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Abstract—Smartwatches have become popular for monitoring
physiological parameters outside clinical settings. Using reflective
photoplethysmography (PPG) sensors, such watches can non-
invasively estimate heart rate (HR) in everyday environments
and throughout a patient’s day. However, achieving consistently
high accuracy remains challenging, particularly during moments
of increased motion or due to varying device placement. In this
paper, we introduce a novel sensor fusion method for estimating
HR that flexibly combines samples from multiple PPG sensors
placed across the patient’s body, including wrist, ankle, head, and
sternum (chest). Our method first estimates signal quality across
all inputs to dynamically integrate them into a joint and robust
PPG signal for HR estimation. We evaluate our method on a
novel dataset of PPG and ECG recordings from 14 participants
who engaged in real-world activities outside the laboratory over
the course of a whole day. Our method achieves a mean HR
error of 2.4 bpm, which is 46% lower than the mean error of
the best-performing single device (4.4 bpm, head).
github.com/eth-siplab/MultiSite-PPG-Robust HeartRate.

Index Terms—sensor fusion, photoplethysmogram, heart rate.

I. INTRODUCTION

Wearable devices, smartwatches in particular, have gained
popularity for monitoring physiological parameters, most com-
monly heart rate (HR). For this, devices typically adopt
reflective photoplethysmography (PPG) to optically and thus
non-invasively sense blood volume pulses for HR estimation.

However, achieving high accuracy in optical HR estimations
remains challenging [1], especially in settings that lead to mo-
tion artifacts [2]. Amongst athletes, who subject such sensors
to considerable motion, the use of ECG-based HR monitoring
is prevalent, where the electrophysiological measurements
with a chest strap avoid high measurement errors. Since chest
straps are more obtrusive than individual PPG sensors, re-
searchers have sought ways to compensate for motion artifacts
in PPG. Approaches range from integrating accelerometers to
detect motion [3], leveraging multiple light sources [4] or
photodiodes [5], which can increase HR accuracy [6], [7].
Many of today’s consumer smartwatches thus embed multiple
LEDs and photodiodes (e.g., Apple Watch Series 9, Fitbit
Versa 4, Garmin Fenix 7).

In this paper, we improve HR estimation through a novel
multi-site PPG signal fusion method. We build on the insight
that the motion of the wearer’s body affecting PPG readings
is often specific to a device’s location on the body, such that
motion artifacts manifest to different extents in the devices
worn across the body [8]. Our proposed method dynamically
combines PPG signals from sensors worn across the body
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Figure 1. Our method dynamically weighs and fuses PPG signals across sen-
sors at different body locations based on estimated signal quality, producing
a continuous PPG output signal as the basis for robust HR estimation.

following our window-based signal quality estimation. For
evaluation, we contribute a novel dataset of PPG recordings
of 14 participants outside the lab and over a whole day, where
each participant wore four small devices with PPG sensors
and one ECG sensor for reference during real-world activities
(Fig. 1). Our signal fusion method robustly estimates each
participant’s HR, achieving a 46% lower error on the ground-
truth ECG-based HR levels than the best PPG-based HR,
which originated from the head-worn sensor.

II. BACKGROUND

Sensor fusion has frequently been used for wearable physio-
logical sensing [9]. Raiano et al. removed motion artifacts from
breathing signals using multiple piezoresistive textile sensors,
fusing signals via independent component analysis (ICA) [10].
Combining PPG and ballistocardiograms (BCG) has also been
shown to better estimate R-R intervals [11] and HR [12].
Bieri et al. jointly analyzed accelerometer and PPG signals
for robust and uncertainty-aware heart rate estimation [13].
For HR estimation, past work has also investigated sensor
fusion. Wartzek et al. separately detected heartbeats in PPG
and capacitive ECG signals acquired in multiple locations on
a mattress and then combine them for better estimation [14].
Lee et al. combined PPG signals at multiple wavelengths using
ICA to reduce motion artifacts [7], whereas Holz et al. com-
bined multiple PPG sensors across the head to derive HR [15].
Similarly, our proposed method fuses multiple PPG signals
into a single output signal, albeit sourced from locations across
the wearer’s entire body to robustly estimate HR.

https://github.com/eth-siplab/MultiSite-PPG-Robust_HeartRate
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Figure 2. Our method estimates the quality of signal segments by deriving a
normalized aggregate and correlating it with a leaning triangle wave to reject
bad input signals during template formation. This process is separate for each
sensor location to account for local differences in signal morphology.

III. METHODS

We propose a novel method that dynamically fuses PPG
signals from multiple sensors distributed across a wearer’s
body based on their temporal and intermittent signal charac-
teristics. Our method first estimates these based on assessing
individual signal quality and then weighs segments to derive
the combined output signal. Fig. 2 illustrates our method.

A. PPG Peak Detection and HR Measurement

For each PPG signal input, our method first detects segments
by identifying systolic peaks in each data stream. We first
apply a bandpass filter to the input (Butterworth, 0.6-3.3 Hz
passband) and then detect peaks whenever a PPG signal
crosses its moving average plus an offset, building on van
Gent et al. [16]. We determine the offset by minimizing the
variance in the resulting peak intervals over a one-minute
window. Peaks are removed if the intervals between neighbors
would result in a HR greater than 185 bpm.

To reduce the impact of spurious peaks on HR computation,
we only process interbeat intervals (IBI) that lie within at
least five consecutive IBI where min IBI/max IBI > 0.51. This
filtering step is relatively lenient and retains most PPG beats,
even less accurate sections that more conservative filters would
remove. Our method explicitly preserves these segments to
ensure the presence of signals over the full time of captured
data across sensors and because they are input into our fusion.

Finally, HR values are estimated from the IBI over a 30-
second moving window over the data.

B. Signal Quality Estimation

To assess a PPG segment’s signal quality on a per-beat basis,
our method matches them against a template, following the
approach by Warren et al. [5] as shown in Fig. 2. We perform
this separately for each signal to account for differences in
signal morphology depending on the sensor’s location on
the body. For template formation, at each detected peak in
the PPG signal, a section is used that is delimited by its
neighboring peaks. The template therefore spans two R-R
intervals, increasing the likelihood of rejecting corrupt signal

segments. Sections with lengths corresponding to a HR < 40
or > 185 are ignored. Each resulting section is down-sampled
to 40 samples, which compensates for changes in HR, and
finally z-scored (i.e., standardized to zero mean and unit
standard deviation).

We then derive the template by averaging those sections that
sufficiently correlate with a leaning triangle wave to exclude
corrupted segments (r > .8). To further lower the impact of
noisy waves, we iteratively remove those segments with the
lowest correlation to the template until 500 remain.

Finally, we estimate the quality of a PPG signal segment
at a given systolic peak by correlating it with the template,
delimiting a segment by its neighboring peaks.

C. Derive Robust Output Signal from Fused PPG Signals

Before integrating all signals using their individual seg-
ments, we align cross-sensor PPG segments to account for
delays in blood pulse propagation through the wearer’s arterial
tree. Within a window of ±150ms, we temporally offset
signals to align the previously detected systolic peaks across
two segments. This window is thereby small enough to prevent
misaligning heartbeats even at a HR of 180.

Next, we estimate the signal quality of PPG signals for
30-second windows of the input as the mean correlation of
all contained segments with the template as outlined above.
This quality estimate is then interpolated between windows to
avoid abrupt changes in quality estimates, which could lead
to unwanted artifacts in the fused signal.

We obtain the fused signal s[t] from n PPG input signals:

s[t] =

∑n
i=0 ppgi[t] ·max(δ, qi[t])

6∑n
j=0 max(δ, qj [t])6

,

where 0 < δ ≪ 1 bounds the quality estimate q[t] and
ensures positive values in the interval (0, 1], as negative
correlations with the template are insignificant. Our method
uses a power of six to amplify better signals in the output and
account for minute differences in correlation values despite
stark differences in signal quality. We normalize the weights
to ensure that output amplitudes remain independent of the
number of PPG input signals and their quality estimates.

D. Experiment Apparatus

We evaluated our method on captured PPG signals that were
recorded outside the laboratory and in real-world conditions.
Our study collected a continuous dataset from 14 participants
over the course of 13 hours, where each participant wore four
standalone devices that integrated reflective PPG sensors. As
shown in Fig. 3, devices were attached using a strap at the
forehead, sternum (below clothing), ankle (supramalleolar),
and wrist (dorsal). PPG measurements were obtained using
an optical analog front-end at 128 Hz (MAX86141, Analog
Devices) that connected to an optical module (SFH7072,
ams-OSRAM) with a green LED (530 nm) and a photodi-
ode. Sensor data was continuously read by a System-on-a-
Chip (DA14695, Dialog Semi) and stored in NAND mem-
ory (TH58CYG3S0HRAIJ, Kioxia Corp.). Each device was
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Figure 3. (a) 14 participants wore 4 standalone sensing devices for PPG at
these locations for 13 hours. (b) PPG was recorded using an SFH7072 module
and a MAX86141 analog front-end. (c) The device at the sternum additionally
recorded the Lead I ECG to provide ground-truth heart rates for validation.

powered by a CR2032 coin cell battery, and all devices
were synchronized by aligning recorded signals offline (with
33 ms accuracy [17]). For ground truth, the sternum device
additionally collected the Lead I ECG through a biopotential
sensor (MAX30003, Analog Devices) that connected to gel
electrodes placed on the chest.

E. Experimental Protocol and Dataset

Our dataset was recorded as follows: Participants gathered
in the morning to start the study. An experimenter outfitted
each participant with four devices and ensured PPG and ECG
signal quality (20 min). Participants then took a minivan from
Zurich to Grindelwald (140 min), transitioned to a cablecar
and train to Jungfraujoch railway station at 3460 m above sea
level (80 min), walked through the museum and exhibition
area (60 min), walked the stairs up to the observatory (60 min),
sat down for lunch (60 min), walked through the outside area
(60 min), rested inside (60 min), took the train and cablecar
back to Grindelwald (80 min), and returned to Zurich on the
minivan (140 min). Finally, the experimenter removed and
collected all devices from the participants (20 min).

Across all 14 participants, we captured ∼13 hours of signals
from 4 PPG sensors per participant at 128 Hz, synchronized
across devices. In addition, we captured the continuous Lead I
ECG per participant for the same duration, synchronized to the
recorded PPG signals. In total, the dataset comprises 182 hours
of synchronized signals and HR values.

F. Processing

Ground-truth HR was extracted from 30-second windows
in the Lead I reference signal, moving in steps of 5 s and
using Pan-Tompkins [18] for R peak detection. PPG-based HR
was computed as outlined above for each device (i.e., signal
source) separately, and the fused PPG signal following our
method was computed per person as described above. As a
baseline, ICA was applied to the PPG signals and HR was
extracted from the best output following related work [7].

IV. RESULTS

Across all participants, the HR values based on the single
PPG signal recorded from the head was most accurate (mean

sensor sources error in bpm
configuration head sternum wrist ankle mean (std) median (std)

head × 4.38 (1.57) 1.98 (1.16)
sternum × 5.57 (3.35) 2.93 (2.62)
wrist × 8.22 (3.40) 5.75 (3.19)
ankle × 7.63 (4.02) 4.62 (4.00)

ICA
wearable (2) × × 5.04 (2.22) 1.96 (1.01)
wearable (3) × × × 5.72 (2.51) 1.75 (0.94)
all × × × × 5.01 (2.58) 1.53 (0.77)

Ours
wearable (2) × × 3.52 (1.90) 1.47 (1.30)
wearable (3) × × × 3.01 (1.44) 0.99 (1.04)
all × × × × 2.37 (1.14) 0.53 (0.48)

Table I
ERRORS IN HR CALCULATED FROM PPG SIGNAL COMBINATIONS.

error 4.38 bpm), followed by the sternum (5.57 bpm), ankle
(7.63 bpm), and wrist (8.22 bpm). Error magnitudes thereby
plausibly correspond to the amount of motion experienced by
each device and thus body site during the outside activities.

We evaluated the performance of the proposed fusion
method and ICA in three configurations as shown in Tab. I
across four, three, and two devices, respectively.

A. Cross-sensor Signal Fusion

The proposed signal fusion method overall produced HR
values with the lowest mean and median error. All three
combinations resulted in a lower mean and median HR error
than obtaining HR values from any of the sensor devices alone.

Compared to the HR calculated from the best-performing
single device (i.e., head), the mean error decreased by 20–
46%, whereas the median HR error was 26–73% lower. As
shown in Fig. 4, this substantial reduction in HR error is not
just present during phases of high HR error in individual PPG
signals (higher percentiles, right); it is also evident when the
HR error in the contributing PPG signals is already low (lower
percentiles, left), which highlights the potential of our method
across signal quality ranges.
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Figure 4. Percentiles of HR segments sorted by error, comparing mean error
by device placements and aggregation method across all 14 participants.



fu
si

on
PP

G
 s

ig
na

ls
head sternum wrist ankle

Figure 5. Three examples of four PPG signals from different body locations
and the fused output signal produced by our method.

Fig. 4 additionally juxtaposes the error reduction for multi-
site signal integration (fusion, ICA) and single-site PPG-based
HR calculation. This further illustrates the usefulness of multi-
site PPG for robust HR calculation during motion and activity.

B. ICA

Comparing the best signal output of ICA with the individual
device placements, in no setting it produced a lower mean
error in HR than using the best-performing input PPG from
the head. However, this signal from ICA-based processing did
result in HR with a lower median error than HR from any
single PPG. This suggests that it can be useful for more robust
HR detection in most cases, but it also indicates that its output
is more severely corrupt with higher-error HR calculation
when ICA does not output a good PPG signal.

V. CONCLUSION

We have introduced a novel method for robustly estimating
HR from PPG signals captured in real-world settings. Our
method takes as input PPG from multiple sensors, distributed
across the wearer’s body, and dynamically assesses the quality
of individual samples before synthesizing a fused signal using
weighted input portions. Our method is agnostic to the number
of PPG sources or body sites where sensors are worn, and
its computational efficiency allows it to scale to a number of
distributed sensors. Through dynamic signal integration and
synthesis, our method implicitly leverages moments of lower
motion and thus signal artifacts for any sensor to represent
such portions more dominantly in the fused output.

We evaluate our method on a novel dataset that we captured
from 14 participants over 13 hours during outdoor and moun-
tain activities. Four small wearable devices distributed over the
body continuously recorded PPG signals, synchronized with
a Lead I ECG captured for ground-truth HR calculation for
each participant. Our fusion method predicted HR values with
a mean error that is 71% lower than PPG-based HR from
the wrist (91% lower median error even), and 46% lower
mean error than HR from the forehead. The fusion benefits
of our method remain even for combinations of wrist+head
(e.g., smartwatch+smartglasses), where the mean error is still
20% lower than on just the head (26% lower median error).
Fig. 5 shows a qualitative assessment of how our method

recovers PPG morphology with examples from our dataset
when individual HR estimation had a high error. We believe
that our results can inspire further research on distributed
wearable health monitoring systems in the context of body
sensor networks and physiological sensing to further advance
reliable and continuous physiological monitoring in the wild
outside controlled laboratory conditions.
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