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Abstract. Today’s Mixed Reality head-mounted displays track the user’s
head pose in world space as well as the user’s hands for interaction in
both Augmented Reality and Virtual Reality scenarios. While this is ad-
equate to support user input, it unfortunately limits users’ virtual rep-
resentations to just their upper bodies. Current systems thus resort to
floating avatars, whose limitation is particularly evident in collaborative
settings. To estimate full-body poses from the sparse input sources, prior
work has incorporated additional trackers and sensors at the pelvis or
lower body, which increases setup complexity and limits practical appli-
cation in mobile settings. In this paper, we present AvatarPoser, the first
learning-based method that predicts full-body poses in world coordinates
using only motion input from the user’s head and hands. Our method
builds on a Transformer encoder to extract deep features from the input
signals and decouples global motion from the learned local joint orien-
tations to guide pose estimation. To obtain accurate full-body motions
that resemble motion capture animations, we refine the arm joints’ po-
sitions using an optimization routine with inverse kinematics to match
the original tracking input. In our evaluation, AvatarPoser achieved new
state-of-the-art results in evaluations on large motion capture datasets
(AMASS). At the same time, our method’s inference speed supports real-
time operation, providing a practical interface to support holistic avatar
control and representation for Metaverse applications.

Keywords: 3D Human Pose Estimation, Inverse Kinematics, Augmented
Reality, Virtual Reality

1 Introduction

Interaction in today’s Mixed Reality (MR) environments is driven by the user’s
head pose and input from the hands. Cameras embedded in head-mounted dis-
plays (HMD) track the user’s position inside the world and estimate articulated
hand poses during interaction, which finds frequent application in Augmented
Reality (AR) scenarios. Virtual Reality (VR) systems commonly equip the user
with two hand-held controllers for spatial input to render haptic feedback. In
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Fig. 1. We address the new problem of full-body avatar pose estimation from sparse
tracking sources, which can significantly enhance embodiment, presence, and immersion
in Mixed Reality. Our novel Transformer-based method AvatarPoser takes as input
only the positions and orientations of one headset and two handheld controllers (or
hands), and generates a full-body avatar pose over 22 joints. Our method reaches
state-of-the-art pose accuracy, while providing a practical interface into the Metaverse.

both cases, even this sparse amount of tracking information suffices for interact-
ing with a large variety of immersive first-person experiences.

However, the lack of complete body tracking can break immersion and re-
duce the fidelity of the overall experience as soon as interactions exceed manual
first-person tasks. This not just becomes evident as users see their own bodies
during interaction in VR, but also in collaborative tasks in AR that necessarily
limit the representation of other participants to their upper bodies, rendered to
hover through space. Studies on avatar appearances have shown the importance
of holistic avatar representations to achieve embodiment [49] and to establish
presence in the virtual environment [19]. Applications such as telepresence or
productivity meetings would greatly benefit from more holistic avatar represen-
tations that approach the fidelity of motion-capture animations.

This challenge will likely not be addressed by future hardware improvements,
as MR systems increasingly optimize for mobile use outside controlled spaces that
could accommodate comprehensive tracking. Therefore, we cannot expect future
systems to expand much on the tracking information that is available today.
While the headset’s cameras may partially capture the user’s feet in opportune
moments with a wide field of view, head-mounted cameras are generally in a
challenging location for capturing ego-centric poses [50].

Animating a complex full-body avatar based on the sparse input available
on today’s platforms is a vastly underdetermined problem. To estimate the com-
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plete set of joint positions from the limited tracking sources, previous work has
constrained the extend of motion diversity [3] or used additional trackers on the
user’s body, such as a 6D pelvis tracker [53] or several body-worn inertial sen-
sors [20]. Dittadi et al.’s recent method estimates full-body poses from only the
head and hand poses with promising results [13]. However, since the method en-
codes all joints relative to the pelvis, it implicitly assumes knowledge of a fourth
3D input (i.e., the pelvis).

For practical application, existing methods for full-body avatar tracking come
with three limitations: (1) Most general-purpose applications use Inverse Kine-
matics (IK) to estimate full-body poses. This often generates human motion that
appears static and unnatural, especially for those joints that are far away from
the known joint locations in the kinematic chain. (2) Despite the goal of us-
ing input from only the head and hands, existing deep learning-based methods
implicitly assume knowledge of the pelvis pose. However, pelvis tracking may
never be available in most portable MR systems, which increases the difficulty
of full-body estimation. (3) Even with a tracked pelvis joint, animations from
estimated lower-body joints sometimes contain jitter and sliding artifacts. These
tend to arise from unintended movement of the pelvis tracker, which is attached
to the abdomen and thus moves differently from the actual pelvis joint.

In this paper, we propose a novel Transformer-based method for full human
pose estimation with only the sparse tracking information from the head and
hand (or controller) poses as input. With AvatarPoser, we decouple the global
motion from learned pose features and use it to guide our pose estimation. This
provides robust results in the absence of other inputs, such as pelvis location
or inertial trackers. To the best of our knowledge, our method is the first to
recover the full-body motion from only the three inputs across a wide variety of
motion classes. Because the predicted end effector poses of an avatar accumulate
errors through the kinematic chain, we optimize our initial parameter estimations
through inverse kinematics. This combination of our learning-based method with
traditional model-based optimization strikes a good balance between full-body
style realism and accurate hand control.

We demonstrate the effectiveness of AvatarPoser on the challenging AMASS
dataset. Our proposed method achieves state-of-the-art accuracy on full-body
avatar estimation from sparse inputs. For inference, our network reaches rates
of up to 662 fps. In addition, we test our method on data we recorded with
an HTC VIVE system and find good generalization of AvatarPoser to unseen
user input. Taken together, our method provides a suitable solution for practical
applications that operate based on the available tracking information on current
MR headsets for application in both, Augmented Reality scenarios and Virtual
Reality environments.

2 Related Work

Full-Body Pose Estimation from Sparse Inputs. Much prior work on full-
body pose estimation from sparse inputs has used up to 6 body-worn inertial
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sensors [48; 20; 55; 54]. Because these 6 IMUs are distributed over head, arms,
pelvis and legs, motion capture becomes inflexible and unwieldly. CoolMoves [3]
was first to use input from only the headset and hand-held controllers to esti-
mate full-body poses. However, the proposed KNN-based method interpolates
poses from a smaller dataset with only specific motion activities and it is un-
clear how well it scales to large datasets with diverse subjects and activities, also
for inference. LoBSTr [53] used a GRU network to predict the lower-body pose
from the past sequence of tracking signals of the head, hands, and pelvis, while
it computes the upper-body pose to match the tracked end-effector transforma-
tions via an IK solver. The authors also highlight the difficulty of developing
a system for estimations from 3 sources only, especially when distinguishing a
wide range of human poses due to the large amount of ambiguity. More recently,
Dittadi et al. proposed a VAE-based method to generate plausible and diverse
body poses from sparse input [13]. However, their method implicitly uses knowl-
edge of the pelvis as a fourth input location by encoding all joints relative to the
pelvis, which leaves the highly ill-posed problem with only three inputs unsolved.

Vision Transformer. Transformers have achieved great success in their initial
application in natural language processing [46; 12; 11]. The use of Transformer-
based models has also significantly improved the performance on various com-
puter vision tasks such as image classification [14; 28; 16], image restoration [26;
56; 52], object detection [8; 62; 44], and object tracking [33; 59; 43]. In the area
of human pose estimation, METRO [27] was first to apply Transformer models
to vertex-vertex and vertex-joint interactions for 3D human pose and mesh re-
construction from a single image. PoseFormer [60] and ST-Transformer [4] used
Transformers to capture both body joint correlations and temporal dependen-
cies. MHFormer [25] leveraged the spatio-temporal representations of multiple
pose hypotheses to predict 3D human pose from monocular videos. In contrast
to their offline setting where the complete time series of motions are available,
our method focuses on the practical scenario where streaming data is processed
by our Transformer in real-time without looking ahead.

Inverse Kinematics. Inverse kinematics (IK) is the process of calculating the
variable joint parameters to produce a desired end-effector location. IK has been
extensively studied in the past, with various applications in robotics [17; 37; 51;
40; 32] and computer animation [58; 18; 42; 36; 2]. Because no analytical solution
usually exists for an IK problem, the most common way to solve the problem is
through numerical methods via iterative optimization, which is costly. To speed
up computation, several heuristic methods have been proposed to approximate
the solution [6; 30; 39; 9]. Recently, learning-based IK solutions have attracted
attention [10; 7; 47; 38; 5; 15], because they can speed up inference. However,
these methods are usually restricted to a scenario with a known data distribu-
tion and may not generalize well. To overcome this problem, recent works have
combined IK with deep learning to make the prediction more robust and flexi-
ble [41; 24; 53; 21; 23; 57]. Our proposed method combines a deep neural network
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with IK optimization, where the IK component of our method refines the arm
articulation to match the tracked hand positions from the original input (i.e.,
position of the hands or hand-held controllers).

3 Method

3.1 Problem Formulation

Although MR systems differ in the tracking technology they rely on, the global
positions in Cartesian coordinates p1×3 and orientations in axis-angle represen-
tation Φ1×3 of the headset and the hand-held controllers or hands are generally
available. From these, AvatarPoser reconstructs the position of the articulated
joints of the user’s full body within the world w. This mapping f is described
through the following equation,

T1:F
1:τ = f({pw,Φw}1:S1:τ ), (1)

where S corresponds to the number of joints tracked by the MR system, F is the
number of joints of the full-body skeleton, τ matches the number of observed
MR frames that are considered from the past, and T ∈ SE(3) is the body joint
pose which is represented by T = {p,Φ}.

Specifically, we use the SMPL model [29] to represent and animate our human
body pose. We use the first 22 joints defined in the kinematic tree of the SMPL
human skeleton and ignore the pose of fingers similar to previous work [13].

3.2 Input and Output Representation

Since the 6D representation of rotations has proved effective for training neural
networks due to its continuity [61], we convert the default axis-angle representa-
tion Φ1×3 in the SMPL model to the rotation matrix R3×3 and discard the last
row to get the 6D rotation representation θ1×6. During development, we observed
that this 6D representation produces smooth and robust rotation predictions.

In addition to the accessible positions p1×3 and orientations R3×3 of the
headset and hands, we also calculate the corresponding linear and angular ve-
locities to obtain a signal of temporal smoothness. The linear velocity v is given
by backward finite difference at each time step t:

vt = pt − pt−1 (2)

Similar, the angular velocity Ω can be calculated by:

Ωt = R−1
t−1Rt (3)

followed by also converting to its 6D representation ω1×6. As a result, the final
input representation is a concatenated vector of position, linear velocity, rotation,
and angular velocity from all given sparse inputs, which we write as:
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Therefore, when the number of sparse trackers S equals 3, the number of input
features at each time step is 54.

The output of our rotation-based pose estimation network is the local rota-
tion at each joint with respect to the parent joints θlocal. The rotation value at
the pelvis, which is the root of the SMPL model, refers to the global orienta-
tion θglobal. As we use 22 joints to represent the full-body motion, the output
dimension at each time step is 132.

3.3 Overall Framework for Avatar Full-Body Pose Estimation

Fig. 2 illustrates the overall framework of our proposed method AvatarPoser.
AvatarPoser is a time series network that takes as input the 6D signals from
the sparse trackers over the previous N − 1 frames and the current N th frame
and predicts global orientation of the human body as well as the local rotations
at each joint with respect to its parent joint. Specifically, AvatarPoser consists
of four components: a Transformer Encoder, a Stabilizer, a Forward-Kinematics
(FK) Module, and an Forward-Kinematics (IK) Module. We designed the net-
work such that each component solves a specific task.

Transformer Encoder. Our method builds on a Transformer model to extract
the useful information from time-series data, following its benefits in efficiency,
scalability, and long-term modeling capabilities. We particularly leverage the
Transformer’s self-attention mechanism to distinctly capture global long-range
dependencies in the data. Specifically, given the input signals, we apply a lin-
ear embedding to enrich the features to 256 dimensions. Next, our Transformer
Encoder extracts deep pose features from previous time steps from the headset
and hands, which are shared by the Stabilizer for global motion prediction, and
a 2-layer multi-layer perceptron (MLP) for local pose estimation, respectively.
We set the number of heads to 8 and the number of self-attention layers to 3.

Stabilizer. The Stabilizer is a 2-layer MLP that takes as input the 256-dimensional
pose features from our Transformer Encoder. We set the number of nodes in the
hidden layer to 256. The output of the network produces the estimated global
orientation represented as the rotation of the pelvis; therefore, it is responsible
for global motion navigation by decoupling global orientation from pose features
and obtaining global translation from the head position through the body kine-
matic chain. Although it may be intuitive and possible to calculate the global
orientation from a given head pose through the kinematic chain, the user’s head
rotation is often independent of the motions of other joints. As a result, the global
orientation at the pelvis is sensitive to the rotation of the head. Considering the
scenario where a user stands still and only rotates their head, it is likely that the
global orientation may have a large error, which often results in a floating avatar.
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Fig. 2. The framework of our proposed AvatarPoser for Mixed Reality avatar full-
pose estimation integrates four parts: a Transformer Encoder, a Stabilizer, a Forward-
Kinematics Module, and an Inverse-Kinematics Module. The Transformer Encoder
extracts deep pose features from previous time step signals from the headset and hands,
which are split into global and local branches and correspond to global and local pose
estimation, respectively. The Stabilizer is responsible for global motion navigation by
decoupling global orientation from pose features and estimating global translation from
the head position through the body’s kinematic chain. The Forward-Kinematics Module
calculates joint positions from a human skeleton model and a predicted body pose.
The Inverse-Kinematics Module adjusts the estimated rotation angles of joints on the
shoulder and elbow to reduce hand position errors.

Forward-Kinematics Module. The Forward-Kinematics (FK) Module calcu-
lates all joint positions given a human skeleton model and predicted local ro-
tations as input. While rotation-based methods provide robust results without
the need to reproject onto skeleton constraints to avoid bone stretching and in-
valid configurations, they are prone to error accumulating along the kinematic
chain. Training the network without FK could only minimize the rotation angles,
but would not consider the actually resulting joint positions during optimization.

Inverse-Kinematics Module. A main problem of rotation-based pose estimation
is that the prediction of end-effectors may deviate from their actual location—
even if the end effector served as a known input, such as in the case of hands. This
is because for end-effectors, the error accumulates along the kinematic chain.
Accurately estimating the position of end-effectors is particularly important in
MR, however, because hands typically often used for providing input and even
small errors in position can significantly disturb interaction with virtual interface
elements. To account for this, we integrate a separate IK algorithm that adjusts
the arm limb positions according to the known hand positions.
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Fig. 3. Left: Our Stabilizer predicts global orientation and, thus, global motion (right
avatar) that is significantly more robust than simply aligning the head of predicted body
with the known input orientation (left avatar). Right: To account for accumulated
errors along the joint hierarchy, we integrate an additional IK step to optimize the
end-effectors’ locations and match their target positions.

Our methods performs IK-based optimization based on the estimated pa-
rameters output by our neural network. This combines the individual benefits of
both approaches as explored in prior work (e.g., [24; 53]). Specifically, after our
network produces an output, our IK Module adjusts the estimated rotation an-
gles of joints on the shoulder and elbow to reduce the error of hand positions as
shown in Fig. 3. We thereby fix the position of the shoulder and do not optimize
the other rotation angles, because we found the resulting overall body posture
to appear more accurate than the output of the IK algorithm.

Given the initial rotation values θ0 = {θshoulder0 , θelbow0 } estimated from our
Transformer network, we calculate the positional error E of the hand according
to the input signals and estimated hand position through the FK Module by

E(θi) =
∥∥phand

gt − FK(θi)
hand

∥∥2
2

(5)

Then the rotation value is updated by:

θi+1 = θi + η · f(∇E(θi)) (6)

where η is the learning rate and f(·) is decided by the specific optimizer. To
enable fast inference for real application, we stop the optimization after a fixed
number of iterations.

There are several classical non-linear optimization algorithms that are suit-
able for optimizing inverse kinematics problems, such as Gauss-Newton method
or the Levenberg-Marquardt method [34]. In our experiment, we leverage the
Adam optimizer [22] due to its compatibility with Pytorch. We set the learning
rate as 1 × 10−3.

Loss Function. The final loss function is composed of an L1 local rotational loss,
an L1 global orientation loss, and an L1 positional loss, denoted by:

Ltotal = λoriLori + λrotLrot + λfkLfk (7)
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Table 1. Comparisons of MPJRE [◦], MPJPE [cm], and MPJVE [cm/s] to State-of-the-
Arts on AMASS dataset. For each metric, the best result is highlighted in boldface.

Four Inputs Three Inputs
Methods MPJRE MPJPE MPJVE MPJRE MPJPE MPJVE

Final IK 12.39 9.54 36.73 16.77 18.09 59.24
CoolMoves 4.58 5.55 65.28 5.20 7.83 100.54
LoBSTr 8.09 5.56 30.12 10.69 9.02 44.97
VAE-HMD 3.12 3.51 28.23 4.11 6.83 37.99
AvatarPoser (Ours) 2.59 2.61 22.16 3.21 4.18 29.40

We set the weights λori, λrot, and λfk to 0.05, 1, and 1, respectively. For fast
training, we do not include our IK Module into the training stage.

4 Experiments

4.1 Data Preparation and Network Training

We use the subsets CMU [1], BMLrub [45] and HDM05 [35] in AMASS [31]
dataset for training and testing. The AMASS dataset is a large human motion
database that unifies different existing optical marker-based MoCap datasets
by converting them into realistic 3D human meshes represented by SMPL [29]
model parameters. We split the three datasets into random training and test sets
with 90% and 10% of the data, respectively. For use on VR devices, we unified
the frame rate to 60 Hz.

To optimize the parameters of AvatarPoser, we adopt the Adam solver [22]
with batch size 256. We set the chunk size of input as 40 frames. The learning
rate starts from 1 × 10−4 and decays by a factor of 0.5 every 2 × 104 iterations.
We train our model with PyTorch on one NVIDIA GeForce GTX 3090 GPU. It
takes about two hours to train AvatarPoser.

4.2 Evaluation Results

We use MPJRE (Mean Per Joint Rotation Error [◦]), MPJPE (Mean Per Joint
Position Error [cm]), and MPJVE (Mean Per Joint Velocity Error [cm/s]) as our
evaluation metrics. We compare our proposed AvatarPoser with Final IK [2],
CoolMoves [3], LoBSTr [53], and VAE-HMD [13], which are state-of-the-art
methods working on the problems of avatar pose estimation from sparse inputs.

Since these state-of-the-art methods do not provide public source codes, we
directly run Final IK in Unity [2] and reproduce other methods to the best of our
knowledge. For a fair comparison, we train all the methods on the same training
and testing data. It should be noted that the original CoolMoves is a position-
based method, we adapt it to rotation-based method for a fair comparison with
other methods. We make all the methods work with both three (headset, con-
trollers) and four inputs (headset, controllers, pelvis tracker). When only three
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Fig. 4. Visual comparisons of different methods based on given sparse inputs for various
motions. Avatars are color-coded to show errors in red.

(a) Final IK (b) CoolMoves (c) LoBSTr

(d) VAE-HMD (e) AvatarPoser (Ours) (f) Ground Truth

Fig. 5. Visual results of our proposed method AvatarPoser compared to SOTA alter-
natives for a running motion. The change of color denotes different timestamp.

inputs are provided, for input representation we do not use the pose of pelvis
as a reference frame, and for the output we calculate the global orientation and
translation of human body at pelvis through the kinematic chains from the given
global pose of head.
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The numerical results for the considered metrics (MRJRE, MPJPE, and MPJVE)
for both four and three inputs are reported in Table 1. It can be seen that our
proposed AvatarPoser achieves the best results on all three metrics and outper-
forms all other methods. VAE-HMD achieves the second best performance on
MPJPE, which is followed by CoolMoves (KNN). Final IK gives the worst result
on MPJPE and MPJRE because it optimizes the pose of the end-effectors without
considering the smoothness of other body joints. As a result, the performance
of LoBSTr, which uses Final IK for upper body pose estimation, is also low. We
believe this shows the value in data-driven methods to learn motion from ex-
isting mocap datasets. However, it does not mean that traditional optimization
methods are not useful. In our ablation studies, we show how inverse kinematics
when combined with deep learning can improve the accuracy of hand positions.

To further evaluate the generalization ability of our proposed method, we
perform a 3-fold cross-dataset evaluation among different methods. To do so, we
train on two subsets and test on the other subset in a round robin fashion. Table 2
shows the experimental results of different methods tested on CMU, BMLrub,
and HDM05 datasets. We achieve the best results over almost all evaluation
metrics in all three datasets. Although Final IK performs slightly better than
AvatarPoser in terms of MPJVE in CMU, which can only means the motions
are a little bit smoother. However, the rotation error MPJRE and the position
error MPJPE of Final IK, which represent the accuracy of predictions, are much
larger than our method.

Table 2. Results of cross-dataset evaluation between different methods. The input
signals are from only three devices, i.e., one headset and two controllers. The best
results for each dataset and each evaluation metrics are highlighted in boldface.

Dataset Methods MPJRE MPJPE MPJVE

CMU

Final IK 17.80 18.82 56.83
CoolMoves 9.20 18.77 139.17
LoBSTr 12.51 12.96 49.94
VAE-HMD 6.53 13.04 51.69
AvatarPoser (Ours) 5.93 8.37 35.76

BMLrub

Final IK 15.93 17.58 60.64
CoolMoves 7.93 13.30 134.77
LoBSTr 10.79 11.00 60.74
VAE-HMD 5.34 9.69 51.80
AvatarPoser (Ours) 4.92 7.04 43.70

HDM05

Final IK 18.64 18.43 62.39
CoolMoves 9.47 17.90 140.61
LoBSTr 13.17 11.94 48.26
VAE-HMD 6.45 10.21 40.07
AvatarPoser (Ours) 6.39 8.05 30.85
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Table 3. Ablation studies. Best results are highlighted in bold for each metric.

Configurations MPJRE MPJPE-Full Body MPJPE-Hand

Default 6.39 8.05 1.86
No Stabilizer 6.39 9.29 2.15
Predict Pelvis Position 6.42 8.82 2.11
No FK Module 6.24 8.41 2.04
No IK Module 6.41 8.07 3.17

4.3 Ablation Studies

We perform an ablation study on the different submodules of our method and
provide results in Table 3. The experiments are conducted on the same test set
as HDM05 in Table 2. We use MPJRE [◦], MPJPE [cm] as our evaluation metrics
in the ablation studies to show the need for each component. In addition to the
position error across the full-body joints, we specifically calculate the mean error
on hands to show how the IK module helps improve the hand positions.

No Stabilizer. We remove the Stabilizer module, which predicts the global ori-
entation, and calculate the global orientation through the body kinematic chain
directly from the given orientation of the head. Table 3 shows that the MPJPE

drops without Stabilizer. This is because the rotation of the head is relatively
independent to the rest of the body. Therefore, the global orientation is highly
sensitive to random rotations of the head. Learning the global orientation from
richer information via the network is a superior way to solve the problem.

Predict Pelvis Position. In our final model, we calculate the global trans-
lation of the human body, which is located at the pelvis, from the input head
position through the kinematic chain. We also try directly regressing to the
global translation within the network, but the result is worse than computing
via the kinematic chain according to our evaluation results.

No FK Module. We also remove the FK Module, which means the network is
only trained to minimize the rotation angles without considering the positions
of joints after forward kinematics calculation. When we remove the FK module,
the MPJPE increases and the MPJRE decreases. This is intuitive as we only op-
timize the joint rotations without the IK module. While rotation-based methods
provide robust results without the need to reproject onto skeleton constraints to
avoid bone stretching and invalid configurations, they are prone to error accu-
mulation along the kinematic chain.

No IK Module. We remove IK Module and only provide the results directly
predicted by our neural network. Removing the IK module has little effect on the
average position error of full-body joints. However, the average position error of
the hands increases by almost 41%.
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4.4 Running Time Analysis

We evaluated the run-time inference performance of our network AvatarPoser
and compared it to the inference of VAE-HMD [13], LoBSTr [53], CoolMoves [3]
as shown in Fig. 6. Note that we did not include Final IK [2], because its in-
tegration into Unity makes accurate measurements difficult. To conduct our
comparison, we modified LoBSTr to directly predict full-body motion via the
GRU (denoted as LoBSTr-GRU) instead of combining Final IK and the GRU
together. We measured the run time per frame (in milliseconds) on the evaluated
test set on one NVIDIA 3090 GPU. For a fair comparison, we only calculated
the network inference time of AvatarPoser here. Our AvatarPoser achieves a
good trade-off between performance and inference speed.
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Fig. 6. Comparisons of network inference time across several methods. Due to the
powerful and efficient Transformer encoder, our method achieves the smallest average
position error while providing fast inference.

Our method also requires executing an IK algorithm after the network for-
ward pass. Each iteration costs approximately 6 ms, so we set the number of
iterations to 5 to keep a balance between inference speed and the accuracy of
the final hand position. Note that the speed could be accelerated by adopting a
more standard non-linear optimization.

4.5 Test on a Commercial VR System

To qualitatively assess the robustness of our method, we executed our algorithm
on live recordings from an actual VR system. We used an HTC VIVE HMD
as well as two controllers, each providing real-time input with six degrees of
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freedom (rotation and translation). Fig. 7 shows a few examples of our method’s
output based on sparse inputs.

Fig. 7. We tested our method on recorded motion data from a VIVE Pro headset and
two VIVE controllers. Columns show the user’s pose (top) and our prediction (bottom).

5 Conclusions

We presented our novel Transformer-based method AvatarPoser to estimate re-
alistic human poses from just the motion signals of a Mixed Reality headset
and the user’s hands or hand-held controllers. By decoupling the global motion
information from learned pose features and using it to guide pose estimation, we
achieve robust estimation results in the absence of pelvis signals. By combing
learning-based methods with traditional model-based optimization, we keep a
balance between full-body style realism and accurate hand control. Our exten-
sive experiments on the AMASS dataset demonstrated that AvatarPoser sur-
passes the performance of state-of-the-art methods and, thus, provides a useful
learning-based IK solution for practical VR/AR applications.
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[34] Moré, J.J.: The levenberg-marquardt algorithm: implementation and the-
ory. In: Numerical analysis, pp. 105–116. Springer (1978) 8
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