spatial attention maps that our
model implicitly learns (see Fig. 4), which exclude the eyes
to predict the HR. To qualitatively cross-check these results,
Fig. 5 (Supplementary) shows an example plot of the raw
mean intensity values (before filtering) of the skin region
compared to the eye region, with the BVP clearly visible
for the skin region. Tab. 4 shows the results when down-
sampling our videos to 10 fps. MAE increases to 11.13 bpm
and the correlation decreases to 0.7 when training and test-
ing using 10 fps. When upsampling the videos again to
30 fps, the MAE decreases to 10.20 bpm and the correlation
increases to 0.77. In Sec. 16 (Supplementary), we show
that PulseFormer also outperforms the baselines in a cross-
dataset evaluation.

7.2. Downstream task: proficiency estimation
Tab. 5 summarizes the results of our experiments to eval-
uate the value of HR estimation for the proficiency esti-
mation benchmark on EgoExo4D. We see that integrating
our predicted HRs into the TimeSFormer model [5] im-
proved accuracy for all scenarios but one (Soccer). We also
achieved the highest accuracy for each of these individual
scenarios with our HR integration. When combining the
egocentric videos with our predicted HRs, we achieved an
overall accuracy of 45.29%, a 14.1% increase compared to
using egocentric videos alone. The largest gains appeared
in the cooking and dancing tasks, where accuracy rose from
20.00% to 40.00% and from 43.44% to 53.27%. Also,
when using the egocentric and exocentric videos, and our
predicted HRs together, the accuracy increased by 12.67%
(4.94 percentage points) from 39.00% to 43.94% compared
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Model MAE RMSE MAPE r

Yue et al. [94] 29.63 32.99 37.86 0.1
DeepPhys [10] 28.26 31.97 36.68 0.08
TS-CAN [45] 26.32 32.39 29.13 0.11
ContrastPhys+ [81] 19.12 24.13 22.57 0.21
RhythmMamba [99] 15.05 19.78 17.46 -0.16
Baseline eyes 14.60 18.18 18.37 0.20
PhysMamba [90] 13.94 16.86 17.76 0.61
RhythmFormer [98] 13.13 17.43 14.73 0.51
Baseline skin 12.40 15.54 15.29 0.50
PhysNet [92] 12.09 15.43 15.14 0.66
PhysFormer [93] 10.71 13.97 12.69 0.72
PulseFormer w/o SA 10.49 13.62 12.83 0.73
FactorizePhys [38] 10.07 13.43 12.36 0.67
PulseFormer w/o MITA 8.82 12.03 10.82 0.81
PulseFormer (ours) 7.67 10.69 9.45 0.85

Improvement over
-2.40 -2.74 -2.91 +0.13second-best method

Table 2. Results for HR prediction from eye tracking videos using
different models (PulseFormer, PulseFormer without SA, Pulse-
Former without MITA and established rPPG baselines).

Activity µ HR Motion PulseFormer PulseFormer
magnitude w/o MITA

Video 71.5 0 5.52 5.97
Office 75.7 0.45 7.50 8.22
Kitchen 85.3 0.54 7.22 8.89
Dancing 89.1 1.00 7.85 10.54
Bike 113.1 0.77 12.91 14.62
Walking 93.7 0.30 8.23 8.29

Table 3. Results for HR prediction (MAE) split by activity using
PulseFormer and PulseFormer without MITA.

Input video MAE RMSE MAPE r

10 fps (other datasets) 11.13 15.18 12.28 0.70
Upsampled to 30 fps 10.18 13.07 12.48 0.77

Table 4. Results for HR prediction with different frame rates. In
the first row, we downsample our videos to a frame rate of 10 fps,
commonly used by large-scale datasets such as EgoExo4D [27]. In
the second row, we first downsample our videos to 10 fps and then
upsample them to 30 fps by linearly interpolating between frames.

to using only the egocentric and exocentric videos.

8. Discussion
8.1. Heart rate estimation
Evaluating PulseFormer on egoPPG-DB, we showed that
HR can be reliably predicted from eye tracking videos
and IMU signals from unmodified egocentric vision head-
sets. While SOTA rPPG models (e.g., PhysFormer) achieve
MAEs as low as 0.50 bpm [93, 98] on datasets such as
UBFC-RPPG [6] or OBF [44], these datasets captured par-
ticipants while calmly sitting at a table looking at the cam-
era (with very little motion or HR changes). However, dur-
ing even just light motion (e.g., on MMPD [82] or VIPL-
HR [63]), their MAE increases to 5.0–12.0 bpm [93, 98].

On egoPPG-DB, which contains much stronger motion
(dancing, exercise bike) and HR fluctuations (between 44–
164 bpm), PulseFormer’s MAE is 7.67 bpm and outper-
forms the rPPG SOTA FactorizePhys (MAE=10.07 bpm).
Given the strong motion and diverse everyday activities in
egoPPG-DB, we believe that our results demonstrate the ro-
bustness of PulseFormer in dynamic, everyday conditions.
For context, even HR estimates from contact sensors tight-
ened to the body (e.g., Apple Watch) yield an MAE of
3.0 bpm during rest and an MAE of 4.6 bpm on a bike [24].

8.1.1. Performance depending on method
We introduced MITA and leverage SA modules to improve
the performance of our model. The performance of Pulse-
Former decreases from 7.67 bpm to 8.82 bpm when remov-
ing the MITA and to 10.49 bpm when removing the SA
modules (see Tab. 2). When qualitatively analyzing the
learned SA maps, we see that our model implicitly learned
to exclude the eyes for estimating BVP from the eye track-
ing videos (see Fig. 4). This aligns with our results using
signal processing, obtaining better performance for the skin
region compared to the eyes (see Tab. 2).

8.1.2. Performance depending on activity
Analyzing our results split by activity (see Tab. 3), we
obtain the highest MAE when exercising on a bike
(MAE=12.91 bpm) and the lowest MAE when watching a
video (MAE=5.52 bpm). While watching a video yields
the lowest MAE, it is higher than MAEs typically reported
for rPPG datasets, such as UBFC-RPPG [6], despite similar
levels of motion. We attribute this to two factors: first, the
higher variability in HR across egoPPG-DB, requiring im-
proved generalization, and second, the inherent motion ar-
tifacts in eye tracking videos from blinking and natural eye
movements, even during static tasks like watching videos.
Such inherent motion artifacts and, e.g., slipping glasses can
make capturing rPPG more difficult in this manner. Further-
more, although dancing has the highest motion magnitude,
its MAE (7.85 bpm) is comparable to that of lower-motion
tasks such as office and kitchen activities. When compar-
ing performance with and without our MITA module, we
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Scenario Majority Ego Ego + HR (ours) Exo Exo + HR (ours) Ego + Exo Ego + Exo + HR (ours)

Basketball 38.00 45.45 47.47 48.48 48.48 49.49 50.50
Cooking 0.00 20.00 40.00 35.00 40.00 25.00 40.00
Dancing 24.59 43.44 53.27 42.62 48.36 50.82 59.84
Music 57.89 78.94 81.58 57.89 57.89 57.89 60.53
Bouldering 15.29 24.50 27.81 8.61 12.58 15.89 21.19
Soccer 62.50 50.00 56.25 81.25 75.00 75.00 62.50

Overall 27.80 39.69 45.29 34.75 37.67 39.00 43.94

Table 5. Results for proficiency estimation benchmark on EgoExo4D dataset. Note that for all scenarios except Soccer, the accuracy
increases when integrating PulseFormer’s heart rate estimate into the existing and otherwise unmodified baseline model.

observe an improvement of 2.6 bpm for dancing, indicating
that MITA effectively addresses motion-induced artifacts.

8.1.3. Performance depending on camera fps
Using eye tracking videos recorded at only 10 fps consid-
erably decreases performance (see Tab. 4). However, up-
sampling the frame rate to 30 fps through linear interpo-
lation between frames substantially improves the perfor-
mance again. This is especially important as many large-
scale datasets, such as EgoExo4D [27] or Nymeria [50], for
which predicting a user’s physiological state could help for
further downstream tasks, are recorded at only 10 fps.

8.2. Benefits for proficiency estimation downstream
We found that incorporating HR data into the baseline
model of the proficiency estimation task substantially im-
proved accuracy across all three configurations. The ego-
centric videos combined with the HR achieved the high-
est overall accuracy at 45.29%, marking a 14.1% increase
over using only egocentric videos (39.69%). Adding HR
especially improved accuracy for cooking (from 20% to
40%) and dancing (from 43.44% to 53.27%), which had
the lowest accuracies besides bouldering when using only
egocentric videos, demonstrating the value of HR in en-
hancing model performance. Combining egocentric videos,
exocentric videos, and HR provided further accuracy gains
for some scenarios, achieving the best results for basket-
ball, cooking, and dancing. Results using exocentric views
alone were lower overall, which is consistent with bench-
mark results [27]. Soccer was the only scenario, for which
the performance decreased for Exo+HR and Ego+Exo+HR.
We see two reasons for that. 1) Of EgoExo4D’s 2044 offi-
cial train/test videos, only 77 are soccer, making it the sce-
nario with the least training/test data by far. 2) Our HR esti-
mates may be less accurate for “Stop-and-Go” sports, which
are not captured in egoPPG-DB right now. In Tab. 9 (Sup-
plementary), we show that we obtain the best downstream
performance when using the HR features calculated with
PulseFormer compared to the baselines. For training and
testing, we used the available subset of EgoExo4D videos

for which proficiency labels are available, following the of-
ficial training and test splits. While our used data shows
slight variations from the official release in majority class
distributions and accuracy scores, the observed trends align
well with the established benchmark results.

8.3. Broader impacts
Beyond health applications, such as predicting stress and
fatigue [9, 60, 65], cardiac measurements could also help
models better understand user behavior to, e.g., improve
personalized assistance [42]. Furthermore, we believe that
our approach requires the user’s explicit consent, regardless
of application. Mechanisms must make users aware of mea-
surements and require consent, e.g., on the Aria platform.

9. Conclusion
egoPPG is a novel task for egocentric vision systems to
extract the wearer’s heart rate for integrating their physi-
ological state into egocentric vision tasks downstream. We
have introduced PulseFormer, a method that processes in-
put from the eye tracking cameras on unmodified egocen-
tric vision systems and fuses them with motion cues from
the headset’s IMU to robustly estimate the person’s HR in
various everyday scenarios. We validate PulseFormer’s ro-
bustness on our dataset egoPPG-DB and demonstrate sig-
nificant improvements over existing rPPG models. With
HR estimations from PulseFormer, we also significantly
improve the proficiency estimation benchmark on the large-
scale EgoExo4D dataset. Our results emphasize the poten-
tial of physiological insights obtained via egoPPG methods
for further egocentric vision applications. By making our
dataset available to the community, we aim to support phys-
iological state estimation via HR in future research and new
downstream tasks for egocentric vision systems. Given our
promising results, we believe that future work could now
focus on collecting more participants with a broader demo-
graphic background across different age groups, skin types,
and ethnicities, and also extend data collection to outdoor
settings to assess the impact of varying lighting conditions.
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10. Related datasets
Tab. 10 gives a comparison of the dataset size and activi-
ties of some related remote photoplethysmography (rPPG)
datasets. In terms of hours of recordings and recorded
frames, egoPPG-DB is among the largest dataset. Further-
more, we see that all comparable rPPG datasets only in-
clude activities with very little motion and heart rate (HR)
changes such as watching videos, head rotations or talking.
In contrast, egoPPG-DB features a wide variety of challeng-
ing everyday activities, such as kitchen work, dancing and
riding an exercise bike, which induce significant motion ar-
tifacts and HR changes.

11. Excluded tasks
For all participants and activities, we checked the mean ab-
solute error (MAE) between the predicted HR from our cus-
tom contact PPG sensor on the nose and the gold standard
ECG from the chest belt. We excluded all tasks with an
MAE over 3.0 beats per minute (bpm), which can happen,
for example, when the PPG sensor loses alignment with the
angular artery due to movement. In this way, we ensured
that the photoplethysmography (PPG) signal from the nose,
which we used as the target signal to train our model, is
highly accurate. As a result, we had to exclude 20 out of the
150 tasks (13%), which we list in Tab. 6. We can see that
this applied only to tasks with more motion (dancing, exer-
cise bike, and walking). Since the participants had to walk
multiple stairs throughout the data recording, this mostly
happened during walking.

Activity Excluded participants

Watch video —
Office work —
Kitchen work —
Dancing 012, 015
Exercise bike 009, 012, 014, 015, 016, 023
Walking 004, 012, 013, 014, 018, 021, 022

Table 6. Detailed table of all excluded tasks.

12. Detailed description of activities
Tab. 11 gives a comprehensive description of the actions for
each activity during our recording. Generally, participants
were free to talk during the entire duration of the recording

and conduct the tasks as they would do it normally. For ex-
ample, during the kitchen work, the participants were com-
pletely free to prepare the sandwich and if they would like
to eat or drink while doing it.

13. Data recording
In Fig. 8, we show a variety of different images and people
of our data recording from a third person view to visualize
the apparatus and capture protocol. All participants visible
in these images explicitly agreed to be visualized.

14. Initial signal verification
In Fig. 5, we show the raw mean intensity values after spa-
tial cropping of the skin region and the eye region (see
Fig. 4) compared to the ground truth contact PPG signal
from the nose. We can clearly see that the blood vol-
ume pulse is present both in the eyes and skin region with
the skin region having a higher signal-to-noise ratio (SNR)
compared to the eyes.
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Figure 5. Example raw mean intensity of the skin and eye region,
showing the higher SNR for the skin region around the eyes com-
pared to the eyes.

15. Variance of results
In Fig. 6 we show the boxplot of the MAEs of the pre-
dictions of PulseFormer on egoPPG-DB by split. The
interquartile range across all splits is between 1.7 and
10.5 bpm.
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Figure 6. Boxplot of the MAEs of the predictions of PulseFormer.

16. Cross-dataset evaluation
We evaluated PulseFormer and the two strongest base-
lines when training on three conventional rPPG datasets
(MMPD [82], UBFC-rPPG [6], and PURE [79]) and test-
ing on egoPPG-DB (Tab. 7), and vice versa (Tab. 8). For
the rPPG datasets, we extracted the eye region using Medi-
aPipe [47], resized to 48× 128, and converted to grayscale.
PulseFormer consistently outperforms the baselines across
all scenarios and datasets (except one case), showing strong
generalization to unseen data. Please note that we can
only evaluate PulseFormer w/o MITA as conventional rPPG
datasets do not contain IMU data from the participants’
heads.

Train Set Model MAE MAPE

PhysFormer 20.56 27.06
MMPD FactorizePhys Not converging

PulseFormer w/o MITA 13.66 16.64
PhysFormer 18.32 23.63

UBFC-rPPG FactorizePhys 18.58 24.46
PulseFormer w/o MITA 14.83 18.57
PhysFormer 24.39 24.94

PURE FactorizePhys 13.20 15.44
PulseFormer w/o MITA 12.99 13.46

Table 7. Results (MAE) when training on conventional rPPG
datasets and testing on egoPPG-DB.

Model MMPD UBFC-rPPG PURE
MAE MAPE MAE MAPE MAE MAPE

PhysFormer 11.76 14.57 16.80 16.46 23.89 37.50
FactorizePhys 12.06 15.11 14.28 14.98 26.10 40.62
PulseFormer (ours) 11.48 15.08 15.09 15.81 23.56 36.71

Table 8. Results (MAE) when training on egoPPG-DB and testing
on conventional rPPG datasets.

17. HR distribution
egoPPG-DB exhibits the widest HR range (44–164 bpm,
see Fig. 7) and significantly more motion (e.g., dancing, ex-
ercise bike) than other evaluated rPPG datasets, where par-
ticipants typically sit calmly at a table.
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Figure 7. Boxplot of HRs of egoPPG-DB and three rPPG datasets.

18. Downstream performance comparison
HR features from the other evaluated baselines perform pro-
gressively worse than those from PulseFormer when used
for proficiency estimation on EgoExo4D, highlighting the
importance of accurate HR estimation for downstream tasks
(see Tab. 9).

Model Ego+HR Exo+HR Ego+Exo+HR

FactorizePhys 44.62 36.72 40.13
PhysFormer 44.39 36.66 43.07
PulseFormer (ours) 45.29 37.67 43.94

Table 9. Downstream performance (accuracy) on EgoExo4D using
the HR predictions from the three best baseline models.
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Dataset Part. Frames Hours Tasks

PURE [79] 10 110 K 1 Resting, talking, small head movements
MAHNOB-HCI [77] 27 2.6 M 12 Watching videos
MMPD [82] 33 1.2 M 11 Resting, head rotation, selfie videos
MMSE-HR [95] 40 310 K 2 Talking, watching videos, experiencing different emotions
UBFC-rPPG [6] 43 150 K 1.5 Gaming on a computer
UBFC-PHYS [70] 56 2.4 M 19 Resting, Trier Social Stress Test
OBF [44] 106 3.8 M 18 Resting with varying HR levels
VIPL-HR [63] 107 4.3 M 20 Resting, talking, head rotation, different lighting conditions
SCAMPS (synthetic) [54] 2800 1.7 M 16 Different facial actions

egoPPG-DB (ours) 25 1.4 M 13 Watching videos, office and kitchen work, dancing, biking, walking

Table 10. Summary of existing datasets for rPPG.

Activity Actions Description

Watch video Watch a documentary Watch a relaxing documentary on a computer.

Office work
Work on a computer Randomly browse through websites and type text from a PDF into Word.
Write on a paper Write a text from a PDF on a computer onto a piece of paper.
Talk to the experimenter Have a free, unscripted conversation with the experimenter.

Walking Walk to the kitchen Walk along a hallway, down the stairs into the kitchen.

Kitchen work

Get ingredients Get all ingredients for a sandwich from the fridge.
Cut vegetables Get a cutting board, knife and a plate and cut vegetables.
Prepare a sandwich Put the bread into the toaster and afterward freely prepare sandwich.
Eat sandwich/drink Participants are free to eat the sandwich or drink during the recording.
Wash the dishes Wash everything used while preparing the sandwich.

Walking Walk to the dancing room Walking along a hallway into a new room for dancing and biking.

Dancing Follow random dance video Choose a dance video and afterward follow it.

Exercise bike Ride an exercise bike Ride an exercise bike with moderate to high intensity.

Walking Walk back to the physical Walk back to the physical location of the start either up the stairs
location of the start or using the elevator.

Table 11. Detailed capture protocol and action descriptions of the egoPPG-DB dataset.
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Figure 8. Additional images of the data recording showing the variety of everyday activities our dataset includes.
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