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firstname.lastname@inf.ethz.ch

Abstract—While highly important for a person’s mood, pro-
ductivity, and physical performance, perceived sleep quality is
challenging to model and, thus, predict with passive means such
as physiological and behavioral signals alone. In this paper, we
propose a novel method that diverges from traditional feature-
based modeling of sleep quality. Instead, our method is unsu-
pervised and derives states of cardiac activity from polysomnog-
raphy (PSG) recordings of more than 6,800 participants. We
then demonstrate that the proportion of time spent in these
states strongly correlates with perceived sleep quality using a
longitudinal study of 16 participants over one month. Our method
classifies participants’ perceived sleep quality with a balanced
accuracy of 68%, significantly exceeding prior methods and
feature-based approaches that incorporate established metrics of
cardiac activity. Interestingly, we find that the states of cardiac
activity our method derives oppose traditional sleep stages—even
though the states seem easily explainable based on simple metrics
of cardiac activity. Thus, we provide evidence that there are
still little-understood processes during sleep that need further
investigation, potentially even a rethinking of sleep analysis,
especially for perceived sleep quality.

Index Terms—sleep quality, cardiac activity, unsupervised
learning, wearable sensor

I. INTRODUCTION

Sleep quality is crucial for overall well-being, impacting
productivity, mood, and physical strength [1], [2]. Its signif-
icance is even more pronounced in individuals with chronic
conditions like multiple sclerosis or Parkinson’s disease, in-
fluencing recovery, pain management, and fatigue [3]. In the
general population, sleep quality is a key indicator of various
sleep disorders and medical conditions [4], [5]. Unaddressed
sleep disorders greatly heighten the risk of medical and
psychiatric illnesses, affecting potentially over 40% of the
population [6]. Consequently, understanding sleep quality and
detecting sleep disorders early is increasingly vital.

Polysomnography (PSG) is the gold standard for sleep study
measurements, typically conducted in specialized labs [7].
PSG involves overnight stays and comprehensive signal
recording, analyzed by medical professionals for reliable sleep
analysis [8]. However, due to its high costs, researchers have
explored alternatives such as wearables for broader and more
cost-effective sleep quality assessments [8], [9]. While they
provide inferior signal quality and modalities, they can be
conducted passively, outside lab environments, and afford
more longitudinal studies [7], [10].
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Fig. 1. We make use of clusters of cardiac activity learned in an unsupervised
manner from PSG recordings to predict perceived sleep quality during an
intensive longitudinal study with a wrist-worn wearable sensor.

Using a wrist-worn accelerometer, actigraphy devices have
emerged as reliable sleep-wake classifiers [11], [12]. Classify-
ing sleep stages on such devices is difficult and previous work
has often used multimodal sensor designs (e.g., photoplethys-
mography and accelerometer [13]). Though equally desirable,
few wearable efforts have been capable of predicting perceived
sleep quality [4]. A recent study on skin temperature and elec-
trodermal activity on the wrist in addition to wrist movement to
predict binary perceived sleep quality [4] achieved an accuracy
of 57%—too low for practical purposes.

In this paper, we present a novel method for perceived sleep
quality estimation. We derive states of cardiac activity from a
large PSG study with more than 6,800 participants [14] using
unsupervised learning. During an intensive longitudinal study
including a wearable sensor [4], we used the derived states to
predict daily perceived sleep quality for 16 participants across
one month. Our findings highlight that some of the processes
while sleeping are still little-understood and not captured by
commonly used metrics of cardiac activity—or sleep stages.
Using the time spent in the calculated states of cardiac
activity, we achieve a balanced accuracy of 68%—significantly
outperforming existing approaches [4] and classical feature-
based classification.

II. DATASETS AND METHODS

A. Datasets

We make use of the ‘Multi-Ethnic Study of Atherosclerosis’
(MESA) and the M2Sleep dataset [4], [14]. In the MESA



dataset, sleep stages and cardiac activity were recorded for
6,814 participants during a one-night stay in a sleep laboratory.
In the M2Sleep dataset, 16 participants (5 female, 11 male),
ages 19–35 years, wore a wearable sensor (Empatica E4) for
one month and recorded their perceived sleep quality each
morning. Participants also provided their rough sleep and wake
times. We use both datasets to derive states of cardiac activity
in an unsupervised manner to predict perceived sleep quality
on the M2Sleep dataset.

Ultimately, we model perceived sleep quality based on
various combinations of computed states of cardiac activity,
well-established heart rate variability (HRV) metrics, actigra-
phy data, and participants’ sleep duration. On the M2Sleep
dataset, we use the output of the Empatica E4 to derive the
above features. Worn at the wrist, the Empatica E4 supplies
signals of blood volume pulse (BVP) at 64 Hz, and inertial
motion at 32 Hz. Even though the MESA dataset also supplies
electrocardiogram (ECG) signals to measure cardiac activity,
we used a blood volume pulse signal recorded at the finger to
match the setting of the M2Sleep dataset as closely as possible.

B. Signal aggregation

To assign accurate moments of sleep to the M2Sleep dataset,
we fused the estimations of widely verified methods (Sadeh
et al. [11], Cole-Kripke [12]) on inertial motion signals over
2-hour intervals centered on the sleep and wake times reported
by participants. Similar to [4], we derived activity counts to
quantify the amount of wrist movement while asleep [13].

We obtain inter-beat intervals from the BVP signals in both,
the MESA and M2Sleep dataset in non-overlapping windows
of 30 seconds. For the calculation of HRV metrics, we examine
the 10-minute intervals centered on each 30-second window.
In particular, we first apply a Chebychev Type 2 4th order
bandpass filter with cutoff frequencies of 0.5 and 10 Hz to
each of the 10 minute intervals (as recommended for short
BVP signals [15]). We then obtain heartbeats from HeartPy’s
analysis [16]. Based on the inter-beat intervals across the
10 minutes, we calculate participants’ heart rates (HR) at 1 Hz
and various HRV metrics: SD1, SD2, SDNN, LF, HF, LF/HF,
VLF, mean NNI, NNI20, NNI50, pNNI20, and pNNI50 [17].
During the initial 30-second window, we calculate minimum,
mean, and maximum HR and the standard deviation of HR. To
each 30-second window, we thus attribute summary statistics
of HR during the 30 seconds, a 10-minute HR signal, and
various HRV metrics (based on 10 minutes). We normalize
all HRV metrics and the summary statistics of the HR per
participant by subtracting each participant’s average value per
metric and dividing by the respective standard deviation [18].

C. Clustering algorithms for cardiac activity

We compare three unsupervised clustering techniques that
each assign 30-second windows of data to one of C clusters.
Based on each window’s average HR and its associated HRV
metrics normalized per participant, we use ‘K-Means’ and a
‘Gaussian Mixture Model’ (GMM) [19]. For each 30-second
window, we further use ‘GEMINI’ [20] based on the attributed

TABLE I
CLASSIFICATION PERFORMANCE FOR PERCEIVED SLEEP QUALITY.

Number of
clusters C Features BA F1 Cohen’s κ Classifier

0 ✓ 58% 0.58 0.15 KNN
3 × 63% 0.63 0.25 KNN
3 ✓ 64% 0.65 0.28 KNN
5 × 58% 0.70 0.18 KNN
5 ✓ 62% 0.65 0.24 NN
7 × 62% 0.72 0.24 SVM
7 ✓ 64% 0.66 0.27 NN
10 × 68% 0.76 0.36 SVM
10 ✓ 67% 0.67 0.24 SVM
15 × 62% 0.67 0.24 NN
15 ✓ 63% 0.66 0.26 NN

10-minute HR signal. We integrate a 1D convolutional neural
network (LeNet-5 [21]) into the GEMINI framework to extract
features from the 10-minute HR signal. Input to all clustering
algorithms is C—the number of intended clusters. Each 30-
second window is thus assigned to one of the C clusters by
each of the three clustering algorithms. Based on the MESA
and the M2Sleep dataset, we derive C clusters of cardiac
activity while participants were asleep, which we will refer
to as states of cardiac activity. From M2Sleep, we also derive
C clusters of cardiac activity while participants were awake.

D. Models for Perceived Sleep Quality

We model binary normalized perceived sleep quality on the
M2Sleep dataset given the high intra- as well as interindividual
variability of subjective phenomena such as sleep quality [18].
That is, we predict whether a perceived sleep quality label
lies above or below each participant’s mean sleep quality
label, which we will simply refer to as perceived sleep
quality. We compare 5 different classifiers: Random Forest
(RF), Support Vector Machine (SVM), K-Nearest Neighbours
(KNN), Logistic Regression (LR), and a small Multi-Layer
Perceptron (NN) [19]. We evaluate each classifier using leave-
one-participant-out cross-validation. At each split, we tune the
hyperparameters of each algorithm on all participants apart
from the left-out subject based on 3-fold cross-validation.

Input to these models is either the distribution of time
attributed to each of the C states of cardiac activity through-
out the night, or hand-crafted features, or both. The hand-
crafted features include participants’ sleep duration, summary
statistics about activity counts derived from the wrist’s motion
during sleep, summary statistics of the HR during sleep, and
well-established HRV features derived while asleep. Similar
to the perceived sleep quality labels, we normalize all model
inputs per participant given the high variability of HR metrics
between two individuals (cf. [18]).

III. RESULTS

We investigate the performance at binary normalized per-
ceived sleep quality classification in Table I. We compare
modeling perceived sleep quality only based on hand-crafted
features (sleep duration, activity counts, and cardiac activity),
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Fig. 2. State visualization using normalized heart rate (HR) features.

to constructing 3, 5, 7, 10, or 15 clusters (C) for participants’
cardiac activity while asleep. For each value of C we assess
whether including the hand-crafted features is of value and
report the performance of the best-performing classifier (out
of RF, LR, SVM, KNN, and NN) in the classifier column.

We find that dividing cardiac activity during the night into
10 states results in the highest model performance: SVM with
a balanced accuracy (BA) of 68% (0.76 F1, 0.36 Cohen’s κ)
when excluding hand-crafted features. In terms of balanced
accuracy, this is closely followed by deriving 10 states of
cardiac activity and including the hand-crafted features as
input to a SVM classifier. Modeling perceived sleep quality
based on the time spent in 7 clusters of cardiac activity
alone results in the next best F1 score of 0.72 (62% BA
and 0.24κ). The next highest κ is achieved when we predict
perceived sleep quality based on 7 clusters of cardiac activity
and hand-crafted features (0.27κ, 64% BA, 0.66 F1). Modeling
perceived sleep quality only based on the hand-crafted features
leads to a balanced accuracy of 58% (0.58 F1, and 0.15κ).

A. Cardiac activity states from the Gaussian mixture model

In the following, we describe the states of cardiac activity
derived using the Gaussian mixture model (GMM) using
simple HR summary statistics and highlight their relation to
traditional sleep stages and perceived sleep quality. Represen-
tatively, we only investigate the states of cardiac activity de-
rived using the GMM, as they show very similar characteristics
to the states derived using GEMINI and K-Means.

1) Description of cardiac activity states: Figure 2 visual-
izes the 10 clusters derived using a GMM in terms of easily
interpretable HR features. The 10 clusters show a broad range
of patterns in terms of the per-participant normalized standard
deviation of the HR and the maximum, mean, and minimum
HR during a 30-second window. While 30-second windows
that fall into cluster 9 have on average a high mean HR and
around average minimum, and maximum HR, cluster 4 is
characteristic for 30-second windows with very low average
HR but very high variation. Cluster 1 and 3 are both dominated
by 30-second windows with highly fluctuating HR, but differ
in terms of average HR.

2) Cardiac activity states and traditional sleep stages:
Figure 3 shows how the clusters derived by the GMM relate
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Fig. 3. Comparison of sleep stages and derived states of cardiac activity. The
color corresponds to the number of 30-second windows (100 participants).

to professionally scored sleep stages for 100 randomly chosen
participants of the MESA dataset. With 10 states (C =10) we
use the best-performing model of Table I. We find that the
derived states align only partially with specific sleep stages.
State 3 and 7, for instance, seem dominated by participants
being awake. State 0 and 5, on the other hand, are mainly
comprised of N2 and N3 (deep sleep) with some 30-second
windows also falling in the REM phase. Most states do not
show a clear trend. Similarly, no sleep stage is only attributed
to a single state of cardiac activity.

3) Cardiac activity states and perceived sleep quality:
Figure 4 shows how the average time spent in the cardiac states
derived using a GMM relates to binary normalized perceived
sleep quality on the M2Sleep dataset. We find that participants
who report high perceived sleep quality tend to have 5%
more epochs attributed to cardiac state 0 than participants who
report low perceived sleep quality: the largest difference of
any state. As shown in Figure 2, cardiac state 0 comprises 30-
second windows with relatively low HR that fluctuate only
little. Mostly, these windows correspond to the N2 sleep stage
but also to N3 (deep sleep) and REM sleep.

IV. DISCUSSION

Our results highlight that states of cardiac activity derived
using unsupervised clustering techniques predict perceived
sleep quality significantly better than traditional hand-crafted
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Fig. 4. Comparison of the % of time spent in each state of cardiac activity
for low & high binary normalized perceived sleep quality.



features of cardiac activity. The states of cardiac activity we
derived do not link well to traditional sleep stages, however,
are easily interpretable and distinguishable even using simple
HR metrics. Our work thus clearly highlights that some of the
processes influencing (perceived) sleep quality are still little
understood. This poses a new avenue for sleep research.

Despite no clear connection between traditional sleep stages
and the states of cardiac activity we derived, there is evidence
of an interplay. State 0 in Figure 2 showed the greatest differ-
ence in distribution between high- and low-quality nights. In
Figure 3, we see that it comprises mostly N2 sleep, but also N3
(deep sleep) and REM sleep—hinting that the interplay of the
three sleep stages might be of importance. Cycling through the
different sleep stages is—per definition—crucial for objective
sleep quality [22]. Sufficient REM and N3 (deep sleep) have
also been linked to subjective sleep quality, however [22].
This interplay of the different sleep stages captured through
unsupervised clustering of cardiac activity offers a potential
intuition as to why the derived states are more explanatory
of perceived sleep quality than hand-craft features. Generally,
this highlights that some of the dynamics that are visible in
cardiac activity while asleep and influence perceived sleep
quality extend past the traditional definition of sleep stages
and our current means of sleep analysis.

Our proposed methodology merges the advantages of large
in-lab PSG studies with smaller in-the-wild wearable sensor
studies to identify hidden states of cardiac activity. However,
while the MESA dataset is a very large and representative in-
lab PSG study, the universality of our findings and the success
of our methodology for a broader population remain unclear
given the relatively small size of the M2Sleep dataset. Larger
wearable sensor datasets that incorporate information about
perceived sleep quality are needed to confirm the suitability
of our approach.

V. CONCLUSION

Our findings in this paper demonstrate that there are states
of cardiac activity during sleep that predict perceived sleep
quality better than traditional features of cardiac activity (i.e.,
HR and HRV) often used in related analyses. While these
states are easily distinguishable using only simple heart rate
summary statistics, they do not relate well to the traditional
sleep stages. However, we demonstrate that different states of
cardiac activity might capture relationships between different
sleep stages (N2, N3, and REM) that were found important
for sleep quality by related works and might explain some of
our findings. Overall, we highlight that we need to incorporate
new methods of analysis into sleep research to improve our
understanding of (perceived) sleep quality.

VI. DATA AVAILABILITY

The M2Sleep dataset is publicly available [4]. The MESA
dataset is available upon approval from the ‘National Sleep
Research Resource’ (NSRR) [23].
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