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Abstract

Background: Fatigue is a common symptom of many diseases, including multiple sclerosis. It manifests as a cognitive or
physical condition. Fatigue is poorly understood, and effective therapies are missing. Furthermore, there is a lack of methods
to measure fatigue objectively. Fatigability, the measurable decline in performance during a task, has been suggested as a
complementary method to quantify fatigue.

Objective: To develop a new and objective measurement of cognitive fatigability and investigate its association with per-
ceived fatigue.

Methods: We introduced the cognitive fatigability assessment test (cFAST), a novel smartphone-based test to quantify cognitive
fatigability. Forty-two people with multiple sclerosis (23 fatigued and 19 non-fatigued, defined by the Fatigue Scale for Motor
and Cognitive Functions) took part in our validation study. Patients completed cFAST twice. We used t-tests, Monte Carlo sampling,
and area under the receiver operating characteristic curves to evaluate our approach using two sets of proposed metrics.

Results: When classifying fatigue, our fatigability metric Δresponse time has a mean area under the receiver operating char-
acteristic curve of 0.74 (95% CI 0.64–0.84), making it the best performing metric for this task. Furthermore, Δresponse time
shows a statistically significant difference between the fatigued and non-fatigued groups (t= 2.27, P= .03). Particularly, cog-
nitively-fatigued patients decline in performance, while non-fatigued patients do not.

Conclusions: We introduce cFAST, a new instrument to quantify cognitive fatigability. Our pilot study provides evidence that cog-
nitive fatigability assessment test produces a quantifiable drop in cognitive performance in a short period. Furthermore, our
results indicate that cFAST may have the potential to serve as a surrogate for subjective cognitive fatigue. cFAST is significantly
shorter than the existing fatigability assessments and does not require specialized equipment. Thus, it could enable frequent
and remote monitoring, which could substantially aid clinicians in better understanding and treating fatigue.
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Introduction

Background

Fatigue is a highly prevalent and devastating symptom of
many diseases, including Parkinson’s disease,1 multiple
sclerosis (MS),2 and more recently, post-COVID syn-
drome.3 In MS, fatigue is rated as the most frequent and
debilitating symptom.2,4,5 Fatigue has been defined as the
subjective feeling of overwhelming exhaustion and tired-
ness and can manifest as a physical and cognitive
symptom.6 The symptom is still poorly understood, and
its severity can only be assessed subjectively. Currently,
this is done using questionnaires such as the Fatigue
Severity Scale (FSS),7 Modified Fatigue Impact Scale
(MFIS),8 and Fatigue Scale for Motor and Cognitive
Functions (FSMC).9 More than a dozen fatigue question-
naires are available.10 These questionnaires are used as
patient-reported outcome measures in clinical trials. Their
heterogeneity and subjective nature are a challenge for
using them as outcome measures in clinical trials and com-
paring the efficacy of results across different studies.
Results from different randomized placebo-controlled clin-
ical trials testing different compounds for treating fatigue
showed contradictory results, with some showing good effi-
cacy, and others exhibiting no effect.11–18

Fatigue and fatigability

The perception of fatigue (subjective measurement) is being
differentiated from performance fatigability (objective meas-
urement).19 Fatigability is further divided into the motor and
cognitive domains. Motor fatigability has been quantified as
the decline in peak performance, power, or speed during
physical activity.20 On the other hand, cognitive fatigability
measures the decline of cognitive performance during a
task that requires sustained attention,20 and it has been mea-
sured as an increase in reaction time, decline in accuracy or
by comparing the performance during the first and last third
of a task.21,22 Establishing an association between objective
fatigability and subjective fatigue is an important goal for
clinical research but has been proven difficult.19 While a cor-
relation between motor fatigability and perceived fatigue has
been suggested in several studies,23–27 less data is available
on cognitive fatigability.28–35 A possible cause is the com-
plexity of inducing cognitive fatigability and the lack of con-
sensus and dedicated tests to quantify it.22 Prior studies used
one of two strategies to generate cognitive fatigability. Either
they conducted a test battery, including the same test before
and after fatiguing tasks and compared their performance, or
they employed a single prolonged cognitive task and mea-
sured the decline in performance within the task. Some of
the used cognitive tests within fatigability research include:
(1) the Paced Auditory Serial Addition Test (PASAT),36

(2) the Psychomotor vigilance task (PVT),37 and (3) the

Stroop test.38 However, utilizing these non-specific cognitive
performance tests to assess cognitive fatigability comes with
certain drawbacks, such as long testing sessions.

Limitations of cognitive fatigability studies

Fatigability in healthy subjects is typically studied through
long examination sessions. Van der Linden et al. induced
fatigue through two hours of cognitively demanding
tasks. Their study showed a significant difference in plan-
ning ability and increased perseverative errors between
the non-fatigued and fatigued participants.32 Other cogni-
tive fatigability studies in healthy subjects using the
Stroop test employed a study length of 3 and 2 h for
young adults34 and for older adults,35 respectively.
However, long testing sessions are not unique to healthy
subjects. Moeller et al. administered two hourly test batter-
ies for analyzing cognitive fatigability using three neuro-
psychological tests in subjects with mild traumatic brain
injury.33 In MS, there is large heterogeneity when it
comes to studying cognitive fatigability. DeLuca et al.39

studied fatigue in 15 people with MS (pwMS) and 15 con-
trols by conducting four modified Symbol Digit Modality
Test (mSDMT) trials over an hour of fMRI scanning
where users were shown different symbol–digit pair
probes at varying interstimulus. Participants had to
respond “match” or “no match” to each probe by following
a provided symbol-digit arrangement. The interstimulus
interval randomly varied between 0, 4, 8, and 12 s.
Results from their study found no cognitive fatigability.
Chen et al.40 also studied fatigability using an mSDMT
within a fMRI setting. During examination pwMS and con-
trols completed a total of eight mSDMT (four with high
cognitive load and four with low cognitive load), each
lasting 7.7 min. The authors did not study within trial per-
formance, but across trial performance showed an increase
in reaction time associated with subjective fatigue in
pwMS. Berard et al. compared the performance during
quintiles of a 20 min PVT session to quantify cognitive fat-
igability and found a greater increase in reaction time of
patients compared to healthy controls.31 PVT is a simple
reaction time task where participants have to press a
button in response to the presence of a stimulus.
However, its repetitive and monotonous nature often
results in participants reporting feelings of boredom,41

and thus the performance decline may be influenced by a
lack of motivation rather than fatigability.42 Finally,
several authors employed the PASAT by comparing the
decrease in accuracy between the beginning and end of
the test.28–30,42–44 Even though the PASAT is applied in
many studies, there is still significant methodological het-
erogeneity. First, some studies compared the performance
between the first and the second half of the test28, while
others compared the performance between thirds.29

Second, despite there seems to be a general consensus of
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3 s length inter-stimulus interval (ISI), this has not been uni-
formly applied in fatigability studies.20,30,44 Third, it is
known that pwMS may adopt a “chunking strategy,” par-
ticularly as task demands increase,45 meaning that they
add two numbers, skip one, and add the following two,
thus, reducing the overall difficulty of the task by decreas-
ing the simultaneous cognitive load. Only recently, first
normative data on cognitive fatigability has been generated
to account for the chunking strategy.43 Fourth, the PASAT
requires a medical examiner to conduct the test, making it
more expensive to administer. Finally, patients have
described the PASAT as unpleasant and causing
anxiety,46 limiting the applicability and repeatability of
the tests.

Aims and overview of the study

We propose a new test for measuring cognitive fatigability
in a short period (i.e. 5 min) and refer to it as the Cognitive
Fatigability Assessment Test (cFAST). cFAST is inspired
by the Symbol Digit Modality Test (SDMT) digit-symbol
matching logic.47 SDMT is a cognitive test that measures
information processing speed. Studies showed that the
SDMT is relatively resistant to practice effects,48 in particu-
lar when rearranging the keys,49 making it an attractive tool
for cognitive monitoring over time in clinical trials.50

Moreover, it has also been validated for smartphones.51

Our study uses a similar key-symbol matching strategy to
measure fatigability instead of cognitive impairment.

The goals of this feasibility study were two-fold. The first
goal was to develop an objective and ubiquitous measurement
of cognitive fatigability.We achieved this goal by implement-
ing a smartphone-based test through an iterative process
involving patients, neuropsychologists and neurologists. We
opted for a smartphone-based implementation given the
high acceptability and interest of pwMS in smartphone-based
tools that allow them to monitor and manage their condi-
tion.52–59 The second goal was to study the association
between the newly developed objective measurement
(cFAST) and perceived cognitive fatigue. We approached
this goal by conducting a pilot study with pwMS who

completed the cFAST and the FSMC.9 Using the FSMC cog-
nitive subscale, we assign the participants to the cognitive-
fatigued (subscale>= 22) and non-cognitive-fatigued (sub-
scale<22) groups.9 From the cFAST, we extracted a set of
metrics and evaluated group differences with t-tests.
Through area under the receiver operating characteristics
(AUROC), we assessed the performance of our proposed
metrics to classify cognitive fatigued versus
non-cognitive-fatigued patients. Furthermore, we investigated
the relationship of our proposed test (cFAST) and metrics to
disability.

Methods

Development of the smartphone-based test, cFAST

We aimed to develop a test to objectively quantify cognitive
fatigability, that meets the requirements: (1) engages cogni-
tive processing speed and induces cognitive load, (2) is
short, self-explanatory, and allows for remote monitoring,
and (3) does not require medical supervision. We followed
an iterative process during the design and development of
the application. The medical professionals reviewed differ-
ent prototypes to ensure an appropriate design based on
clinical theory and practice is implemented. Additionally,
we gathered informal feedback from people with MS
(pwMS) regarding our prototypes before converging on
our final design. Refer to the Supplements for further
details on the prototypes designs and selection.

Figure 1 displays the user interface of the cFAST and
highlights each of its elements. The test is designed to be
carried out by holding the smartphone in landscape mode.
The middle of the screen shows a large blue symbol
(main symbol). The main symbol has to be mapped to its
corresponding digit following the mapping rule displayed
at the top of the screen. Selection occurs by tapping the
numbers located at the bottom of the screen. Users have a
limited time to find the corresponding number associated
with the main symbol. A yellow progress bar around the
symbol indicates how much time is left until the symbol
is changed automatically. The main symbol changes
under two circumstances: (1) after the user taps a number
or (2) when the progress bar has entirely run out. Every
time a new symbol appears, the associations and positions
of the top mapping rule are randomized, and the progress
bar is restarted. The randomization seeks to diminish the
possibility of a learning effect associated with memorizing
the digit-symbol mapping within the same test run. The pro-
gress bar works as a pressure mechanism to motivate users
to be fast and avoid resting periods. A timer located at the
top left indicates how much time is left for the test to end.
Users can exit the test at any moment by tapping the exit
button located at the top right corner. If exited early, the
test is considered invalid.

Figure 1. cFAST user-interface with highlighted elements in red.
Note. cFAST, cognitive fatigability assessment test.
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Our test is inspired by the SDMT,47 as it is a widely
used, accepted, and validated cognitive assessment test in
MS. However, cFAST differs from the SDMT in several
aspects:

1. cFAST is a cognitive fatigability test, while SDMT
assesses cognitive impairment and working memory.

2. Contrary to the SDMT, cFAST does not allow partici-
pants to look ahead to match the following symbols.
Hence, participants have no way to anticipate the next
answer to reduce their response time.

3. There is a time limit to complete each selection in
cFAST.

4. cFAST randomizes the matching rules after each
answer, while SDMT has a fixed matching rule.

5. The duration of a cFAST session is 5 min, while the
SDMT lasts 90 s. The increased duration is needed
because cognitive fatigability is notoriously hard to
elicit in a short time. However, cFAST is comparatively
significantly shorter than previous attempts at measur-
ing cognitive fatigability.

All these design considerations seek to evaluate cognitive
fatigability.

Application logic

cFAST is designed with the aim of being conducted outside
the clinic and without medical supervision. Therefore, the
application logic is self-explanatory and contains a person-
alization phase to maximize the users’ understanding and
tailor it to their performance. This phase needs to be com-
pleted before being able to run cFAST. Figure 2 depicts
the application logic diagram.

At the start of the personalization phase, users are
prompted for a mandatory two-minute preparation step.
The goal of this step is for users to familiarize with the
test matching logic and rules before starting the calibration
step. To this end, a confirmation step ensures that, during
the preparation, users provided at least 70% correct digit-
symbol matches out of a minimum of 20 answers.
Contrary to the calibrated cFAST, there is no time limit to
match individual symbols during preparation. Hence,
symbols only change after the user presses a number from
the selection panel. We refer to this method as manual.
This functionality allows users to understand the test match-
ing logic without time pressure.

During the preparation, users receive immediate feed-
back on whether their choice is correct or incorrect
through a label located at the left side of the screen (cf.
Figure 3). Failed preparation trials indicate that the user
has not sufficiently trained in operating the test yet or did
not perform it as fast as possible and thus must repeat it.
The motivation for providing immediate feedback is to
help the user understand the matching mechanics of the

test. This functionality is particularly beneficial for unsuper-
vised settings where no medical examiner is present to
clarify doubts to the patients. Users can start the calibration
step only after preparation is passed successfully. The cali-
bration step lasts one minute and it uses the same logic of
the preparation step, but without providing feedback. At
this point, we assume users understand the test matching
logic. Similar to preparation, calibration also employs a
manual mechanism. However, its goal is to extract the
users’ reaction time, which we call calibrated rate. This
rate is then used in cFAST. Thus, the manual function of
the application has two goals: (1) during the preparation it
allows sufficient time for users to understand the test match-
ing logic, and (2) during calibration, it helps derive a perso-
nalized calibrated rate.

Deriving calibrated rate. The calibrated rate is a key feature
of cFAST and it is derived from the 1-min calibration step
of the personalization phase (Figure 2). The calibration step
has the same logic of the preparation but without user feed-
back. During calibration, symbols are only changed once
the user taps a number from the selection panel (manual
mechanism). We use 85% percentile of the response time
exhibited during the calibration step to extract the calibrated
rate, meaning each individual user may perform the task at
different rates but always in relation to their top perform-
ance. Thus, the calibrated rate is tailored to each user,
accounting for patients’ different levels of disability.
Once the calibrated rate is derived, cFAST is personalized
and ready to use.

Eliciting cognitive fatigability. During a cFAST session, users
are supposed to repeatedly match a symbol with their corre-
sponding number. However, tasks of this nature are typical
examples of speed-accuracy trade-off.60 Participants tend to
decide between performing the test with high accuracy but
slow (i.e. low exertion) or fast but with low accuracy. Either
of these scenarios would significantly limit the
fatigue-inducing effect of the test. With cFAST, we seek
to reduce this trade-off by adding a limited timeframe (cali-
brated rate) for each selection. This timeframe is indicated
through a yellow progress bar (Figure 4). With this
approach, participants cannot spend unlimited time
making a decision. Moreover, we hypothesize that the
added pressure to make a fast selection contributes to the
cognitive load required to induce cognitive fatigability.

Participants

We recruited 48 patients from the MS outpatient clinic of
the Department of Neurology, University Hospital Zurich,
between September 2020 and April 2021. Participants pro-
vided written consent following the Declaration of
Helsinki.61 The expanded disability status scale (EDSS)
was obtained from the routine neurologic examinations
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performed at the hospital. This study was approved by the
local ethics committee (Cantonal Ethics Committee
Zurich, Switzerland). Inclusion criteria consisted of: (a)
confirmed MS diagnosis and (b) age between 18 to 70. In
addition, exclusion criteria included: diagnosis of depres-
sion, schizophrenia, bipolar disorders, attention deficit
hyperactivity disorder, and regular intake of psychostimu-
lants or anticonvulsant medications.

Procedure

Participants were briefly introduced to the study setup and
completed a demographic questionnaire. Following, the
study examiner showed them the application and the logic
of the cFAST. Participants started with the 2-min prepar-
ation session. After successful completion, they performed
the calibration step. Next, we asked participants to complete
a first cFAST session of 5 min that is considered as a trial, to
ensure they understand the test logic. Following, there was
a short break in which participants filled out the FSMC
questionnaire. Next, participants performed a second
cFAST session. Previous cognitive fatigability studies
including modified versions of the SDMT do full trials
and discard this data before conducting the actual test to
ensure participants understand the test logic.40 Hence, all
data analyses presented in this paper are based on the
main cFAST and not on the trial data.

Data collection and processing pipeline

We collected touch data from the smartphone using a
custom Android application that we developed. Each
sample in our dataset contains the ID of the symbol to be
matched, the user’s selection if there was any, the current
mapping rule, and the timestamp of the touch-down
event. Our data processing pipeline includes three steps:
(1) artifact detection, (2) cognitive adaptation removal,
and (3) metrics extraction.

1. Artifact detection

We use response time as one of our primary performance
metrics. Artifacts in response time typically appear when
a user aims at tapping a digit to match the current symbol,
but they run out of time. Hence, the newly displayed
symbol is stored with a short response time, and the previ-
ous symbol is marked as a missed answer (Figure 5 left).
These artifacts need to be identified and removed to avoid
double-counting errors and compute a misleading response
time. Therefore, in our preprocessing step, we remove any
entry after a missed answer with a response time of less
than the average minus two standard deviations of the
entire cFAST session’s response time. This results in
subject-specific thresholds that account for the difference
in average performance. With this method, we remove an
average of 3.8 entries per session, with the average
session containing 138 answers. Figure 5 right shows the
same data after artifact removal.

2. Cognitive adaptation removal.

Previous cognitive fatigue studies describe the existence of
an adaptation phase occurring at the beginning of a cogni-
tive task due to some unspecific modulations of training
and adaptation and highlight the need to account for these
effects when studying fatigue.62,63 A common strategy to
deal with the adaptation in cognitive fatigue studies is to
omit the start of the task.62,63 An adaptation phase is not
unique to cognitive tasks as it has also been detected in
motor fatigability tasks. A similar strategy is applied in
motor tasks by removing the start of the task to account
for the adaptation period.27,64,65 cFAST sessions exhibit
an adaptation period in the initial part of the test, in particu-
lar for fatigued patients. Figure 6 depicts the average mean-
normalized response times for all fatigued pwMS for the
whole 5 min cFAST in 30 s segments. During the first seg-
ments, we observe an increase in response time, followed
by a decrease in response time in the third segment. We

Figure 2. cFAST application logic. In the personalization phase, users complete the preparation and confirmation to ensure they
understand the test’s matching logic and the calibration to derive the calibrated rate used in cFAST. After this phase, cFAST is personalized
and ready to be used. Note. cFAST, cognitive fatigability assessment test; CR, calibrated rate.
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attribute these changes in performance to an adaptation
period before users are fully immersed in the test.62,63

Hence, to make a fair comparison between the study parti-
cipants we discard the first 60 s of all cFAST tests (42 ses-
sions) before extracting the metrics and performing the data
analysis.

3. Metrics extraction

We define two sets of metrics to quantify performance
during a cFAST test session: (1) general metrics, which
represent the average performance during an entire test
session, and (2) fatigability metrics, which measure the
change in performance occurring between the first third
and last third of a test session. Table 1 displays an overview
of the proposed metrics with their definition.

Statistical analyses

We use descriptive statistics to summarize and compare the
study subpopulations. We evaluate the performance of our
derived smartphone-based metrics to discriminate between
cognitive-fatigued and non-cognitive fatigued subjects fol-
lowing the FSMC cognitive subscale (threshold= 22).9

With t-tests, we explore group differences and consider P

< .05 significant. Furthermore, through AUROC, we evalu-
ate the performance of our derived smartphone-based
metrics to classify cognitive fatigued versus non-cognitive
fatigued subjects, independently of age and EDSS. We
assess the robustness of our approach and compute confi-
dence intervals for AUROC using stratified Monte-Carlo
sampling66 with 1000 iterations and randomly select
(without replacement) in each iteration 1/2 of our partici-
pants’ data (cFAST sessions) for evaluation. We partition
the cFAST data into eight strata, following two partitioning
criteria: (a) cognitive fatigued as a binary state according to
FSMC cognitive subscale (threshold= 22) and (b) an EDSS
group, which can be one of four: [0,1), [1, 2), [2, 3), and
[3,∞). The idea of this partition is to find a metric that
works best in the whole spectrum of disability. Each partici-
pant and their data are fully assigned to one of the resulting
eight strata. Thus, when performing the stratified split,
either a participant’s data is fully contained in the split or
not at all. Hence, with our approach, we split at the partici-
pant level, ensure class balance, and account for disability.
Additionally, as age also influences cognitive perform-
ance,33 we create eight additional strata following two par-
titioning criteria: (a) cognitive fatigued as a binary state and
(b) age group, which can be one of four: (18, 30), [30,40),
[40,50) and [50, 70]. This partition aims at reducing the
influence of age in the metrics by assigning weights

Figure 3. Preparation step user interface. The blue rectangle indicates the answer provided by the user. After each number selection, the
interface indicates with a label whether their attempt is correct (left) or wrong (right).

Figure 4. cFAST user interface. The left side of the image displays the screen at the beginning of a 5-min test The yellow progress bar
indicates the remaining time to complete a selection. The digit-symbol mapping is randomized after each selection to reduce learning
effects. Note. cFAST, cognitive fatigability assessment test.
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according to the group sizes. Furthermore, we use one-way
analysis of covariance (ANCOVA) with EDSS as a covari-
ant to rule out the effect of disability when analyzing
fatigue.

Finally, we further explore how cFAST and our pro-
posed metrics relate to disability by measuring the per-
formance of the metrics to rate disability according to
EDSS. To this end, we split the study participants in
two groups according to EDSS and analyzed the differ-
ence in performance between both groups. We classify
patients with EDSS>1.5 as disabled and patients with
EDSS<= 1.5 not disabled. For this evaluation, we parti-
tion our dataset into four strata, following two partition-
ing criteria: (a) disabled as a binary state according to

the EDSS (0 for EDSS<= 1.5 and 1 for EDSS>1.5), and
(b) cognitive fatigued as a binary state according to
FSMC cognitive subscale (threshold= 22). Additionally,
we use the same age groups as we did for the cognitive
fatigue evaluation. We report the average AUROC with

Figure 5. Artifacts in response time typically appear when a user provides an answer shortly after running out of time. Therefore, the
pressed digit is associated with the newly displayed figure. As a result, the previous entry is classified as a missed answer, and the current
figure has a very short response time (left side). We detect and remove these artifacts to avoid misleading errors and response time values
(right side).

Figure 6. cFAST session with average mean-normalized reaction
time per 30 s segments for each fatigued participant. The first two
segments (60 s) are discarded as we consider them part of the
adaptation phase. Note. cFAST, cognitive fatigability assessment
test.

Table 1. Metrics description.

Metric name Description

General

Response
time

Average time in milliseconds to tap a digit
from the selection panel after the
appearance of a new symbol

Calibrated
rate

Time duration in milliseconds for each new
symbol – derived from the calibration
phase (corresponds to progress bar
duration)

Correct Total correct matches

Errors Total errors including wrong matches and
missed answer

Fatigability

Δcorrect Percent change in correct between the first
and the last third of the task.

Δresponse
time

Percent change in response time between the
first and the last third of the task.

Δerrors Percent change in errors between the first
and the last third of the task.
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95% confidence intervals. In addition, we include plots of
the ROC curves for visual inspection.

Results

Participant characteristics

We recruited 48 study participants and from those we
excluded 6 due to comorbidities including iron deficiency,
personality disorder, hypothyroidism, and narcolepsy type
1. Table 2 summarizes the study participants divided into
the two subgroups of interest (i.e. no cognitive fatigue
and cognitive fatigue according to the FSMC subscore).
Of the recruited pwMS, 21 did not have cognitive
fatigue and 27 were cognitively fatigued. Of those we
included in our analysis, 19 participants did not have
fatigue and 23 were fatigued. Figure 7 shows the flow
chart of the study and an overview of the excluded
patients. The gender distribution of the participants in
the two groups, the mean and standard deviation of their
age, EDSS, and the FSMC subscales are listed in
Table 2. As expected, we found a significant difference
in all the FSMC scores. However, we found no statistic-
ally significant difference between the age and gender dis-
tributions of the two groups.

Correlation to clinical data

Our analysis indicates a significant Spearman rank correl-
ation between several of the proposed general metrics
and the clinical data. Table 3 shows an overview of all
the computed correlations. The response time and
correct metrics showed the highest correlation with
EDSS (ρ= 0.6, P < .001 and ρ= -0.6, P < .001, respect-
ively). Then, calibrated rate follows with ρ= 0.5,
P= .001. On the other hand, errors did not significantly
correlate to EDSS (ρ= -0.07, P= .67). We also found a
significant correlation when analyzing the relationship
between our metrics and the FSMC cognitive subscore.
Again, response time and correct showed the highest
correlation to the FSMC subscore (ρ= 0.39, P= .01 and
ρ= -0.38, P= .01, respectively). Neither calibrated rate
(ρ= 0.27, P= .09) nor errors (ρ= 0.1, P= .51) signifi-
cantly correlated to the FSMC cognitive subscore. Age
also correlates to the proposed general performance
metrics. Among the correlating metrics, we found
correct (ρ= -0.66, P < .001), response time (ρ= 0.61, P
< .001), and calibrated rate (ρ= 0.51, P= .001). We
found no significant correlation between the fatigability
metrics and the clinical data.

cFAST relationship to perceived fatigue

We investigated the relationship between our metrics and
perceived fatigue by determining statistically significant

differences between the cognitive-fatigued and non-
fatigued groups. Table 4 depicts a complete overview of
the metrics’ mean value and standard deviation for both
groups, as well as the t-test results. Table S2 in the
Supplements includes the non-parametric testing results
using Mann Whitney U.

We found a significant difference between both groups
regarding response time (t= 2.16, P= .04, d= 0.669).
The group with cognitive fatigue had an average response
time of 2586.88 (SD= 961.28) ms, compared to the
2083.3 (SD= 358.31) ms of non-fatigued participants.
We did not find a statistically significant difference
in calibrated rate (t= 1.54, P= .13). Furthermore, we
found that correct differed significantly between the
groups (t= -2.8, P= .008, d= -0.868). The non-fatigued
participants gave an average of 109.11 (SD= 15.97)
correct answers, while the fatigued group had an average
of 90.96 (SD= 24.21) correct answers. However, errors
was not significantly different between the groups (t=
0.29, P= .77).

In terms of the fatigability metrics, we found that
Δresponse time significantly differed between the groups
(t= 2.27, P= .03, d= 0.703). On average, fatigued partici-
pants had a Δresponse time of 2.69 (SD= 4.94) ms, while
non-fatigued participants had an average Δresponse time
of −0.96 (SD= 5.5) ms. Δerrors and Δcorrect did not
show a statistically significant difference between the
groups (t= 0.81, P= .42 and t= -1.91, P= .06,
respectively).

To analyze the temporal progression of participants’
performance during a cFAST session, we performed a
series of paired t-tests. Figure 8 on the left depicts the
average normalized response time in the three thirds of
the session for non-fatigued pwMS. While Figure 8, on
the right, shows the results for pwMS with cognitive
fatigue. For the group with no fatigue, the results are pri-
marily flat and with a slight trend to improve over time,
while for the fatigued group, we see a significant increase
in response time (P= .02) between the first and last third
of the session.

cFAST relationship to disability

The disabled group has a mean EDSS of 3.26 (SD=
1.54) and the non-disabled group has a mean EDSS of
0.54 (SD= 0.67). Detailed demographics of these
groups is described in Table S1 in the supplements.
Table 5 shows a complete overview of the metrics’
average value and standard deviation for both groups,
as well as the t-test results. Table S3 in the Supplements
includes the non-parametric testing results using Mann
Whitney U.

We found a significant difference in response time
between the groups (t= 2.47, P= .02, d= 0.844).
Participants without disability had an average response
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Table 2. Demographic characteristics of participants.

No fatigue Cognitive fatigue P

Number 19 23

Age, mean (SD) 36.89 (12.15) 38.22 (12.20) .73

Gender, n (%)

m 8 (42) 6 (26) .44

w 11 (58) 17 (74)

MS type, n (%)

PMS 1 (5) 3 (13) .61

RRMS 18 (95) 20 (87)

Disease duration, mean (SD) 9.63 (5.88) 12.52 (8.51) .20

DMT, n (%)

None 1 (5) 1 (4)

Interferon beta-1a 1 (5) 0 (0)

Dimethyl fumarate 2 (11) 1 (4)

Teriflunomide 1 (5) 1 (4)

Glatiramer acetate 1 (5) 1 (4)

Fingolimod 1 (5) 1 (4)

Natalizumab 6 (32) 8 (35)

Rituximab 1 (5) 3 (13)

Ocrelizumab 5 (26) 7 (31)

Fatigue medication, n (%)

None 19 (100) 22 (96) 1.00

Modafinil 0 (0) 1 (4)

EDSS, mean (SD) 1.00 (1.18) 2.41 (1.95) .006

FSMC, mean (SD)

Total 30.84 (8.00) 64.30 (16.29) <.001

Cognitive 14.26 (3.25) 31.70 (8.81) <.001

Motor 16.58 (5.60) 32.61 (8.68) <.001

Data are mean (SD) or n (%).
Note. PMS, progressive multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis; Disease duration is measured in years since first manifestation; EDSS,
expanded disability status scale; FSMC, fatigue score for motor functions and cognition; DMT: disease-modifying therapy.
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time of 2080.23 (SD= 317.39) ms, compared to the
2696.61 (SD= 1030.37) ms exhibited by the disabled
pwMS. Similarly, calibrated rate was significantly lower
for participants without disability (t = 2.38, P= .02, d=
0.737), with an average of 3211.22 (SD= 840.63) ms
against the 4151.0 (SD= 1658.95) ms of disabled partici-
pants. Consequently, correct followed the same trend (t=
-3.19, P= .003, d= -0.989). On average, disabled pwMS
provided 88.11 (SD= 25.44) correct answers, compared
to the higher 108.3 (SD= 15.1) of participants without dis-
ability. We found no significant difference in errors (t=
-0.17, P= .86).

We performed the same analysis with the fatigability
metrics. Δcorrect, Δresponse time, and Δerrors showed
no statistically significant difference between the not dis-
abled and disabled groups (respectively t= -0.3, P= .77,
t = 1.98, P= .33 and t= -0.6, P= .55).

Predictive power of the cFAST metrics
to classify cognitive fatigue

To further explore the association between cognitive fatig-
ability and perceived fatigue, we assessed the predictive
power of our metrics to classify cognitive fatigue partici-
pants according to the FSMC cognitive subscale. Table 6
shows the results corresponding to the mean AUROC
with its respective confidence intervals. The results indicate
that the best features for fatigue independently of the EDSS
are the fatigability metrics. Δresponse time had the highest
AUROC with 0.74 (95% CI 0.64–0.84). Following,
Δcorrect and Δerrors with an average AUROC of 0.72
(95% CI 0.63–0.85) and 0.65 (95% CI 0.53–0.77), respect-
ively. From the general metrics, response time performed
the best with a mean AUROC of 0.63 (95% CI 0.50–
0.76). The correct metric had an AUROC of 0.62 (95%
CI 0.50–0.74). Calibrated rate produced an AUROC of
0.59 (95% CI 0.44–0.74). The errors metric showed an
AUROC of 0.58 (95% CI 0.44–0.72). Age had an
average AUROC of 0.58 (95% CI 0.47–0.69). Lastly,
EDSS had an AUROC of 0.53 (95% CI 0.43–0.63).

Predictive power of the cFAST metrics to classify
disability

To evaluate the best cFAST metrics to classify disability
independently of fatigue, we performed the same analysis
as we did for cognitive fatigue. Results suggest that the
general metrics are better than the fatigability metrics for
disability in terms of AUROC. A complete overview of
these results is shown in Table 7. Response time produced
an average AUROC of 0.64 (95% CI 0.50–0.78), followed
by age with an average AUROC of 0.63 (95% CI 0.53–
0.73). Following, correct showed an average AUROC of
0.63 (95% CI 0.49–0.77). Calibrated rate had an average
AUROC of 0.59 (95% CI 0.43–0.75). Δerrors had a
mean AUROC of 0.55 (95% CI 0.41–0.69). Following,
Δcorrect produced an AUROC of 0.52 (95% CI 0.38–
0.66). AUROC of errors for disabled patients was 0.51
(95% CI 0.38–0.64). Finally, Δresponse time was the
worst metric for disability with an average AUROC of
0.50 (95% CI 0.36–0.64).

Differences in predictive power between the best
fatigue and disability metrics

Figure 9 on the left shows a visual representation of the
ROC curves corresponding to the FSMC classification for

Table 3. Spearman rank correlation coefficient ρ: metrics vs. clinical
data.

EDSS
FSMC cognitive
score Age

Response time 0.6 (<.001) 0.39 (.01) 0.61 (<.001)

Calibrated rate 0.5 (.001) 0.27 (.09) 0.51 (.001)

Correct −0.6 (<.001) −0.38 (.01) −0.66 (<.001)

Errors −0.07 (.67) 0.1 (.51) 0.01 (.93)

Δcorrect −0.03 (.86) −0.21 (.17) 0.08 (.59)

Δresponse
time

0.21 (.17) 0.24 (.13) 0.08 (.59)

Δerrors −0.13 (.40) 0.13 (.42) −0.2 (.19)

Note. Data are ρ (P). EDSS, expanded disability status scale; FSMC, fatigue
score for motor functions and cognition.

Figure 7. Flow chart of the study and overview of excluded
participants.
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Δresponse time, best performing feature to classify cogni-
tive fatigue and response time, best performing feature to
classify disability. Δresponse time outperforms response
time by 11 percentage points in classifying fatigue accord-
ing to the FSMC. The center of the figure shows boxplots of
Δresponse time for the groups fatigued and non-fatigued as
well as the t-test results. The image displays the statistically
significant difference between the fatigue and non-fatigued
groups (t= 2.27, P= .03). Similarly, the right displays the
boxplots corresponding to the response time. There is a stat-
istically significant difference between the groups (t= 2.16,
P= .04). The difference is significant also without the
outlier in the fatigue group.

We conducted a one-way analysis of covariance
(ANCOVA) to examine whether response time differed

between fatigue and non-fatigue groups when controlling
for EDSS. For this analysis, we did remove the outlier in
response time in the fatigue group as the outlier violated
the normality assumptions of ANCOVA. We verified the
test assumptions: Shapiro-Wilk test indicates the data is
normally distributed for the group with no fatigue W(19)
= .926 (P= .15) but not for the fatigued group W(22)=
.899 (P= .03). However, as the distribution is close to
normal and ANCOVAs are robust to this assumption viola-
tion, no steps were taken. Visual analysis with a scatter plot
indicates similar regression slopes and an F test indicates no
interaction between EDSS and fatigue group F= (1,37)=
.24 (P= .64). Finally, Levene’s Test confirms the homogen-
eity of variance with F(1,39)= 1.27 (P= .27). ANCOVA
analysis reveals that after controlling for EDSS (disability),

Figure 8. Average normalized response time during the three thirds of the cFAST session data after preprocessing for non-fatigued pwMS
(left) and fatigued pwMS (right). A significant increase in the response time between the first and the last third of the task is present for
fatigued patients only. The thirds were compared using a paired t-test. Note. cFAST, cognitive fatigability assessment test; pwMS, people
with multiple sclerosis.

Table 4. Metrics comparison between fatigued and non-fatigued patients with mean (SD), independent samples t-test (two-tailed) to assess
whether there is a statistically significant difference between the groups, and Cohen’s d effect size.

No fatigue (n= 19) Cognitive fatigue (n= 23) t P Cohen’s d

Response time* 2083.3 (358.31) 2586.88 (961.28) 2.16 .04 0.669

Calibrated rate** 3289.47 (1229.75) 3922.91 (1396.06) 1.54 .13 0.478

Correct 109.11 (15.97) 90.96 (24.21) −2.8 .008 −0.868

Errors 7.58 (6.07) 8.04 (4.13) 0.29 .77 0.091

Δcorrect 3.51 (11.19) −2.73 (9.95) −1.91 .06 −0.593

Δresponse time −0.96 (5.5) 2.69 (4.94) 2.27 .03 0.703

Δerrors −0.46 (2.05) 0.03 (1.86) 0.81 .42 0.252

*Response time is not normally distributed for the subgroup cognitive fatigue.
**Calibrated rate is not normally distributed for the subgroups.
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there was no significant difference in response time
between the fatigue groups F(1,38)= 1.42, P= .24. For a
similar analysis on correct, refer to Supplements.

Figure 10 shows data corresponding to disability
classification according to the EDSS threshold. The
left side of the Figure 10 shows a visual representation
of the ROC curves corresponding to the disability clas-
sification for Δresponse time, the best performing
feature to classify cognitive fatigue and response time,
the best performing feature to classify disability. In

this case, response time outperforms Δresponse time
by 14 percentage points.

Discussion
We described the development process and pilot study of
a new test (cFAST) for cognitive fatigability. Our result
provides early evidence that the cFAST measurement
could be useful to identify patients with cognitive
fatigue, as assessed by the FSMC cognitive subscale.
So far, only a few studies assess cognitive fatigability

Table 5. Metrics comparison between disabled and not disabled patients with mean (SD), independent samples t-test (two-tailed) to assess
whether there is a statistically significant difference between the groups, and Cohen’s d effect size.

Not disabled (n= 23) Disabled (n= 19) t P Cohen’s d

Response time* 2080.23 (317.39) 2696.61 (1030.37) 2.47 .02 0.844

Calibrated rate** 3211.22 (840.63) 4151.0 (1658.95) 2.38 .02 0.737

Correct 108.3 (15.1) 88.11 (25.44) −3.19 .003 −0.989

Errors 7.96 (5.69) 7.68 (4.26) −0.17 .86 −0.053

Δcorrect 0.55 (10.68) −0.47 (11.35) −0.3 .77 −0.093

Δresponse time 0.29 (5.55) 1.95 (5.33) 1.98 .33 0.304

Δerrors −0.03 (2.05) −0.4 (1.83) −0.6 .55 −0.187

*Response time is not normally distributed for the subgroup disabled. Levene’s test P < .05 equal variance not assumed.
**Calibrated rate is not normally distributed for the subgroups.

Table 6. AUROC score corresponding for cognitive fatigue
classification according to the FSMC cognitive subscale for the
proposed metrics (sorted by AUROC in descending order).

Metric name ↓AUROC (95% CI)

Fatigability Δresponse time 0.74 (95% CI 0.64-0.84)

Fatigability Δcorrect 0.72 (95% CI 0.63-0.85)

Fatigability Δerrors 0.65 (95% CI 0.53-0.77)

General Response time 0.63 (95% CI 0.50-0.76)

General Correct 0.62 (95% CI 0.50-0.74)

General Calibrated rate 0.59 (95% CI 0.44-0.74)

General Errors 0.58 (95% CI 0.44-0.72)

Demographic Age 0.58 (95% CI 0.47-0.69)

Demographic EDSS 0.53 (95% CI 0.43-0.63)

Table 7. AUROC score corresponding to disability classification
according to the EDSS split with threshold 1.5 for the proposed
metrics (sorted by AUROC in descending order).

Metric name ↓AUROC (95% CI)

General Response time 0.64 (95% CI 0.50-0.78)

Demographics Age 0.63 (95% CI 0.53-0.73)

General Correct 0.63 (95% CI 0.49-0.77)

General Calibrated rate 0.59 (95% CI 0.43-0.75)

Fatigability Δerrors 0.55 (95% CI 0.41-0.69)

Fatigability Δcorrect 0.52 (95% CI 0.38-0.66)

General Errors 0.51 (95% CI 0.38-0.64)

Fatigability Δresponse time 0.50 (95% CI 0.36-0.64)
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with specific tasks in pwMS.39,40 Moreover, previous
results are contradictory, with some showing fatigability
while others not.39,40 Cognitive fatigability studies are in
their infancy, and research could benefit from new
approaches and validation studies. Our approach differs
from previous methods in that it is tailored to patients’
disabilities with its calibration mechanism that also
enforces rapid decision-making, which we believe contri-
butes to eliciting cognitive fatigability within a single test
session and in a short period. In addition, our
smartphone-based test is easy to administer, portable,
and designed to be applied outside clinical settings,
potentially allowing for remote and frequent monitoring.
Concerning cognitive testing, healthy controls and
pwMS perceive the PASAT as unpleasant and less
likable, while the SDMT is preferred and found appropri-
ate for cognitive testing.46 Thus, we believe cFAST will
have good acceptance as it follows a similar logic to the
SDMT and does not require patients to perform arith-
metic operations under pressure like the PASAT.
However, user acceptance of the cFAST needs to be
assessed in future studies.

Fatigability metrics relate to fatigue, while general
metrics relate to disability

We derived two sets of metrics from cFAST: fatigability
and general metrics. Our initial group-level analysis
with a t-test revealed statistically significant differences
between fatigued and non-fatigued patients with several
general and fatigability metrics. Overall, we found more
significant differences between the groups with the
general metrics than fatigability metrics. However,
results from the ANCOVA analysis revealed that
EDSS is associated with the metrics response time and

correct. Furthermore, the statistical difference in the
fatigue groups in terms of these metrics is due to disabil-
ity and not due to fatigue. Hence, after controlling for
EDSS, the statistical difference between the groups dis-
appears. We further analyzed how the groups’ differ-
ences related to patients’ disabilities. To this end, we
divided our study population into two groups according
to EDSS, disabled (EDSS>1.5) and non-disabled
(EDSS<= 1.5). This grouping revealed statistically sig-
nificant differences with the general metrics but not
with the fatigability metrics. This result suggests that
general metrics are related to and confounded by dis-
ability, while this is not true for the fatigability
metrics. We conducted the AUROC analysis controlling
for disability with Monte-Carlo simulations and strati-
fied splits to further rule out the effect of disability
from the fatigue analysis. These results confirmed our
hypothesis that fatigability metrics are better predictors
of fatigue than general metrics. Δresponse time, the
best-performing metric to classify fatigue (with an
average AUROC of 0.74), is 11 percentage points
above response time, the best-performing general
metric for fatigue. Conversely, general metrics domin-
ate the disability classification, with response time
being the best metric (average AUROC of 0.64), 9 per-
centage points above the best fatigability metric
Δerrors. Analysis of the fatigability metrics revealed
that, on average, performance during the tests tends to
worsen for fatigued patients, while patients without
fatigue tend to improve. Previous work on fatigability
showed decline towards the end of sustained cognitive
activity in pwMS while controls did not.20,44 Our find-
ings go in line with these results. However, our analysis
focused only on pwMS to decrease disease-specific
confoundings.

Figure 9. Mean AUROC for cognitive fatigue according to FSMC cognitive subscale (N = 42). ROC curves for Δresponse time (ΔRT) and
response time (RT) generated using Monte-Carlo simulation with 1000 iterations (left), t-test results for Δresponse time (center) and
response time (right). Δresponse time and response time show a statistically significant difference between the fatigue groups.
Note. AUROC, area under the receiver operating characteristic; FSMC, fatigue score for motor and cognitive functions.
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Consideration for remote and unsupervised
monitoring

We designed and implemented cFAST to achieve remote
monitoring. Hence, cFAST seeks to be self-explanatory.
For instance, trials aim at familiarizing the users with the
core test logic of matching numbers to symbols following
the shown mapping rule. Thanks to the feedback displayed
after every answer, users can quickly realize when they are
making mistakes. The immediate feedback, together with
the requirement of at least 70% correct answers out of a
minimum of 20, helps us determine if the user has correctly
understood the test logic and the requirement to perform it
quickly. As described in the methods section, we derived
the pace of the cFAST, calibrated rate, from the calibration
phase. The speed requirement seeks to induce cognitive fat-
igability in a short period. Calibrated rate is derived for
each patient, personalizing the test and adjusting for the dif-
ferent disability spectrum and baseline performance of the
patients.

Implications of objective measurement
of cognitive fatigue

A reliable and objective measurement of fatigability would
help quantify the effectiveness of treatments, both in clin-
ical trials and routine care, and it would also help clinicians
distinguish between confounding comorbidities. Several
randomized placebo-controlled clinical trials tested differ-
ent compounds for treating fatigue.11–18,67,68 However,
results from these clinical trials are inconsistent. A
common denominator in these trials is that they quantified
the outcome measure using subjective questionnaires. It is
known that the magnitude of the placebo effect is an

important reason for the variability in the efficacy during
trials.16,69,70 Thus, an objective measurement would help
clinicians overcome these limitations and complement
questionnaires to evaluate treatments’ efficacy. Our evalu-
ation shows that cFAST is a promising tool for quantifying
cognitive fatigue. Additionally, we believe the design of
cFAST will allow remote and unsupervised monitoring,
enabling more frequent assessments and detailed fatigue
profiles of patients while reducing the cost associated
with medical personnel and specialized equipment.

Limitations and future work

A limitation of our study is the lack of a gold standard cog-
nitive fatigability assessment to validate our approach.
Currently, there is no established method to quantify cogni-
tive fatigability. Up until now, existing research has used
cognitive tests protracted for extended periods as an
attempt to induce and quantify fatigability. However,
these approaches tend to be long, tedious, and costly.
Moreover, results from these experiments are inconclusive.
Hence, we directly compared our metrics to a widely
accepted and validated fatigue questionnaire within MS
research, the FSMC. The FSMC has the advantage of offer-
ing a subscale to evaluate cognitive fatigue independently
of physical fatigue. Another limitation of our study is our
sample size, limited to 42 study participants. We are
aware that more extensive evaluations are needed to deter-
mine if the test can be established as a surrogate for per-
ceived cognitive fatigue for clinical decision-making. In
particular, our pilot study uses a cross-sectional design,
thus, we are not able to define the clinical significance in
the changes on the fatigability scores in individual patients.
Future studies are needed to address this question. Finally,

Figure 10. Mean AUROC for disability according to EDSS (N = 42). ROC curves for Δresponse time (ΔRT) and response time (RT) generated
using Monte-Carlo simulation with 1000 iterations (left), t-test results for Δresponse time (center) and response time (right). Δresponse time
does not show a statistically significant difference between the disability groups, while response time does. Note. AUROC, area under the
receiver operating characteristic; EDSS, expanded disability status scale; FSMC, fatigue score for motor and cognitive functions.
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we designed cFAST to be suitable for remote and unsuper-
vised monitoring. However, in this study, the evaluation
was conducted within the hospital in a controlled environ-
ment. Further studies including longitudinal
outside-the-hospital evaluations in larger MS cohorts and
within-subjects comparison are needed to confirm the
results. Nevertheless, we believe our study offers a detailed
evaluation of our newly developed cognitive fatigability
test.

As part of future work and prior to the clinical imple-
mentation more data has to be generated to further evaluate
the generalization of the adaptation phase. Additionally, our
study highlights the need for implementing changes to
improve the data quality in an unsupervised setting. First,
we recommend incorporating a statement in the cFAST
instructions about the importance of conducting the test in
a distraction-free environment (i.e. activate “do not
disturb”modality, use quiet room). Second, we recommend
automatically dismissing test sessions if no input is
recorded within a certain period after the start.
Distractions in uncontrolled environments (e.g. incoming
phone calls or messages) can result in empty test sessions
or significant periods without data, thus producing errone-
ous values for the proposed set of metrics. Moreover,
future studies should examine whether cFAST could aid
clinicians distinguishing between confounding such as
depression, sleepiness, or others. Finally, we need to inves-
tigate further the frequency that patients need to conduct the
calibration phase in unsupervised settings. However, we
believe that calibration has to be performed only once and
that the calibrated rate can be recomputed, if necessary, dir-
ectly from the existing patients’ cFAST sessions.
Nonetheless, this requires further studies, including longitu-
dinal data.

Conclusions
We introduced cFAST, a novel smartphone-based test to
quantify cognitive fatigability tailored to the user’s disabil-
ity by its calibration mechanism. With cFAST, we aim at
having an objective surrogate of fatigue that allows moni-
toring of individual patients over time in uncontrolled
environments (e.g. at home). We do not aim to have a diag-
nostic tool, but rather a solution for clinicians to make
informed and timely decisions as to whether a patient’s con-
dition is improving or deteriorating and act accordingly.
Results from our pilot study provide evidence supporting
the validity of our approach and show that the fatigability
metrics could potentially be used as a surrogate for per-
ceived cognitive fatigue and motivate further research in
this area.
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