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ABSTRACT

Optimal input settings vary across users due to differences in motor

abilities and personal preferences, which are typically addressed

by manual tuning or calibration. Although human-in-the-loop op-

timization has the potential to identify optimal settings during use,

it is rarely applied due to its long optimization process. A more effi-

cient approach would continually leverage data from previous users

to accelerate optimization, exploiting shared traits while adapting to

individual characteristics. We introduce the concept of Continual

Human-in-the-Loop Optimization and a Bayesian optimization-

based method that leverages a Bayesian-neural-network surrogate

model to capture population-level characteristics while adapting

to new users. We propose a generative replay strategy to mitigate

catastrophic forgetting. We demonstrate our method by optimiz-

ing virtual reality keyboard parameters for text entry using direct

touch, showing reduced adaptation times with a growing user base.

Our method opens the door for next-generation personalized input

systems that improve with accumulated experience.

CCS CONCEPTS

• Computing methodologies→Machine learning; • Human-

centered computing → Interaction techniques.

KEYWORDS
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1 INTRODUCTION

Due to the diversemotor abilities, preferences, and behaviors among

users, optimal settings for input interactions in virtual reality (VR)
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and augmented reality (AR) vary significantly between individu-

als [67, 74, 93]. Today’s interactive systems either commonly over-

look this variability, or rely on manual user adjustment and explicit

calibration procedures that can result in inefficient interactions

or increased setup time. Human-in-the-loop optimization (HiLO)

presents an alternative approach that optimizes interactions based

on the user’s past performance with specific design parameters.

HiLO has been shown to be effective across a wide range of

applications, including target selection [9, 45], text input [74], vi-

sual design [37, 38], wearable devices [32], game development [31],

and animation rendering [7]. While computational optimizers help

avoid exhaustive testing of every design option [73] and aim to iden-

tify optimal solutions with minimal user trials—thereby reducing

the time users spend with suboptimal settings [32] — a significant

barrier to HiLO’s broader adoption remains its relatively low sam-

ple efficiency. Without informed priors, HiLO often relies on initial

random searches to explore the problem space, still requiring nu-

merous trials to converge to optimal solutions. Moreover, each user

must start the optimization process from scratch [3]. For instance,

Chan et al. [9] found that optimizing the transfer function for 3D

selection can take 60 to 90 minutes per user.

While individual users may have distinct preferences and per-

formance with different input settings, shared traits across the

user population could be leveraged to improve the optimizer effi-

ciency across users [44]. Ideally, optimization would become more

sample-efficient as data from prior users accumulates, allowing

subsequent users to benefit from earlier optimization experiences

while maintaining sufficient flexibility to ensure the discovery of

optimal solutions tailored to individual needs.

Thus, in this paper, we investigate the question: Can an optimizer
continually learn from prior user experiences to improve its efficiency
over time? Despite the potential, current computational methods

do not support a continually improving optimization for HiLO.

Moreover, the problem itself and the corresponding challenges

have not been thoroughly formulated in the existing literature.

One related concept is meta-Bayesian optimization [13, 83, 88,

89], which combines meta-learning and Bayesian optimization. Liao

et al. [44] demonstrated the use of meta-Bayesian optimization for

online HiLO, where a batch of “prior users” needs to go through a

full optimization process from scratch, enabling the optimizer to

performmore efficientlywith subsequent “end-users.” However, this

approach suffers from a key limitation: its computation time during

deployment increases with the number of prior users, leading to

scalability issues. Beyond a certain point, it becomes impractical,
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as users would experience significant delays during adaptation.

Additionally, this method assumes that “prior users” can dedicate

sufficient time to undergo a thorough optimization, which may not

be feasible in practice. Therefore, these methods are not suitable

for direct transformation into a continual learning framework.

Another closely related concept is continual learning [2, 10, 85],

where a model improves its predictive capabilities by accumulating

knowledge across different tasks (in the context of HiLO, a task is

optimizing for a specific user). A few recent works have emerged

that address continual learning within the context of optimization

[28, 70], but their target problems are limited to linear (1D) discrete

bandit problems, where typical HiLO tackles interactions with con-

tinuous and multiple-dimensional parameter spaces. The unique

challenges and the corresponding methods of continual learning

for HiLO remain unaddressed and unexplored.

To fill in the research gap, we formulate the problem and con-

cept of Continual Human-in-the-Loop Optimization (CHiLO) — a

computational optimizer capable of continuously improving its

efficiency and performance by leveraging accumulated experience

from previous users (illustrated in Figure 1). We further identify

the key technical challenges that are aligned with those in contin-

ual learning [85], including scalability, catastrophic forgetting, the
stability-plasticity dilemma, andmodel instability due to uneven data
distribution of observations. These challenges guide the design prin-

ciples for building CHiLO methods. Finally, we propose our novel

method, the Population-Informed Continual Bayesian Optimization
(ConBO). ConBO’s core is a Bayesian Neural Network (BNN) [49]

trained on data synthesized from individual models of previous

users, each representing a unique set of user characteristics. This

method facilitates more stable and robust continual optimization by

progressively integrating population-level user experiences with

each new user.

We validate the efficacy and generalizability of ConBO using a

series of standard benchmarking optimization functions, demon-

strating that ConBO enhances optimization efficiency as more user

data accumulates. Finally, we apply ConBO to optimize mid-air

keyboard configurations for text entry using direct touch in VR.

Our evaluations show a significant improvement in both user per-

formance and convergence time as the number of users increases,

compared to optimizing from scratch for each individual user.

In summary, we contribute

(1) The concept of Continual Human-in-the-Loop Optimization
(CHiLO). We formally define the problem, identify potential

challenges, and provide design principles for future methods.

(2) Population-informedContinual BayesianOptimization (ConBO),

a first approach to CHiLO. ConBO trains a BNN-based optimiza-

tion with data synthesized from prior users’ models.

(3) A demonstration of ConBO’s efficacy in a real-world HiLO prob-

lem. Here, we showcase significant performance improvements.

2 RELATEDWORK

2.1 Human-in-the-Loop Bayesian Optimization

System settings enable the configuration of an interactive system’s

parameters to optimize user interaction. These parameters influ-

ence user performance on a given task, which can be measured

through user evaluations and described using appropriate met-

rics [34, 40, 46]. Optimizing interaction for a user is thus equiv-

alent to determining the parameters that maximize the perfor-

mance metrics of interest. Formally, we seek the optimal parameters

𝒙∗ = argmax𝒙∈X 𝑓 (𝒙), where 𝒙 is a design vector from the space

of all possible parameters X, dependent on the system’s character-

istics, and 𝑓 represents the relationship between system settings

and user performance.

Since it remains difficult to accurately model human behavior, 𝑓

is generally unknown for most tasks, making optimization reliant

on empirical evaluations of 𝑓 (𝒙′) for a given 𝒙′. Given the cost of

real-world evaluations, minimizing the number of evaluations to

find the global optimum is crucial. Human-in-the-loop optimization

(HiLO) addresses this by using computational optimizers to select

and evaluate promising design candidates [32, 44, 46, 90]. A com-

mon approach in HiLO is Bayesian optimization [17, 53, 73], which

guides the next configuration 𝒙 to evaluate without assuming a spe-

cific functional form of 𝑓 . It employs two core components: a surro-

gate model, typically a Gaussian Process (GP), to extrapolate a belief

about unobserved points based on prior evaluations, and an acqui-

sition function to determine the usefulness of evaluating a given

point next. Bayesian optimization has been successfully applied

in various human-involved applications, such as tuning exoskele-

ton parameters [32, 33, 82], wearable devices [8, 21, 45], haptic

interfaces [8, 45], input techniques [47], and design tools [7, 39, 52].

However, a key limitation of Bayesian optimization is that, when

initializing the surrogate model without prior knowledge, it re-

quires multiple exploratory trials to sufficiently sample the search

space [86]. During this exploration phase, the algorithm may eval-

uate severely suboptimal system configurations, which impedes

the user experience. This inefficiency has motivated methods that

enhance Bayesian optimization by leveraging prior data through

transfer learning and meta-learning.

2.2 Transfer and Meta-Learning for

Human-in-the-Loop Optimization

Transfer learning involves pre-training a model with a task to en-

hance efficiency when deployed on an unseen but relevant task [87].

Meta-learning is a related concept, aiming to enable models to

adapt quickly to new tasks by leveraging accumulated experience

across multiple similar tasks [36, 72, 81, 84]. While these concepts

have been extensively explored in deep learning, especially in

applications like few-shot recognition and reinforcement learn-

ing [5, 11, 15, 55, 66, 69], their application to optimization problems

has only recently emerged [3].

Bayesian optimization, with its data-driven surrogate model (typ-

ically GP), holds potential for extensions into meta-learning and

transfer learning. Previous efforts have explored constructing a

GP model that accumulates observations across tasks [4, 6, 80, 91].

However, the primary challenge with this approach is scalability, as

the GP fitting grows cubically with the number of observations; i.e.,

O(𝑛3) where 𝑛 represents the number of observations across all

tasks. Some methods have replaced components of Bayesian opti-

mization with deep neural networks (e.g., deep kernels or deep

acquisition functions) to more effectively leverage past experi-

ences [24, 83, 88]. Another approach, the weighted-sum method,
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Figure 1: Illustration of Continual Human-in-the-Loop Optimization (CHiLO): The optimizer, parameterized by 𝜃 , continuously

evolves by accumulating experience from optimizations for different users. This enables more efficient adaptation to new users

over time.

constructs individual GP models for each task or user and aggre-

gates their acquisition functions based on weighted contributions.

This method offers better scalability [42, 68, 89]. For instance, a

recent work, TAF
+
, is applied in wrist-based input techniques [44].

However, the online adaptation time of this approach increases lin-

early with the number of prior models (users), making it impractical

for large-scale continual learning [83].

Overall, current transfer and meta-Bayesian optimization meth-

ods face significant limitations that prevent their direct application

to our intended goal (CHiLO), where an optimizer has to handle

a sequence of users and keep improving its performance and ef-

ficiency over time. For example, the single GP model approach

is limited by computational scalability and struggles to encode

or balance users with highly diverse characteristics. While some

works have explored using BNNs as surrogate models [78], these ap-

proaches are typically meant for one single problem requiring large

data points to tackle, not for handling sequential tasks (users) with

similar but non-identical structures. Continual training of neural

networks on such tasks often leads to issues with model instability

and catastrophic forgetting [2, 85]. Furthermore, weighting-based

methods increase adaptation time linearly to the previously seen

tasks, which limits their practical use in continual learning scenar-

ios. Lastly, approaches like Liao et al. [44] assume the availability

of a large batch of “prior users” who can contribute to a long and

thorough optimization process, which may not be feasible in prac-

tice. Therefore, there is a strong need for novel methods that extend

Bayesian optimization into the realm of continual learning.

2.3 Continual Learning and its Application to

Optimization

Inspired by the human ability to learn and improve through ac-

cumulating experiences across various tasks, continual learning

(also known as life-long learning) is a machine learning paradigm

where models are designed to learn and adapt continuously and

incrementally from new data across different tasks [2, 85]. However,

achieving this goal presents several significant challenges, including

catastrophic forgetting, scalability, and maintaining model stability.

To address these challenges, various approaches have been devel-

oped. Regularization-basedmethods penalize substantial changes to

critical parameters, enabling models to retain knowledge from pre-

vious tasks while learning new ones [35, 43]. Replay-based methods

ensure that models revisit past data or use synthetically generated

data from previous tasks to prevent the forgetting of previously

acquired information [61, 75]. Parameter-isolation methods miti-

gate task interference by allocating different parts of the model’s

parameters to different tasks [12, 64]. Additionally, meta-learning-

based methods focus on continually training meta-models that can

quickly adapt to new tasks by leveraging the knowledge acquired

from previous tasks [25, 62]. Continual learning has demonstrated

successful applications in domains such as computer vision [61, 92],

robotics [41, 54], natural language processing [22, 79], and rein-

forcement learning [63, 71].

Recent research has attempted to achieve continual learning in

optimization tasks. One worth mentioning example is Schur et al.

[70], which introduces a method called Lifelong Bandit Optimization
(LiBO). LiBO uses meta-learning to continually refine a meta-kernel

function of a Gaussian Process, enabling the optimizer to accu-

mulate experience from previous bandit problems. This method is

based on meta-learning for kernels [23, 58]. However, LiBO primar-

ily addresses linear discrete bandit problems, which are significantly

simpler than multi-dimensional, continuous Human-in-the-Loop

Optimization (HiLO) tasks. Moreover, a key component of LiBO

is its phase of "forced exploration," making it unsuitable for our

goal of minimizing random exploration for new users. While the

lifelong bandit optimization problem is introduced in this work,

its formulation and challenges are heavily focused on learning a

kernel function. Therefore, we argue for the need to introduce the

problem and challenges of Continual HiLO and to develop compu-

tational methods that extend beyond bandit problems, eliminating

the requirement for forced exploration.
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2.4 Input Personalization for AR/VR

Interactions

Due to the high variance in users’ motor capabilities [93], it is valu-

able to adapt input parameters to individual users. Traditionally,

this personalization relies on explicit calibration processes, requir-

ing users to perform specific tasks for the system to determine

appropriate configurations before actual interaction begins. For

example, users of wearable devices often need to perform prede-

fined motions to allow the system to calibrate sensor ranges and

adjust parameters accordingly [18, 19]. Similarly, gaze interactions

typically involve calibration tasks where users are asked to track a

series of targets [59].

More recently, input personalization has been framed as a HiLO

problem. Bayesian optimization, for instance, has been applied to

identify personalized transfer functions for target selection [9] and

to adapt keyboard dimensions for gestural typing [74]. However,

these methods treat optimization as a more principled calibration

process that is completed before the actual interaction. Chan et al.

[9], for example, requires users to undergo a 60-90 minute opti-

mization session, while Shen et al. [74] utilizes a two-stage process

where users first optimize and then manually select the final design.

Therefore, these procedures aremore suitable to be a pre-interaction

step rather than a real-time adaptation.

We want to emphasize that a key difference between these works

and our paper is that we are not merely applying Bayesian opti-

mization to a specific task and investigating its performance; rather,

we aim to develop a framework, CHiLO, that allows the optimizer

to continually improve over time and across users. This enables

faster, more efficient online adaptation as the system accumulates

knowledge from previous users. A related work by Liao et al. [44]

employs meta-Bayesian optimization to enhance online optimiza-

tion efficiency. However, as discussed earlier, their weighting-based

approach is not scalable for continual learning due to challenges like

computational complexity and the assumption of having a group

of prior users available for extensive optimization procedures.

3 CONTINUAL HUMAN-IN-THE-LOOP

OPTIMIZATION

In this section, we formally define the concept of Continual Human-

in-the-Loop Optimization (CHiLO), which serves as the foundation

for the design principles underlying our method.

The goal of CHiLO is to optimize the parameter settings of an

interactive system for a sequence of users, assuming that optimal

parameters to maximize the performance metric of interest vary

between individuals. As each user arrives and undergoes the human-

in-the-loop optimization, there is access to observations from prior

users to progressively improve the optimizer. The objective is to find

the optimal solution for each user while minimizing the number of

suboptimal trials.

3.1 Problem Statement

We aim to find the optimal parameters 𝒙∗𝑢 = argmax𝒙∈X 𝑓𝑢 (𝒙) for
each user 𝑢 ∈ U = {1, · · · , 𝑁 }, where X represents the continuous

multi-dimensional input space, and U is the set of 𝑁 users. The

function 𝑓𝑢 : X → R describes the user-dependent relationship

between the input settings 𝒙 and the corresponding user perfor-

mance 𝑓𝑢 (𝒙) according to a chosen performance metric. Since 𝑓𝑢 is

unknown and cannot be explicitly modeled, we treat it as a black-

box function during optimization. For each user 𝑢, evaluations at a

given input setting 𝒙 yield an observed performance 𝑦 = 𝑓𝑢 (𝒙) + 𝜖 ,

where 𝜖 ∼ N(0, 𝜎2) represents independent and identically dis-

tributed (i.i.d.) Gaussian noise, capturing the stochastic variability

in user behavior.

During optimization, the optimizer, parameterized by 𝜽 , selects a
design vector 𝒙𝑡𝑢 at each iteration 𝑡 and observes the corresponding

output𝑦𝑡𝑢 , based on the user’s history of prior observationsD𝑡−1
𝑢 =

{[𝒙0𝑢 , 𝑦0𝑢 ], [𝒙1𝑢 , 𝑦1𝑢 ], . . . , [𝒙𝑡−1𝑢 , 𝑦𝑡−1𝑢 ]}. Additionally, in CHiLO, the

optimizer also leverages observations from prior users {D𝑇
𝑖
}𝑢−1
𝑖=1

,

where D𝑇
𝑖
represents the history over 𝑇 steps of optimization for

previous users 𝑖 .

Thus, the design vector at iteration 𝑡 is selected as

𝒙𝑡𝑢 = 𝑔

(
D𝑡−1

𝑢 , {D𝑇
𝑖 }

𝑢−1
𝑖=1 |𝜽

)
, (1)

where 𝑔 is the function guiding the selection process based on

the current user’s history and the data from prior users, with 𝜽
parameterizing the optimization strategy.

We aim to propose a method with an optimal selection function

𝑔 and corresponding parameters 𝜽 such that, for each incoming

user, the optimizer generates a sequence of solutions {𝒙𝑡𝑢 }𝑇𝑡=1 that
minimize cumulative regret. The cumulative regret 𝑅(𝑁,𝑇 ) for 𝑁
users over 𝑇 optimization iterations is defined as

𝑅(𝑁,𝑇 ) =
𝑁∑︁
𝑢=1

𝑇∑︁
𝑡=1

[
𝑓𝑢 (𝒙∗𝑢 ) − 𝑓𝑢 (𝒙𝑡𝑢 )

]
, (2)

where 𝑓𝑢 (𝒙∗𝑢 ) represents the optimal performance for user 𝑢, and

𝑓𝑢 (𝒙𝑡𝑢 ) is the performance at iteration 𝑡 .

The regret quantifies the cumulative difference between the

optimal performance 𝑓𝑢 (𝒙∗𝑢 ) and the performance at each iteration.

Minimizing the regret requires the optimizer to efficiently estimate

the user’s expected performance and progressively approach the

optimal solution by leveraging both the user’s own observations

and the knowledge gathered from previous users.

3.2 Challenges and Design Principles of CHiLO

CHiLO faces several challenges akin to those encountered in con-

tinual learning. Below, we outline the most significant challenges

and propose corresponding design principles to address them.

The first challenge is scalability across a large number of

users. For CHiLO to be effective, the optimizer must accumulate

and leverage user experiences over time. As the amount of data

grows, the optimizer must scale efficiently, both in encoding in-

creasingly large datasets and maintaining computational efficiency

when applied to new users. Many traditional optimization methods

struggle with this challenge. For example, Bayesian optimization

uses surrogate models like Gaussian Processes (GPs) to fit observed

data. However, due to their high computational complexity, GPs

often fail to scale well with large datasets.

The second challenge is catastrophic forgetting. Since CHiLO

involves the sequential optimization of different users with unique

characteristics, the optimizer may become overly specialized to the

most recent users, leading to the loss of knowledge gained from
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prior users. This phenomenon, known as catastrophic forgetting,

can significantly hinder consistent performance across diverse user

populations. For instance, in the case of a mid-air keyboard, some

users may perform better on a smaller keyboard, while others prefer

a larger one. If the optimizer adapts too strongly to one user group

after consecutive optimizations, it risks forgetting how to optimize

for previously encountered user types, leading to poor performance

when those users reappear.

The third challenge is the stability-plasticity dilemma, which

closely relates to the exploration-exploitation dilemma. This

challenge involves balancing the use of prior knowledge (exploita-

tion) with the need to adapt to new tasks (exploration). In CHiLO,

new users may have characteristics that differ significantly from

previous users. If the optimizer relies too heavily on prior data, it

may fail to discover the global optimum for users with novel char-

acteristics. On the other hand, focusing solely on new user data can

lead to inefficient exploration, overfitting, or over-specialization,

ultimately reducing the optimizer’s ability to generalize across a

diverse user population.

The fourth challenge ismodel instability due to uneven dis-

tribution of observations. During optimization, different users

may explore different regions of the design parameter space. If

certain regions are evaluated more frequently, the optimizer will

accumulate more experience in those areas, leading to better predic-

tions. However, this can result in neglecting other regions, causing

the model to become unstable and unreliable when predicting in

underexplored areas. This issue is especially problematic in large

design spaces, where certain regions may be overlooked due to

perceived lower importance or higher evaluation costs.

These challenges are interrelated. For example, poor scalability

can lead to model instability as the optimizer struggles to han-

dle large datasets, and catastrophic forgetting might occur when

the optimizer focuses too narrowly on recent tasks, leading to an

imbalanced distribution of observations.

In response to these challenges, we propose the following design

principles for general CHiLO methods:

(1) Efficient Scalability: Methods for CHiLO must efficiently

scale as data and the number of tasks increases. This requires

the ability tomanage large datasets and incorporate new data

without significantly increasing computational complexity.

(2) Knowledge Retention: Optimizers must be capable of re-

taining knowledge from previous tasks while adapting to

new ones, thus preventing catastrophic forgetting.

(3) Mechanism for Balancing Stability and Plasticity: The

methods should includemechanisms that allow the optimizer

to adapt to new users without disproportionately skewing

the model towards highly specific user characteristics.

(4) Robustness Across the Parameter Space: The methods

should maintain robustness and stability across the entire

design parameter space, even when certain regions are un-

derexplored or overexplored.

4 POPULATION-INFORMED CONTINUAL

BAYESIAN OPTIMIZATION (CONBO)

In line with the design principles outlined above, we propose our

Population-Informed Continual Bayesian Optimization (ConBO), a

novel approach that leverages population-level user characteris-

tics to enable more stable and robust continual optimization. Our

method is built on the foundation of Bayesian optimization (BO),

which is not only a widely used method for HiLO problems [73],

but also a powerful tool for constructing surrogate models from

observed data during the optimization process. This data-driven

nature makes it well-suited for continual learning across users,

as it allows for learning from data beyond just one user. In BO,

the surrogate model, typically a Gaussian Process, estimates the

mean 𝜇 (𝒙) and variance 𝜎2 (𝒙) of a Gaussian distribution over the

output of the objective function for any given design decision 𝒙 ,
𝑞 (𝑓 (𝒙) |𝒙,D) = N

(
𝜇 (𝒙), 𝜎2 (𝒙)

)
. The acquisition function 𝑎(𝒙)

uses these predictions to compute acquisition values, which in-

dicate the "worth" of each design 𝒙 . The design with the highest

acquisition value 𝒙′ = argmax𝒙∈X 𝑎(𝒙) is selected for user evalu-

ation, resulting in a corresponding performance measure 𝑦′. This
pair (𝒙′, 𝑦′) is then used to update the surrogate model, refining its

predictions in subsequent iterations. As more data points (𝒙, 𝑦) are
collected, the surrogate model becomes increasingly accurate, lead-

ing to better estimates of the true function 𝑓 (𝒙), and thus guiding

the optimization process more effectively.

Following the BO framework, ConBO relies on a surrogate model

and employs a standard acquisition function. However, in ConBO,

instead of being fitted solely to a specific user’s data, the surrogate

model encapsulates the accumulated knowledge from all prior users,

resulting in a meta-surrogate model or population model. This popu-
lation model facilitates more efficient optimization for new users

by leveraging insights from previous user interactions, allowing

for informed and effective decision-making.

Here, we outline the key components and workflow of ConBO.

4.1 Working Principles of ConBO

To enable scalability, we employ a BNN as the population model

instead of the typical GP. The BNN is better suited for large-scale

problems, as it can predict both the mean and variance of user per-

formance for any design while supporting BO [77, 78]. Unlike GPs,

which suffer from cubic computational complexity as data grows,

BNNs can handle large datasets and can be explicitly optimized to

provide predictions with varying uncertainty.

To ensure knowledge retention across users, we implement a

memory-replay mechanism, where ConBO retrains the population

model after each user by incorporating all accumulated data. With-

out this, the population model risks forgetting previous user data

by adapting only to the current user’s data, leading to instability.

Addressing the stability-plasticity dilemma, ConBO uses a

mixture-model approach [13, 89]. The BNN-based populationmodel

and a GP model, trained on the current user’s data, work together.

Initially, the population model guides the optimization based on

population-level knowledge, and as iterations progress, the GP

model, tailored to the current user, takes on greater weight, allowing

personalized optimization without losing the ability to generalize

across users.

Ensuring robustness across the entire design space is essen-

tial to prevent the populationmodel from overfitting to regions with

more observations. This is achieved through a generative memory-

replay mechanism, where grid-based predictions from previous
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Adapting to a new userMeta-training using previous models
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Figure 2: Illustration of the key elements and workflow of ConBO: ConBO utilizes a population model (BNN) to continually

learn the population-level user characteristics. It is further trained by previous user models (𝐺𝑃1,2,3,4...). We sample points

across the design space and query the predicted means and variances from all GPs (meta-training). ConBO filters out unreliable

predictions, and trains the population model with the rest reliable predictions (variance filter). When deploying on a new user

𝑢, the population model and a user-specific model (𝐺𝑃𝑢 ) jointly guide the optimization process (adapting to new users). When

an adaptation is complete, this user’s model will be stored as a previous model.

users’ models are selectively retained based on uncertainty levels.

This prevents overfitting or underfitting to specific regions in the

search space.

4.2 Key Components of ConBO

ConBO consists of these key components (see Figure 2): the popu-

lation model, the current user-specific model (user-specific model),

and a set of previously gathered models (previous models).

Population model: The population model is a BNN designed to

capture and generalize population-level user characteristics, while

adapting to individual users during deployment. Unlike a typical

surrogate model that is trained on data from a single user, the pop-

ulation model in ConBO is trained on data synthesized from all

prior users. Specifically, it receives grid-based predictions from pre-

vious models (described below), which include both the predicted

mean and variance of performance over the design space. These

predictions are used to retrain the population model, allowing it to

generalize across users. The population model uses a multi-layer

perceptron with dropout active during inference to capture epis-

temic uncertainty. During inference, multiple samples are drawn

to estimate uncertainty. The model has two linear outputs: one

for the mean and another for the log-variance, which accounts

for aleatoric uncertainty. The total predictive variance is approxi-

mated as the sum of the mean output variances and the variance

of predicted means, while the final mean estimate is the mean of

predicted means [30].

During adaptation for a new user, the population model takes

the design parameter settings as input, and estimates the aver-

age population mean and variances at given design points. This

allows the population model to initially guide the optimization pro-

cess by identifying the most promising design candidates for user

evaluation based on the acquisition function values (e.g., Expected

Improvement) at the selected design points. Lastly, the population

model adapts to the new user during online optimization with the

observed user performance, allowing for more tailored suggestions.

Current user-specific model (user-specific model): For each

new user currently undergoing the optimization process, ConBO

constructs a GP model specifically fitted to the observations col-

lected from that user. We refer to this model as the current user-
specific model (i.e., user-specific model), to differentiate from pre-
vious user-specific models, which will be introduced in the next

paragraph. While both the population model and the user-specific

model adapt to the ongoing user’s data, the user-specific model does

not incorporate data from prior users. This allows it to generate ac-

quisition values highly focused on the current user’s characteristics.

The acquisition values from the user-specific model are combined

with those from the population model through a weighted-sum ap-

proach. Initially, the population model has a stronger influence due

to its population-level knowledge. As more iterations occur and the

user-specific model gains more data, the user-specific model’s influ-

ence grows, allowing for a more personalized optimization process

tailored to the current user. The use of mixed models to generate ac-

quisition values is an established approach [13, 44, 89]. Additionally,

we demonstrate the performance improvement of incorporating the

user-specific model alongside the population model during adap-

tation, rather than relying solely on the population model, in our

simulated experiments (see Appendix A).

Previous user-specificmodels (previousmodels):After each

user completes the optimization process, their data is used to con-

struct a GP model, which is stored in a library of previous surrogate

models. These previous models generate grid-based predictions

(mean and variance) across the entire design space, which are then
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used to retrain the population model. By filtering out predictions

with high variance (i.e., uncertainty), ConBO ensures that only

reliable information is used for population model training.

4.3 Workflow of ConBO

ConBO operates in a sequential manner, optimizing for one new

user at a time. Figure 2 gives an overview. Following the same

structure, we summarize the workflow into two primary phases,

Adaptation to a New User andMeta-Training, below.

1a. Adaptation to a new user – proposing a design can-

didate: For each new user, the population model (BNN) and the

user-specific model (GP) jointly generate acquisition values over

the design space. Initially, the population model is prioritized, lever-

aging population-level knowledge from previous users. As the user-

specific model collects more data from the new user, its influence

progressively increases. This dynamic weighting enables efficient

adaptation to new users without drastically altering the popula-

tion model. After the optimization process, the user-specific model

is stored as part of the previous models. To manage the dynamic

weighting, we follow prior work [44] to introduce two hyperpa-

rameters: 𝛼1 and 𝛼2 to govern the influence of both models during

adaptation. For each surrogate model 𝑘 , we compute its acquisition

function 𝑎𝑘 as the Expected Improvement (EI),

𝑎𝑘 (𝒙) = EI𝑘 (𝒙) =
∫ ∞

−∞
max(0, 𝑓 (𝒙)−𝑓 (𝒙+))𝑞𝑘 (𝑓 (𝒙) | 𝒙,D) 𝑑 𝑓 (𝒙),

(3)

where 𝒙+ is the design vector corresponding to the best observed

value 𝑓 (𝒙+), and 𝑞𝑘 (𝑓 (𝒙) | 𝒙,D) is the predictive distribution

of surrogate model 𝑘 , representing the current belief about user

performance at 𝒙 .
The weight of the acquisition values generated by the population

model at iteration 𝑡 , denoted as𝑤𝑚,𝑡 , is calculated as:

𝑤𝑚,𝑡 =


1, if 𝑡 ≤ 𝛼1

1 − (𝑡 − 𝛼1)𝛼2, if 𝛼1 < 𝑡 ≤ 𝛼1 + 1

𝛼2

0, otherwise.

(4)

The weight for the acquisition values from the user-specific model,

𝑤𝑢,𝑡 , is the complement of𝑤𝑚,𝑡 , computed as𝑤𝑢,𝑡 = 1 −𝑤𝑚,𝑡 . The

final acquisition function for a given design candidate 𝒙 at iteration

𝑡 is a weighted sum of the EI values from the population model and

the user-specific model, which can be denoted as:

𝑎𝑡 (𝒙) = 𝑤𝑚,𝑡𝑎𝑚,𝑡 (𝒙) +
(
1 −𝑤𝑚,𝑡

)
𝑎𝑢,𝑡 (𝒙), (5)

where 𝑎𝑚,𝑡 is the acquisition value generated by the population

model, and 𝑎𝑢,𝑡 (𝒙) denotes the acquisition value derived from the

user-specific model. The design candidate with the highest acquisi-

tion value (𝒙∗) will then be selected to be evaluated by the user in

this iteration; i.e., 𝒙next = argmax𝒙∈X 𝑎𝑡 (𝒙).
Note that when ConBO is first deployed, it lacks sufficient knowl-

edge from prior users, requiring early participants to undergo a

certain amount of random exploration. However, as the population

model evolves and gathers more information, the need for ran-

dom exploration diminishes. For later users, random exploration

may no longer be necessary. In such cases, the user-specific model

is initialized with a zero-mean function (i.e., all 𝑥 values lead to

the same mean and variance predictions), and the optimization is

fully governed by the population model until observations from

the current user are collected (i.e., the iteration 𝑡 exceeds 𝛼1), at

which point the GP model is updated. These users benefit from the

accumulated knowledge of earlier participants, relying initially on

the population model-guided optimization.

Two additional hyperparameters control the number of random

explorations required for each new user: 𝑟0 (the initial number of

random explorations) and𝑑𝑟 (the decay rate of random exploration).

The number of random explorations for the 𝑢-th participant (count

from 1) is denoted as 𝑟𝑢 , which is calculated as

𝑟𝑢 = max (0, 𝑟0 − (𝑢 − 1)𝑑𝑟 ) . (6)

1b. Adaptation to a new user – model adaptation: During

online adaptation, the population model keeps a record of all the ob-

served design instances and their corresponding user performances

(𝑥,𝑦). We use the Gaussian negative log-likelihood loss [56] for a

probabilistic update of the predicted mean and variance at a de-

sign point 𝑥 , based on the observed 𝑦 from the user evaluation,

after each new observation. This enables the population model to

adapt to the new user’s performance characteristics. Simultane-

ously, the user-specific model is updated with the same observed

data (𝑥,𝑦), capturing the current user-specific uncertainty distri-

bution over the design space. In later iterations, the user-specific

model will primarily lead the acquisition function as its weights

(𝑎𝑢,𝑡 (𝑥)) increases. Notably, the population model adaptation is

essential for ConBO, particularly during the initial optimization

iterations (𝑡 ≤ 𝛼1), where the acquisition values are entirely based

on the population model. Without updating the population model,

it would repeatedly propose the same design 𝒙∗ (as defined in Equa-

tion 4), further limiting the user-specific model’s opportunity to

learn about the user’s preferences due to a lack of diverse observa-

tions in the design space. Once the adaptation process for a user is

complete, the user-specific model is stored as a prior-user model.

Then, it will contribute to future population model training.

2a.Meta-training – mean and variance generation: The pop-

ulation model is pre-trained using a generative replay mechanism.

Sample points are generated across the design space, following

both a predefined grid and randomly selected points. The prior-

user models predict the mean and variance at these points, which

form the dataset for training the population model.

2b.Meta-training – data synthesis and variance filtering:

Predictions with variance exceeding a threshold 𝜆 are considered

unreliable due to high uncertainty, often caused by different users

exploring distinct regions of the design space. Unexplored areas

naturally exhibit high variance, indicating this user model’s lack

of information in those design regions. To ensure the quality of

the training data, predictions from unexplored regions with high

uncertainty are filtered out. If no query from a specific prior-user

model yields a variance below the threshold, it suggests that this

particular user’s performance is highly noisy and unstable across

the entire design space or simply lacks enough observations. In

such cases, predictions from this prior-user model are excluded

from population model training. In our later user study, we set

the threshold as half of the objective value range (i.e., 𝜆 = 5 for a

normalized range of [−5, 5]). Importantly, we did not observe any
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scenario where a prior-user model’s predictions were completely

excluded at any point in our user study, indicating the threshold

was reasonable.

2c. Meta-training – continual update: The population model

for a user 𝑢 is retrained using the filtered dataset. The training loss

consists of two terms, one for the predicted mean and one for the

predicted variance. The loss function is defined as:

L𝑢 =
1

|S|
∑︁
𝑠∈S

©­«𝜇𝑠 −
1

|U𝑠
𝑢 |

∑︁
𝑖∈U𝑠

𝑢

𝜇𝑖,𝑠
ª®¬
2

+ ©­«𝜎̂2𝑠 − 1

|U𝑠
𝑢 |

∑︁
𝑖∈U𝑠

𝑢

𝜎2𝑖,𝑠
ª®¬
2
(7)

where S is the set of samples used for pretraining the BNN popula-

tion model, U𝑠
𝑢 is the set of prior users for user 𝑢 with sufficient

confidence about sample 𝑠 , 𝜇𝑠 and 𝜎̂
2

𝑠 are the predicted mean and

variance for sample 𝑠 from the BNN, and 𝜇𝑖,𝑠 and 𝜎
2

𝑖,𝑠
are the target

mean and variance according to the user-specific model (GP) of

prior user 𝑖 for sample 𝑠 . When encountering a new user, this pro-

cess repeats, initiating a new cycle in the workflow. The detailed of

the workflow is presented in Algorithm 1.

Summary: ConBO leverages a BNN as a population model to

capture population-level knowledge. While the population model

adapts to the new user with the online observations, its acquisition

values are combined with insights from a user-specific GP to further

provide user-specific suggestions. ConBO adapts to new users while

minimizing the need for random exploration. Memory replay and

generative data synthesis prevent catastrophic forgetting, ensuring

scalability, knowledge retention, and robustness, all in alignment

with the core design principles of continual optimization.

4.4 Simulated Tests with Benchmark Functions

We evaluated ConBO’s effectiveness and generalizability in simu-

lated tests using standard benchmark functions (e.g., Branin and

McCormick). These simulated tests, detailed in Appendix A, ex-

plored various design choices for achieving CHiLO, including a

range of both GP-based and BNN-based implementations. Addition-

ally, the tests included adaptations of existing methods to enable

CHiLO, variations in replay mechanisms, the inclusion or exclusion

of the user-specific model, and the use or omission of a variance

filter. A complete list of the compared alternatives is provided in

subsection A.1. The results demonstrate the advantages of ConBO,

such as using a BNN as the population model, incorporating the

user-specific model, our memory-replay mechanism, and a vari-

ance filter. ConBO outperforms alternatives in adaptation accuracy

while maintaining consistent online computational costs.

Our simulated tests highlight that GP-based methods exhibit

increasing computational time as the number of observations or

users grows. Methods that aggregate predictions across multiple

GPs, such as TAF [44], experience linearly increasing computation

times with the number of users; that is,O(𝑚), where𝑚 indicates the

number of previous models. Our experiments showed that TAF’s

computation time surpasses that of ConBO from the 4th user. Single-

GP methods, on the other hand, suffer from cubically increasing

computation time with the total number of observations; that is,

O(𝑛3), where 𝑛 indicates the number of total observations. For ex-

ample, our synthetic results demonstrate that the computation time

of single-GP methods exceeds ConBO’s after approximately 350

evaluations – a number easily surpassed when adapting across mul-

tiple users. Detailed illustrations of computation costs are provided

in Figure 4d. These findings emphasize ConBO’s effectiveness in

achieving continual human-in-the-loop optimization with superior

computational scalability.

Finally, in subsection A.8, we showcase that ConBO’s memory-

replay mechanism effectively retains the experience of previously

seen tasks, leading to better performance when re-optimizing the

seen synthetic users. In contrast, without any memory-replay mech-

anism, the population model struggles to perform well when re-

optimizing for older tasks.

5 USER STUDY: MID-AIR KEYBOARD

PERSONALIZATION

We selected text input on a mid-air keyboard in VR, using direct

touch with index fingers, as a representative task to showcase the

benefits of ConBO with real-world users. Text entry is a fundamen-

tal input task with well-established performance metrics, and VR

offers a unique opportunity for interface personalization. Optimal

keyboard size and placement varies between participants due to dif-

ferences in prior experience, body size, motor abilities, and age [74].

Yet, virtual keyboards are typically displayed in a predetermined,

standard size. If customization is available, it often relies on manual

adjustments by the user, which, in cases of unfamiliarity with the

modality, can lead to suboptimal configurations. Thus, ConBO of-

fers a unique opportunity for automatic keyboard personalization

and resulting performance improvements.

5.1 Optimization Task

Our objective is to maximize typing performance in terms of net

words per minute (net WPM) [20, 65], defined as:

Net WPM =
𝐶/5 − 𝐸

𝑇 /60 , (8)

where 𝐸 is the number of character errors between the target

and the typed phrase, according to the Levenshtein distance [1, 50],

𝐶 is the number of typed characters, and𝑇 is the text entry duration

in seconds. Based on a pilot study with three participants, we deter-

mined that a reasonable range for typing performance is between

5 and 20 net WPM. This range was then linearly normalized to an

objective value of [−5, 5] during the optimization process.

For keyboard configuration, we optimized both the placement (in

terms of distance along the user’s sagittal axis) and the scaling of the

keyboard size (keeping proportions constant). The ranges for these

parameters, as shown in Table 1, were determined based on a pilot

test with three participants. These parameters were normalized to

a [0, 1] range during the optimization process.

5.2 Experiment Setup

We compared our method, ConBO to standard Bayesian optimiza-

tion (Standard BO) and manual user adjustment (Manual) as base-

line adaptation conditions. A within-subject study was conducted,

with conditions counterbalanced using a Latin-square design. Each

condition was evaluated with 10 phrases, and an optimization iter-

ation was performed after the completion of each phrase. Typing
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Algorithm 1 ConBO: Population-Informed Continual Bayesian Optimization

Require: Users U, design space X, population model 𝑞𝑚 (Bayesian Neural Network), user-specific models 𝑞𝑢 (Gaussian Process, including

both the previous and the current user-specific models) , number of iterations 𝑇 , variance threshold 𝜆, acquisition function parameters

𝛼1 and 𝛼2, random sampling parameters 𝑟0 and 𝑑𝑟
Ensure: Optimized design choice for each user 𝑢 ∈ U
1: Initialize population model 𝑞𝑚
2: Initialize user-specific model 𝑞𝑢 for each 𝑢 ∈ U
3: for each user 𝑢 ∈ U do

4: Determine the number of random samples 𝑟𝑢 based on Equation 6

5: Sample 𝑟𝑢 initial design points from the design space X, these sample design points are denoted as {𝒙0𝑢 , . . . , 𝒙
𝑟𝑢
𝑢 }

6: Perform user evaluation 𝑓𝑢 at {𝒙0𝑢 , . . . , 𝒙
𝑟𝑢
𝑢 } to obtain {𝑦0𝑢 , . . . , 𝑦

𝑟𝑢
𝑢 }

7: If 𝑟𝑢 > 0, train user-specific model 𝑞𝑢 with {[𝒙0𝑢 , 𝑦0𝑢 ], . . . , [𝒙
𝑟𝑢
𝑢 , 𝑦

𝑟𝑢
𝑢 ]}; Else, initialize the user-specific model 𝑞𝑢 with a standard

zero-mean function.

8: for 𝑡 = 𝑟𝑢 + 1 to 𝑇 do

9: Sample 𝑁aq points 𝒙̃ over the design space X to form set
˜X

10: for each point 𝒙̃ ∈ ˜X do

11: If 𝑡 ≤ 𝛼1 + 1

𝛼2

, compute acquisition values 𝑎𝑚,𝑡 (𝒙̃𝑡 ) using the population model 𝑞𝑚 ; Else, set 𝑎𝑚,𝑡 = 0

12: If 𝑡 > 𝛼1, compute acquisition values 𝑎𝑢,𝑡 (𝒙̃𝑡 ) using the user-specific model 𝑞𝑢 ; Else, set 𝑎𝑢,𝑡 = 0

13: Compute the weight𝑤𝑚,𝑡 via Equation 4

14: Compute 𝑎𝑡 (𝒙̃𝑡 ) = 𝑤𝑚,𝑡𝑎𝑚,𝑡 (𝒙̃) +
(
1 −𝑤𝑚,𝑡

)
𝑎𝑢,𝑡 (𝒙̃)

15: end for

16: Select next design point 𝒙𝑡 = argmax𝒙̃∈ ˜X 𝑎𝑡 (𝒙̃)
17: Perform user evaluation for 𝑓𝑢 (𝒙𝑡 ) to obtain 𝑦𝑡
18: Update the current user-specific model 𝑞𝑢 with (𝒙𝑡 , 𝑦𝑡 )
19: Update the population model 𝑞𝑚 with (𝒙𝑡 , 𝑦𝑡 ) using Gaussian negative log-likelihood loss

20: end for

21: Store 𝑞𝑢 in memory

22: Sample points 𝒙𝑠 across X to form set S
23: for each 𝑠 ∈ S do

24: for each 𝑢̃ ∈ {𝑢̃ ∈ U | 𝑢̃ ≤ 𝑢} do
25: Estimate mean 𝜇𝑢̃,𝑠 and variance 𝜎2

𝑢̃,𝑠
according to 𝑞𝑢̃ (𝑓 (𝒙𝑠 ) |𝒙𝑠 ,D𝑢̃ )

26: end for

27: Apply variance filtering to obtain set of samples with sufficient confidence:U𝑠
𝑢̃
= {𝑢̃ ∈ U | 𝑢̃ ≤ 𝑢 ∧ 𝜎2

𝑢̃,𝑠
< 𝜆}

28: end for

29: Re-train population model 𝑞𝑚 with filtered dataset D
filt,𝑢+1 = {(𝜇𝑢̃,𝑠 , 𝜎2𝑢̃,𝑠 ) | 𝑢̃ ∈ U𝑠

𝑢̃
}𝑠∈S
𝑢̃≤𝑢 via Equation 7

30: end for

31: return Optimized design points for all users 𝑢 ∈ U

Table 1: Adjustable parameters for the keyboard optimization.

Design Parameter Range

𝑥0: distance from the user along the sagittal axis [25, 65] cm
𝑥1: scaling of the virtual keyboard (width × height) [39 × 10.5, 90 × 31.5] cm

performance, measured in net words per minute (net WPM), was

recorded after each phrase as the performance metric (objective

function) for optimization.

5.2.1 Participants, Task, and Procedure. We recruited a total of 12

participants (2 females). Their average age is 27.75 years, ranging

from 24 to 38. The participants’ heights range from 160 to 195

cm. For further details regarding their eyesight, heights, and arm

lengths, please refer to Appendix subsection B.1. In each iteration,

participants were asked to transcribe a target phrase using a mid-air

keyboard, optimized for size and distance along the sagittal axis.

Seated in a stationary chair, participants were instructed to type

the phrase by using their index finger to poke each character indi-

vidually on the mid-air keyboard. They were instructed to type “as
quickly and as accurately as possible” with no option for corrections.

Each participant completed 30 iterations (phrases) throughout

the study, corresponding to 10 sentences per adaptation proce-

dure. The target phrases were randomly selected from a set of 184

phrases, drawn from the MacKenzie & Soukoreff phrase set [51]

and constrained to a length of 28 to 32 characters.

For ConBO and Standard BO the keyboard size and distance

were dynamically adjusted by the respective optimization method.
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In themanual adjustment procedure (Manual), participants had the

opportunity to instruct the experimenter to adjust the keyboard’s

distance to their preference before starting. They could test the

keyboard settings by typing and making as many adjustments as

needed until they were satisfied. Once a configuration was chosen,

it remained fixed for the entire duration of that procedure’s 10

iterations. Before the experiment began, participants completed a

training session in which they typed 10 phrases, with keyboard

sizes and distances randomly varying after each iteration. This

allowed participants to familiarize themselves with mid-air typing

in VR and the study interface.

5.2.2 Interface and Apparatus. The study interface was imple-

mented in Unity 2022.3.40 and run on a Windows 10 desktop com-

puter. The user interface consisted of three main elements: a virtual

canvas displaying the target sentence, a text field for the user’s

input, and a mid-air keyboard. Participants wore a Meta Oculus Pro

headset, with the Meta virtual keyboard
1
used for text input. The

keyboard was positioned directly in front of the user, angled at 30°

below the horizon. Its distance from the user and size was dynam-

ically adjusted by the respective optimization methods, with the

scaling factor applied uniformly across all dimensions of the key-

board. A virtual canvas displaying the target sentence was placed

20° above the horizon, directly in front of the user’s viewpoint.

For hand-tracking, we employed the Meta hand-tracking SDK
2

integrated into Unity.

5.3 Parameter Settings of Adaptive Keyboard

Optimizers

5.3.1 ConBO configuration. In the following section, we will detail

the implementation of ConBO’s components: (1) the population

model (BNN), (2) the current and previous user-specific models

(GP), (3) the settings used for adapting to new users, and (4) the

settings applied during population model training.

1. population model Configuration: Our population model is a
Bayesian Neural Network consisting of three fully connected layers,

each with 100 nodes in the hidden layers. The input dimension is

2, corresponding to the two design parameters (as described in

Table 1), while the output represents the prediction of the objective

function (net WPM) and the estimated aleatoric variance. Dropout

layers, with a dropout rate of 0.1, are applied after the last hidden

layer to introduce stochasticity and provide regularization. The

Rectified Linear Unit (ReLU) is used as the activation function.

From a 2-people pilot test, we set the training epoch as such: During

population model training (Step 4 in the workflow), BNN is trained

with 800 epochs. During online adaptation (Step 1 in the workflow),

20 epochs are run for each new observation (iteration).

2. Current and Previous User-specific Models Configuration: For
the current and prior user-specific models in ConBO, we imple-

mented Gaussian Process (GP) models, following the approaches

by Liao et al. [44] and Chan et al. [9]. The GPs are single-task and

use a Matérn 5/2 kernel, which models homoscedastic noise levels

in the observed data
3
. This kernel offers a flexible approach for

1
https://developer.oculus.com/blog/virtual-keyboard-meta-quest-developers/

2
https://developer.oculus.com/documentation/unity/unity-handtracking-overview/

3
For more details, see https://botorch.org/docs/models.

modeling smooth functions while accounting for varying length

scales in the input space.

3. Adaptation to Unseen Users: When deploying ConBO for new

users, we gradually reduce the number of random explorations

as more participants are added. The initial number of random ex-

plorations, 𝑟0, is set to 6, with a decay rate 𝑑𝑟 of 2. Thus, the first

participant experiences 6 random explorations followed by 4 opti-

mization iterations. The second participant experiences 4 random

explorations and 6 optimization iterations, and so on. Starting from

the fourth participant, no random explorations are conducted; all

suggested keyboard settings are generated based entirely on the

combined acquisition function, following Expected Improvement.

Wemerge the EI values from both the population model and the cur-

rent user-specific model using the weighting factor from Equation 4.

Specifically, when computing the acquisition values, we sampled

a 40 × 40 grid evenly across the 2-dimensional design space (i.e.,

𝑁aq = 40 × 40 in Algorithm 1). This fine resolution ensures bet-

ter accuracy in identifying the optimal acquisition value, as this

directly impacts the design point selected for optimization during

interactions with unseen users. The hyperparameters 𝛼1 = 5 and

𝛼2 = 0.2 ensure that the influence of the current user’s model begins

to increase after the fifth iteration and then grows linearly.

4. Population model (BNN) Training: To train the population

model, we first generate a grid of 20×20 points, evenly spaced across
the entire design space, followed by 100 randomly sampled points.

Note that BNNs generally produce smooth predictions, enabling

effective interpolation between sampled points. The 20×20 grid bal-
ances computational efficiency with capturing general trends across

the design space. The additional 100 randomly sampled points fur-

ther diversify the training data, reducing the need for a finer grid.

For each point, we query the predicted means and variances from

all previous user-specific models. We set a variance threshold of

𝜆 = 5. Since the normalized objective range is 10, any variance

exceeding 5 (half the objective range) is considered unreliable and

is excluded from further consideration. This approach ensures that

the population model’s predictions remain robust and reliable for

guiding future optimizations.

5.3.2 Standard BO configuration. For Standard BO we used a

single-task GP with Matern 5/2 kernel. We configured the opti-

mization with 10 restarts for the acquisition function, 1,024 restart

candidates for the acquisition function optimization, and 512 Monte

Carlo samples to approximate the acquisition function.

Based on insights from a pilot test with two participants, we

determined that the first 6 iterations of the 10-iteration procedure

would be random searches, followed by 4 iterations of optimization.

As in ConBO, we used Expected Improvement as the acquisition

function to guide the optimization process.

5.4 Results

To evaluate optimization performance, we analyze the maximum

typing performance (net WPM) achieved up to each iteration for

each user between conditions. The typing speed results are shown

in Figure 3a. We conducted a two-way repeated measures ANOVA

to examine the effects of the adaptation procedures and iteration on

performance (Net WPM, Condition × Iteration).

https://developer.oculus.com/blog/virtual-keyboard-meta-quest-developers/
https://developer.oculus.com/documentation/unity/unity-handtracking-overview/
https://botorch.org/docs/models
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The analysis revealed no significant interaction effect between

condition and iteration, 𝐹 (18, 198) = 0.57, 𝑝 = 0.561, indicating

that the influence of condition on performance did not signifi-

cantly change across iterations. However, there was a significant

main effect of condition, 𝐹 (2, 22) = 3.94, 𝑝 = 0.039, indicating

performance differences across conditions. Additionally, we found

a highly significant main effect of iteration, 𝐹 (9, 99) = 1487.13,

𝑝 < 0.001, suggesting that performance significantly improved

throughout the iterations. To further explore the significant main

effect of the procedures, pairwise comparisons with Bonferroni cor-
rectionwere performed. A significant difference was found between

ConBO and Standard BO 𝑡 (11) = 2.97, 𝑝 = 0.038, indicating

that ConBO outperforms Standard BO with a moderate effect

size (Hedges’ g = 0.733). No significant differences were observed

between ConBO and Manual (𝑡 (11) = 1.04, 𝑝 = 0.965) or between

Standard BO and Manual (𝑡 (11) = −1.53, 𝑝 = 0.460). Building

on the overall performance differences between procedures, we

conducted one-way repeated measures ANOVA for each iteration.

Significant differences were found at iterations 2, 3, 4, and 5, where

ConBO significantly outperformed Standard BO.

These results demonstrate that ConBO outperforms Standard

BO in terms of maximum typing performance. Alternatively, we can

assess the differences in regret throughout the optimization process

(Equation 2) across iterations and participants. Regret quantifies

the difference between the achieved performance and the user’s

optimal achievable performance. For each user, we use the highest

observed performance across all procedures and iterations as a

proxy for their optimal performance. Essentially, regret reflects the

efficiency of the adaptation method, capturing the extent to which

users spent in suboptimal configurations.

We visualize the regret for all conditions at each iteration in

Figure 3b. A two-way repeated measures ANOVA was conducted

to examine the effects of adaptation procedures and iteration on

regret values. We did not find a significant interaction between con-

dition and iteration (condition × iteration), 𝐹 (18, 198) = 0.91,

𝑝 = 0.561. However, there was a significant main effect of condition,

𝐹 (2, 22) = 3.76, 𝑝 = 0.039, indicating that regret differed across

conditions. Additionally, there was a highly significant main effect

of iteration, 𝐹 (9, 99) = 46.12, 𝑝 < 0.001, suggesting that regret

significantly changed over time. Pairwise comparisons using Bon-
ferroni correction revealed significant differences between ConBO

and Standard BO, 𝑡 (11) = 2.97, 𝑝 = 0.038, with a moderate ef-

fect size (Hedges’ g = 0.995). No significant difference was found

between Standard BO and Manual, 𝑡 (11) = 1.53, 𝑝 = 0.460, or

between ConBO and Manual, 𝑡 (11) = −1.04, 𝑝 = 0.965.

We further visualize the overall regret values for each condition

in Figure 3c, highlighting the differences across procedures. An

additional repeated measures ANOVA was conducted and showed

a significant difference between conditions with F (2, 22) = 3.76, p
= 0.039. Post-hoc pairwise comparison with Bonferroni correction

showed that a significant difference was found between ConBO

and Standard BO (t(11) = 2.97, p = 0.038). To summarize all the

users and all iterations (as per Equation 2), ConBO, Standard BO,

and Manual have total regrets of 342.79, 634.41, and 449.06 net

WPMs, respectively. Thus, based on both net WPM and regret, we

conclude that ConBO outperforms Standard BO.

We analyze whether ConBO enables progressively more efficient

adaptation as more users are introduced. To investigate this, we

divided the users into four groups based on the order in which

they participated (Figure 3d): Group 1 consists of participants 1

to 3, Group 2 includes participants 4 to 6, Group 3 includes par-

ticipants 7 to 9, and Group 4 comprises participants 10 to 12. We

examine the observed regrets within each group using a one-way

ANOVA. The results showed a significant difference across the four

groups, 𝐹 (3, 40) = 4.75, 𝑝 < 0.004. To further explore the differ-

ences between groups, we conducted post-hoc Tukey’s HSD tests.

There was a significant difference between Group 1 and Group 3,

with Group 1 showing significantly higher regret than Group 3

(mean difference = −2.17, 𝑝 = 0.006, 95% CI [−3.85,−0.48]). Simi-

larly, a significant difference was found between Group 1 and Group

4, with Group 1 displaying significantly higher regret than Group

4 (mean difference = −2.03, 𝑝 = 0.011, 95% CI [−3.72,−0.34]). As
comparison baselines, we also plot the regret values when using

Standard BO and Manual grouped every 3 participants in Fig-

ure 3d and Figure 3e.

Finally, Appendix B presents additional analyses. Appendix sub-

section B.1 provides detailed information about the participants,

while Appendix subsection B.2 highlights the high diversity of

optimal keyboard settings across users generated from various

conditions, demonstrating ConBO’s effectiveness in producing cus-

tomized settings. Appendix subsection B.3 analyzes the progressive

evolution of the population model as it adapts across users.

5.5 Findings and Discussion

We found that ConBO enables faster typing speeds with lower

regret values compared to Standard BO proving it to be a more

efficient keyboard adaptation method that benefits from the contin-

ually adapting population model. In the first five iterations, Stan-

dard BO performs worse, as expected, due to the need for random

searches to explore the problem space. ConBO improves more

rapidly over these iterations, demonstrating its ability to adapt to

individuals and extend optimization beyond the population model’s

initial suggestions.

Manual offers a seeming advantage by allowing participants

to freely adjust keyboard settings before starting. On average, par-

ticipants made 4.92 adjustments (𝑠𝑡𝑑 = 1.85) before confirming

their preferred setup. Despite this, Manual did not outperform the

optimization-based adaptation methods at any point, suggesting

that user-driven adjustments based on preferences or intuition do

not lead to better results. This highlights the value of computational

approaches over manual calibration for optimizing input devices.

Further analyzing regret values across user groups using ConBO,

the first group (users 1–3), which was initially subjected to random

explorations, had the highest cumulative regret. On the other hand,

later groups (users 7–9 and 10–12) outperformed the first, showing

that ConBO benefits from prior user performance observations over

time, leading to more accurate and efficient keyboard adaptations.

6 DISCUSSION

In this work, we introduce CHiLO, a novel concept for boosting opti-

mization efficiency by continually accumulating information across

users. Based on our summarized principles, we further propose
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Figure 3: Results of our user study. (a) The net WPM at each iteration for three adaptation procedures; the ∗ sign indicates a

significant difference found between the ConBO and Standard BO at that iteration. The scattered dots visualize each data point

from individual participants. (b) The regret across all the iterations for all three procedures; the ∗ sign indicates a significant

difference between the ConBO and Standard BO
˙
The scattered dots visualize each data point from individual participants. (c)

The average regret for all conditions; a significant difference found ConBO and Standard BO
˙
(d) The mean regret values for

each user group using ConBO; the ∗ sign indicates a significant difference between the groups. (e) The mean regret values for

each user group using Standard BO. (f) The mean regret values for each user group using Manual.

ConBO, a Bayesian optimization-based method that continually

updates a population model to capture population-level character-

istics. To further enhance ConBO ’s robustness, we incorporate a

memory-replay mechanism, which utilizes the previous users’ mod-

els to train the population model. We evaluated ConBO through

a user study focusing on a representative AR/VR input problem:

mid-air typing on a virtual keyboard.
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The results showed that ConBO significantly outperforms two

representative baselines — standard BO and manual adjustment —

demonstrating its ability to effectively accumulate user experience

and adapt more efficiently across different users. ConBO demon-

strated a clear trend of learning even within 10 users: the earlier

users exhibited higher regret than later ones, indicating that ConBO

continually improves over time. Also, when using ConBO, only the

first three users encountered randomly searched keyboard configu-

rations. From the fourth user onward, all the generated keyboards

are guided by the population model. This is a clear distinction to

the previous meta-Bayesian optimization methods which require a

fixed set of prior users that is significantly larger to go through a

full optimization procedure.

In summary, ConBO shows positive results in gradually adapt-

ing more efficiently with an increasing number of users. As Conbo

is built upon BO, it does not impose strong assumptions or re-

quirements for specific problems. We hope our results motivate

researchers and practitioners to deploy ConBO for their applica-

tions. Despite these promising results, several open questions and

limitations remain. There is potential for further optimizing the

model’s scalability, refining its memorymanagement, and exploring

broader applications of CHiLO beyond the AR/VR contexts.

6.1 Limitations and Future Work

We believe our work makes a novel contribution by introducing

CHiLO for dynamic user interface and interaction personalization,

which we hope will inspire future research and development in the

following areas:

Addressing Individual Diversity and User Sequence Challenges.
ConBO leverages a memory-replay mechanism to ensure that the

population model is trained on data from all prior users, minimizing

the risk of catastrophic forgetting. However, a potential limitation

is that the population model may primarily capture the charac-

teristics of the “general users,” potentially leading to suboptimal

performance for extreme users whose optimal settings significantly

differ from the majority. This challenge is potentially severe in

high-dimensional search spaces, where outliers could deviate even

further from the average users. Future research should explore the

use of more advanced models able to capture the diverse charac-

teristics of different user groups. Additionally, the order in which

users are encountered can influence the performance of ConBO.

For instance, if the initial users represent average user behavior, the

population model is more likely to transfer well to the next users.

Conversely, if the first few users are outliers, the population model

requires more iterations to adapt to the broader user population.

This sequence effect is a known open challenge in continual learn-

ing [29, 48]. The extent of its impact depends on the nature of target

interactions. Future research should empirically test the effects of

user order in both synthetic tasks and real-world scenarios.

Re-adaptation to Changing User Characteristics. Our current im-

plementation assumes that user characteristics and optimal perfor-

mance remain constant. However, in practice, users’ abilities may

change due to factors like learning or fatigue, potentially requiring

re-adaptation. ConBO could handle these fluctuations by treating

significant performance changes as signals to restart the adaptation

process. For example, if a user’s performance deviates significantly

from the expected trajectory, the system could treat them as a new

user and begin a new optimization cycle. Future work should focus

on real-time detection of these changes and developing effective

re-adaptation strategies.

Development of Alternative CHiLO Methods. We see potential for

further refinement of our proposed algorithm, as well as alternative

implementations that may offer different trade-offs, making them

more suitable for specific applications. For instance, our current

approach requires access to all prior user models, which may not be

feasible for memory-constrained devices or environments without

cloud access. In such cases, a more size-efficient memory replay

strategy could be necessary. A more refined approach could involve

computing the importance of previous models and selectively using

only the most relevant ones for population model training.

Also, our acquisition function is based on EI, a common option

for BO. EI inherently balances exploration and exploitation, making

it well-suited for general tasks. Future work could explore alterna-

tive acquisition functions, such as Probability of Improvement and

Upper Confidence Bound, and empirically test their performances.

Also, instead of the greedy approach of selecting the design point

with the highest acquisition value, one could investigate convert-

ing acquisition values into log-probabilities and sampling from

them, further promoting exploration. Our ConBO evaluates ac-

quisition values by sampling over a fixed grid. Future work could

explore more advanced optimization techniques, such as the DI-

RECT method [26] or gradient-based optimization with multiple

restarts [76]. These methods should improve the accuracy of finding

the optimal acquisition value.

Additionally, while we update the population model after each

user, exploring different update frequencies could help balance

computational costs and model accuracy. Beyond using a BNN

as the meta-surrogate, prior work has investigated meta-kernel

approaches for continual learning in bandit optimization problems.

Extending these kernel-based methods to broader optimization

tasks presents another promising avenue for future research.

Continual Optimization across Applications and Potential Paral-
lelization. We introduce ConBO as a tool for improving adaptation

by leveraging previous users’ interactions with the same optimiza-

tion task. However, we see the potential for ConBO to transfer

knowledge not only across users but also across different applica-

tions, as many interactive systems share similar environments and

parameter search spaces.While our study focused onmid-air typing,

future work should explore ConBO’s generalizability across vari-

ous input methods, such as touch typing, gesture-based input, and

gaze-based input. This would test ConBO’s ability to learn shared

characteristics across different interaction types and validate its

broader applicability. Advanced Bayesian Neural Network archi-

tectures, such as multi-task BNNs, could further enhance ConBO’s

capacity to encode both task-specific and shared information, en-

abling it to generalize effectively across users and applications.

Our population model is trained on all previously collected GPs,

opening the possibility of parallel computing. The populationmodel

can be periodically updated on a centralized server while being

duplicated and deployed to local devices. These local copies can be

optimized for specific users or interactions in parallel. The updated
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GP models from local devices are then sent back to the server

to jointly refine the population model, allowing for scalable and

distributed optimization across multiple users and applications.

Expanding CHiLO for Complex Scenarios. Our ConBO merely

takes an initial step toward CHiLO, focusing on relatively simple

single-objective problems. However, real-world HiLO scenarios are

often more complex and may involve multiple objective functions,

such as balancing accuracy and efficiency (e.g., [9]) or trading off

between recognition and information transfer (e.g., [45]). Address-

ing these challenges requires identifying the Pareto frontier within

the objective space, a principled and widely used approach in multi-

objective optimization tasks. Future work should explore extending

CHiLO to handle multi-objective tasks by adapting the BNN to

predict multiple objectives simultaneously and also updating the

acquisition function to Expected Hypervolume Increase (EHVI),

which is well-suited for identifying the multi-objective trade-offs.

Another common real-world scenario is where the objective func-

tions cannot be explicitly measured, such as optimizing for user

preferences. Preferential Bayesian Optimization (PBO) addresses

this issue by eliciting user preferences over a set of choices [37, 38].

Extending CHiLO to preferential tasks is a direction worth explor-

ing: A preferential population model could be developed using a

framework similar to ConBO, but additional research is needed to

investigate methods for suggesting multiple design choices that

leverage both the population model and the current user-specific

model. Furthermore, empirical studies are essential to assess the

practical effectiveness and scalability of CHiLO in PBO scenarios,

particularly in capturing and adapting to diverse user preferences.

Enhancing Real-World Adaptation Efficiency. Lastly, while ConBO
improves the overall efficiency of keyboard adaptation, two areas

remain for improvement: (1) the first few users need to undergo

random explorations, and (2) each user is required to type 28–32

characters for every keyboard update. Future HCI research should

investigate alternative approaches to reduce such user efforts. A

potential direction is incorporating established user models [16, 57]

to provide an initial estimate of general population performance.

These models could replace or reduce the need for random explo-

ration, enhancing the experience for the initial users. Additionally,

requiring 28–32 characters per optimization iteration for accurate

performance estimation may not always be necessary. In some

cases, a rough estimate (e.g., 10–20 characters) could suffice. Future

research could investigate multi-fidelity Bayesian Optimization

[27, 60], which accommodates evaluations of varying accuracy

levels. Low-fidelity evaluations could quickly discard suboptimal

designs, while high-fidelity evaluations could refine promising can-

didates. Such advancements would make ConBO more efficient and

user-friendly, extending its applicability beyond keyboard interac-

tion and text input.

7 CONCLUSION

In this work, we address a novel challenge in Human in-the-loop

Optimization: How can an optimizer continually accumulate experi-

ence and improve over time? The problem of continual learning for

optimization, along with its technical challenges, had not been for-

mally established in HCI, and through this work, we aim to bridge

this gap by introducing CHiLO. We provide a formal mathematical

framework and outline key design principles for its implementation.

Building on these principles, we propose ConBO, a Bayesian

Neural Network-based approach that captures population-level

user characteristics through a population model and incorporates a

generative memory-replay mechanism using stored models from

previous users. Our evaluation of ConBO onmid-air text input in VR

demonstrated significant improvement over standard Bayesian opti-

mization in terms of adaptation efficiency and overall performance,

while offering performance comparable to manual adjustments

without requiring explicit user feedback.

The results further show a clear trend of improvement over time,

with later user groups benefiting from the accumulated knowledge

of the system. This illustrates ConBO’s ability to progressively

adapt more efficiently as it learns from prior users. We hope these

positive results encourage further research into applying ConBO

to a wider range of applications, extending beyond HCI.

We believe that ConBO can be a key enabler for truly adaptive

and personalized interaction in the future, with systems improv-

ing across users, devices, and tasks—ultimately evolving to enable

efficient and frictionless interaction for a wide range of applications.

8 OPEN SCIENCE

ConBO is available on our project page at https:// siplab.org/projects/
Continual_Human-in-the-Loop_Optimization. We hope that our

implementation encourages the development of more advanced

methods and can help expand the application scope of CHiLO.
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A SIMULATED EXPERIMENTS USING

BENCHMARK FUNCTIONS

The core idea of this paper is to develop a novel approach for

training a population model to enable CHiLO. There are multiple

potential ways to implement and train such a population model.

In this section, we compare the optimization performance and

computational efficiency of our ConBO approach (a BNN-based

population model trained using predictions from previous models)

against alternative approaches. Specifically, our experiments aim

to achieve the following goals:

• Goal 1: population model performance comparison. We

compare different methods for constructing the populationmodel

and use them to sequentially optimize 15 user functions. Our

goal is to demonstrate that ConBO’s GP-based generative mem-

ory replay approach delivers superior optimization performance

across users.

• Goal 2: ConBO with and without the user-specific model.

After confirming that ConBO’s population model performs as

well or better than alternative methods, we examine the benefits

of incorporating the user-specific model to compute acquisition

values, showing potential improvements in performance, espe-

cially in later iterations.

• Goal 3: Computational efficiency.We evaluate the computa-

tional cost of ConBO during deployment and compare it to other

alternative implementations. The goal is to highlight the light-

weight computational demands of ConBO, making it practical

for real-world applications.

• Goal 4: The effect of memory replay on forgetting . Lastly,

we analyze the effect of ourmemory-replaymethod on adaptation

performance when revisiting previously encountered users.

In total, we run three simulated experiments. The first two ex-

periments address the first three goals, while the last test focuses

on the effect of memory replay. Our results show that ConBO

offers optimization performance comparable to or better than al-

ternative approaches, with additional performance gains when the

user-specific model is integrated. In terms of computational effi-

ciency, we find that BNN-based population models like ConBO

maintain relatively low computation durations. Meanwhile, other

GP-based population models experience increasing computation

times as data grows, making them less suitable for direct application

in CHiLO. Moreover, we found that our memory replay effectively

improves the optimization performance when encountering pre-

viously seen tasks, indicating an enhancement to reduce model

forgetting. This indicates that our optimizer continuously improves

over time, achieving greater efficiency for users with traits it has

already seen in past optimizations.

For the following simulations, we use common benchmark func-

tions to generate a set of user functions. We begin by selecting a

base function, such as the Branin function, to represent the popula-

tion. By applying shifts and scaling transformations, we create a

series of similar but distinct sub-functions, each representing an

independent user. This allows us to simulate a scenario where the

optimizer encounters different user-specific functions sequentially.

This approach is commonly used in simulation studies [14, 44].

The following experiments were conducted on a Windows 10

system equipped with a 12th Gen Intel(R) Core i7 CPU and an

NVIDIA GeForce RTX 3070 GPU.

A.1 Different Approaches for Achieving CHiLO

Here, we exhaustively outline different approaches for implement-

ing and training a population model for CHiLO. To align with the

broader BO framework, a population model must be capable of gen-

erating predicted means and variances for a given design candidate.

These values are required for computing most acquisition functions

in BO. Two computational models that fulfill these requirements

are GP and BNN, both of which can be trained on observations and

produce the necessary predictions of means and variances.

First, we introduce the approaches using BNN as the core of the

population model:

1. ConBO. This is our proposed method, using a BNN as the

population model. This BNN is continually retrained using the

predicted means and variances generated from previous models,

with each model representing a different user. Key strengths of

ConBO include its well-distributed training data, which ensures the

population model does not suffer from overfitting or underfitting

in specific areas of the parameter space. Additionally, the BNN’s

predicted variance is carefully regulated: we filter out unreliable

predictions based on variance thresholds, and the population model

is trained to minimize predicted variance levels (see Equation 7).

This keeps the variance within a reasonable range, improving the

model’s reliability. Furthermore, ConBO incorporates a GP model,

representing the current user, to generate acquisition values, en-

abling more effective personalized adaptation and optimization. For

a more detailed explanation of ConBO, please refer to section 4.

2. ConBO without GP. To assess the performance of ConBO’s

population model independently, we introduce a variation that

excludes the influence of the current user’s GP model, referred to

as “ConBO without GP.” This allows us to evaluate the population

model’s performance on its own.

3. ConBO without Variance Filter. In the “ConBO without Filter”
approach, we omit the variance filter. We assess the population

model’s performance without any constraints on the aggregated

variances derived from prior user models.

4. BNN without Replay. A simpler approach to using BNN as the

population model is to continuously update it without incorporat-

ing any memory replay. This method resembles previous works in

BO where large sample sizes necessitate the use of BNNs as sur-

rogate models, allowing them to handle the growing computation

time more efficiently than GPs (e.g., [78]). We call this approach

BNN without Replay. To assess the performance of the population

model independently, this approach also does not incorporate the

current user’s GP model. While straightforward to implement, this

approach presents several challenges such as catastrophic forgetting

and model instability due to the uneven distribution of observations

(as mentioned in subsection 3.2). Furthermore, there is a potential

for unstable variance. Without regulation, the BNN’s predicted

variance can become unstable (extremely high or low) as more data

accumulates, complicating the computation of acquisition values.

5. BNN with Direct Replay. Building on BNN without Replay, a
more advanced variation involves using memory replay. In this
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variation, the population model is updated with all observations

from previous users after each user is completed. While this method

effectively reduces forgetting, it faces potential challenges includ-

ing unstable variances across the parameter space and the risk of

overfitting in some regions while underfitting in others. We refer

to this variation as “BNN with Direct Replay.”

Below, we introduce the other approaches which leverage GP as

the population model:

6. Single-GP. Rather than using a BNN, one can employ a GP

directly as the population model, capturing all observations from

all users encountered. However, a major limitation of this approach

is the cubic increase in computation time as more data is added.

Beyond a certain point, updating the population model becomes

prohibitively expensive and impractical for real-time applications.

7. Transfer Acquisition Function (TAF). To address the issue of

cubic computation growth, previous works proposed a weighted-

sum approach called Transfer Acquisition Function (TAF) [44, 89],

designed for meta-learning in BO. This approach stores each user’s

data as a separate GP model. When a new user is encountered, all

previously stored models generate acquisition values, which are

then combined based on weights to guide the optimization for the

current user. Typically, TAF has been applied in meta-learning sce-

narios where a fixed set of users, referred to as "prior users," undergo

a complete optimization process to build a library of “prior models.”

These models then aid in optimizing new users without adding

further prior models. This method can be extended to continual

learning (CHiLO) by removing the distinction between “prior users”

and “new users” In this setting, each new user’s data is stored as

an additional prior model, continuously growing the model library.

Although this approach avoids the cubic increase in computation

time, its computational cost still grows linearly with the number of

models, which can become a bottleneck as the user base expands.

8. Standard BO (BO). Finally, we keep standard BO as a baseline,

which utilizes the GP surrogate model to optimize for each current

user. There is no transferring knowledge between users.

A.2 Base Function for Simulations

In our simulations, we utilize two common base functions: Branin
4

and McCormick
5
, each with two design parameters and one objec-

tive function. They serve as the foundation for generating a group

of similar yet distinct user functions.

We linearly normalize the input ranges of the Branin function

(𝑥1 ∈ [−5, 10], 𝑥2 ∈ [0, 15]) to match the McCormick function

(𝑥1, 𝑥2 ∈ [0, 1]), ensuring both have the same parameter range.

While the output ranges of Branin and McCormick differ (Branin:

approximately [0.398, 300], McCormick: approximately [−1.9133, 20]),
both functions were originally designed for minimization tasks. We

flip the functions (multiplying by −1) to convert them into maxi-

mization problems.

4
https://www.sfu.ca/~ssurjano/branin.html

5
https://www.sfu.ca/~ssurjano/mccorm.html

A.3 Generating a Group of Synthetic Users

To simulate a diverse group of users with shared characteristics but

varying behaviors, we create a set of sub-functions by shifting and

scaling the base functions. We will refer to these sub-functions as

user functions.

Each user function is generated by shifting the input values

before passing them to the base function. The magnitude of these

shifts is sampled from a uniform distribution within a specified

range, adding diversity among the users. Mathematically, the shift

is represented as 𝑥 ′𝑛 = 𝑥𝑛 + 𝛿𝑛 , where 𝑥𝑛 is the original input,

𝑥 ′𝑛 is the shifted input, 𝑛 ∈ 1, 2 represents the parameters, and

the shift amount 𝛿𝑛 ∼ 𝑈 (− 𝑠ℎ𝑖 𝑓 𝑡_𝑟𝑎𝑛𝑔𝑒
2

,
𝑠ℎ𝑖 𝑓 𝑡_𝑟𝑎𝑛𝑔𝑒

2
). This variation

simulates different user responses to the same design. We also

scale the output of the base function by a scalar factor, which is

also sampled from a uniform distribution. This factor, denoted as

S ∼ 𝑈 (1− 𝑠𝑐𝑎𝑙𝑒_𝑟𝑎𝑛𝑔𝑒
2

, 1+ 𝑠𝑐𝑎𝑙𝑒_𝑟𝑎𝑛𝑔𝑒
2

), introduces further diversity
by simulating users with different performance levels.

We first introduce the simulation experiment on Branin (A.4,

A.5), followed by McCormick (A.6, A.7).

A.4 Branin (Test 1): Task and Settings

We generate 15 user functions, with each optimization method

running for 30 iterations per user function. For each user function,

we perform a grid search to determine its optimal performance.

Based on this, we compute the regret at each iteration. Additionally,

we record the computation time at every iteration across all user

functions and methods. For this simulation, we set 𝑠ℎ𝑖 𝑓 𝑡_𝑟𝑎𝑛𝑔𝑒 =

0.3 and 𝑠𝑐𝑎𝑙𝑒_𝑟𝑎𝑛𝑔𝑒 = 0.2. Here, we provide the detailed settings

for each approach:

1. ConBO. The parameter settings for ConBO are aligned with

those used in our user study.

• The population model is a BNN consisting of three fully connected

layers, each with 100 nodes using ReLU as the activation function.

A dropout layer (dropout rate of 0.1) is applied after the last

hidden layer. During population model training (Step 4 in the

workflow), the BNN is trained for 1200 epochs. For adaptation

(Step 1), we run 15 epochs for each new observation.

• The user-specific models (current and prior) are implemented as

Gaussian Processes (GPs) with a Matérn 5/2 kernel, accounting
for homoscedastic noise.

• The initial number of random exploration points, 𝑟0, is set to 16,

with a decay rate 𝑑𝑟 of 5. We merge the EI values from both the

population model and the current user-specific model using a

weighting factor from Eq. 4, where 𝛼1 = 16 and 𝛼2 = 0.1. This

ensures that the influence of the current user’s model increases

after the fifth iteration, growing linearly.

• For population model training, we first generate a grid of 30× 30

points evenly spaced across the design space, followed by 50 ran-

domly sampled points. The predicted means and variances from

all previous user-specific models are then queried. A variance

threshold of 𝜆 = 50 is applied.

2. ConBO without GP. This variant’s setting is similar to ConBO,

except for setting 𝛼1 = 30, meaning that all EI values are derived

from the population model, as no adaptation from the user-specific

model is applied.

https://www.sfu.ca/~ssurjano/branin.html
https://www.sfu.ca/~ssurjano/mccorm.html
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3. ConBOwithout Variance Filter. This variant is similar to ConBO,

with the key difference being the disabled variance filter. Conse-

quently, all mean and variance estimates across the design space

from every previous model are incorporated into the training of

the population model. This includes estimates from a user’s model

in regions where it has encountered few or no observations—an

inclusion that the variance filter would otherwise exclude.

4. BNN without Replay. All other settings are identical to those

in ConBO, except that there is no memory replay to retrain the

population model. Instead, the population model keeps updating

based on new observations.

5. BNN with Direct Replay. Similar to the BNN without Replay,
but here, after each user’s optimization is complete, the population

model is retrained on all past observations.

6. Single GP. This method uses a single-task GP with a Matérn

5/2 kernel. The optimization process involves 10 restarts for the

acquisition function, with 1,024 candidate points and 512 Monte

Carlo samples. Of the 30 total iterations, the first 16 are random

searches, followed by 14 optimization iterations guided by the Ex-

pected Improvement acquisition function. We retain the GP as a

population model and update it with new observations over time.

The number of random search decay across users, with an initial 𝑟0
of 16 and a decay rate 𝑑𝑟 of 5.

7. Transfer Acquisition Function (TAF). The TAF setting mostly

follows prior work [44], where observations from each user func-

tion are stored in independent GP models. The number of random

searches decays across users, with an initial 𝑟0 of 16 and a decay

rate 𝑑𝑟 of 5. We further follow the original paper’s settings, with

weights decaying using 𝑑1 = 0 and 𝑑2 = 0.05, which were identified

through pilot tests to enhance performance.

8. Standard BO (BO). This approach basically follows Single GP
but the GP model restarts for each new user.

A.5 Branin (Test 1): Results

Figure 4 shows the results of our simulation on the Branin function.

Goal 1: population model performance comparison. To ana-

lyze the performance of our approach with respect to our first goal,

we compare ConBO without GP against other approaches (Figure 4a

and Figure 4b). Due to the large number of baselines, we separate the

approaches into BNN-based (Figure 4a) and GP-based (Figure 4b)

groups. Examining Figure 4a, we found that ConBO without GP
surpasses other BNN-based variations. Although these methods

show comparable performance in the early iterations, they fail to

adapt effectively to specific functions over time, resulting in poorer

performance in later iterations. Further analysis (Figure 5) shows

a key issue with the direct replay and no-replay approaches: the

predicted variances in the BNN models are unregulated. As more

data is introduced, these methods exhibit highly unstable variance

estimates, with values becoming excessively high. Moreover, since

the training data is unevenly distributed across the parameter space,

the predicted variances vary significantly. For instance, in the BNN

without replay, variance values range from under 100 to over 700.

Given that variance plays a critical role in computing the acquisi-

tion function, this instability ultimately hinders the models’ ability

to adapt effectively. In contrast, ConBO employs a grid-based gen-

erative approach with a variance filter, ensuring that the training

data for the population model remains within a reasonable range

and spans across the parameter space evenly. This regulation leads

to more stable variance predictions and, consequently, better on-

line adaptation performance. Finally, we found that ConBO-wo-GP

performed better than ConBO-wo-Filter in early iterations, owing

to the more regulated variance range.

Comparing ConBO without GP against GP-based approaches

(Figure 4b), ConBO without GP outperforms standard BO, which

typically starts optimization from scratch, leading to slower adap-

tation and worse performance in early iterations. This is reflected

in its higher regret values, particularly in the initial stages of opti-

mization. In addition, both ConBO without GP and TAF outperform

the Single GP approach. This is also expected, as the single GP

model lacks variance regulation, potentially leading to unstable

model fitting when encountering a large number of observations

and ineffective user-specific adaptation.

Goal 2: ConBO with and without the user-specific model.
To address our second goal, we compare the performance of ConBO

with andwithout the current user’s GPmodel in Figure 4c. It demon-

strates that incorporating the user-specific model to generate ac-

quisition values allows ConBO to further enhance its performance,

particularly in later iterations. This highlights the importance of

leveraging a user-specific model to support the adaptation process,

leading to more personalized results.

Goal 3: Computational efficiency. To answer our third goal,

we show the average computation duration at each iteration across

all users in Figure 4d. This highlights a significant drawback of

GP-based approaches. The computation time of a single GP in-

creases cubically with the number of observations. Specifically, the

computation time of a single GP surpasses that of BNN-based ap-

proaches around the 11th or 12th synthetic user, corresponding to

approximately 350 observations. This number is easily reached in

real-world deployments involving a sequence of actual users. On

the other hand, TAF’s computation time grows linearly with the

number of priormodels (i.e., previously encountered users). Notably,

the computation time of TAF surpasses the BNN-based methods

from the 4th synthetic user onward. This increase in computation

cost makes the GP-based solutions unsuitable for scenarios with

a potentially unlimited number of users in a real-world continual

learning setting. In contrast, the BNN-based approaches, including

ConBO, do not suffer from the increasing computation duration.

A.6 McCormick (Test 2): Task and Settings

As with the Branin simulation, we generate 15 user functions for

the McCormick function. As McCormick is a simpler function, each

user function is optimized over 7 iterations. For each user function,

we perform a grid search to determine its optimal performance.

Based on this, we compute the regret at each iteration. Additionally,

we record the computation time at each iteration across all user

functions and methods. In this simulation, we set the shift range to

𝑠ℎ𝑖 𝑓 𝑡_𝑟𝑎𝑛𝑔𝑒 = 0.5 and the scale range to 𝑠𝑐𝑎𝑙𝑒_𝑟𝑎𝑛𝑔𝑒 = 0.2.

Below are the detailed settings for each approach:
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Figure 4: Results of our simulation study using the Branin function (Test 1). All error bars represent one standard deviation.

(a) The regret values over the iterations of different BNN-based methods. We highlight that our ConBO without GP has

better performance over other BNN-based population models. (b) The regret values over the iterations of GP-based methods,

highlighting ConBO without GP outperforms Single GP and delivers comparable performance to TAF. (c) The regret values over

the iterations to compare ConBO with and without integrating the user-specific model. The result shows that, with the support

of the user-specific model, ConBO can improve its performance further. (d) The mean computation time spent in one iteration

for each user. The result highlights the computation costs of GP-based population models (Single GP and TAF) increase quickly

when accumulating more data.

1. ConBO. The configuration of ConBO is similar to the one

used in the Branin function (Test 1). However, due to the limited

optimization budget of 7 iterations, the initial number of random

exploration points, 𝑟0, is set to 3, with a decay rate 𝑑𝑟 of 3. We

combine the EI values from both the population model and the

user-specific model, with weighting factors 𝛼1 = 3 and 𝛼2 = 0.15.

Additionally, a variance threshold of 𝜆 = 10 is applied.

2. ConBO without GP. This configuration mirrors ConBO, with

the exception that 𝛼1 is set to 7, meaning all EI values are derived

exclusively from the population model, without incorporating the

user-specific model.

3. ConBO without Variance Filter. This variant’s setting is similar

to ConBO, except for disabling the variance filter, meaning that

all the estimates across the design space from every previous user

model are used for population model training.

4. BNN without Replay. This approach follows a setup similar to

the Branin simulation, with the only difference being the number

of random exploration points. Here, the initial 𝑟0 is set to 3, with a

decay rate 𝑑𝑟 of 3.

5. BNN with Direct Replay. This also mirrors the its setting in the

Branin simulation but differs in the number of random exploration

points. Here, the initial 𝑟0 is set to 3, with a decay rate 𝑑𝑟 of 3.

6. Single GP. This approach’s setting is similar to one used in the

Branin simulation, with the only difference being the number of

random exploration points. Here, the initial 𝑟0 is set to 3, with a

decay rate 𝑑𝑟 of 3.

7. Transfer Acquisition Function (TAF). This approach shares sim-

ilar settings as in the Branin simulation, where 𝑟0 = 3 and the decay

rate 𝑑𝑟 = 3. Additionally, the weight decay parameters for the prior

models are consistent with the Branin setup: 𝑑1 = 0 and 𝑑2 = 0.15.

8. Standard BO. For the 7 total iterations, the first 3 iterations
are random searches, followed by 4 optimization iterations guided

by the Expected Improvement acquisition function.
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Figure 5: The predicted variance values derived from different BNN-based population model implementations after all 15 user

functions. Our ConBO utilizes previous GPs to generate predicted means and variances and further utilizes a variance filter to

remove unreliable predictions. Therefore, ConBO allows for more regulated variance predictions. On the other hand, other

BNN-based approaches do not have an explicit mechanism to regulate the variance of the population model, making it unstable

and changing drastically over the parameter space when trained with a large number of observations. This highlights the

stability offered by our approach.

A.7 McCormick (Test 2): Results

Figure 6 presents the results of the McCormick simulation, which

align with our findings from the Branin function.

Goal 1: population model performance comparison. To de-

termine whether ConBo meets our first goal in this setting, we

compare ConBO without GP to other approaches (Figure 6, a and b).

Again, we separate approaches into BNN-based (shown in Figure 6,

a) and GP-based (shown in Figure 4, b) groups. In Figure 6 (a), while

all BNN-based methods converge by the final iteration, we observe

that ConBO without GP and ConBO without Variance Filter outper-

form other BNN-based variations in the earlier iterations. This is

consistent with our findings from the Branin function. In Figure 6

(b), we see that ConBO without GP outperforms standard BO overall

and Single GP in early iterations. Both ConBO without GP and TAF

provide similar performance throughout the simulation.

Goal 2: ConBO with and without the user-specific model. To
answer our second goal, Figure 6 (c) compares the two variations of

ConBo. In this case, incorporating the user-specific model does not

lead to a significant difference in performance. This can potentially

be attributed to the lower complexity of the McCormick function

compared to the Branin function. As a result, variations in the user

functions do not impact performance to the same extent.

Goal 3: Computational efficiency. To address our third goal,

Figure 6 (d) shows the computation time per iteration across users.

As expected, TAF shows a linearly increasing computation time.

As observed in the previous simulated test, its computation time

surpasses that of the BNN-based methods starting from the 4th syn-

thetic user. Notably, since each user in the McCormick simulation

has significantly fewer observations than in the Branin simulation

(7 vs. 30 iterations for each user), the Single GP approach has not

yet reached the point of rapidly escalating computational cost, as

seen in Figure 4d. However, if the synthetic users continued, the

computation time for a single GP would surpass that of BNN-based

methods at approximately 350 observations (around 50 synthetic

users) as we learned from the previous simulated test.

A.8 Revisiting Previously Seen Synthetic Users

(Test 3)

A.8.1 Task and Settings. In Test 3, we aim to demonstrate how

ConBO’s memory-replay mechanism addresses the potential for-

getting issue in CHiLO. To focus specifically on the impact of the

memory-replay mechanism, we compare two approaches: 1. ConBO
(with Replay) and 2. BNN without Replay. The experimental settings

for these two approaches are identical to those described in Test 1

(Appendix subsection A.4).

We use the Branin function as the base to generate 10 synthetic

users, with a shift range of 0.4 and a scale range of 0.4. These ranges

are slightly broader than those in Test 1, resulting in a more diverse

set of synthetic users.

This test is divided into two phases: initial optimization and

re-optimization. In initial optimization, both approaches continu-

ally optimize for the 10 synthetic users, and the resulting popula-

tion models are stored as the trained models. In the subsequent

re-optimization phase, these two trained models are used to re-

optimize the same previously encountered synthetic users. This

evaluates whether the population models effectively retain the

memory of previously seen tasks and whether the optimizer im-

proves its efficiency for users with characteristics similar to those

it has seen before. Note that during re-optimization, we employ

the same trained population models for each synthetic user (i.e.,

the re-optimization of individual users does not affect the model

for other users). These trained population models capture the state

after initial optimization. This analysis evaluates the ability of the

population models to retain knowledge about prior users after all

synthetic users in the initial optimization phase.
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Figure 6: Results of our simulated study using the McCormick function (Test 2). All error bars represent one standard deviation.

(a) The regret values over the iterations of different BNN-based methods. We highlight that our ConBO without GP has better

performance over other BNN-based population models. (b) The regret values over the iterations of different GP-based methods.

ConBO without GP outperforms standard BO overall and Single GP in early iterations. ConBO without GP and TAF provide

similar performance. (c) The regret values over the iterations to compare ConBO with and without integrating the user-specific

model. Incorporating the user-specific model does not lead to a significant difference in performance. (d) Themean computation

time spent in one iteration for each user. The result highlights that the computation time of TAF increases linearly with the

number of users.

A.8.2 Goal 4: The effect of memory replay on forgetting.
The results of the re-optimization are shown in Figure 7. For the

re-optimization of users 1 to 5, the population model trained with

BNN without Replay performs significantly worse compared to the

model trained with ConBO. This suggests that, without a memory-

replay mechanism, the population model struggles to retain the

knowledge of earlier users, leading to reduced optimization effi-

ciency when revisiting them. In comparison, for the more recent

6th to 10th synthetic users, the performance of BNN without Replay
is comparable to that of ConBO.

A.9 Findings and Conclusion

Through the simulations, we explored the effectiveness of our pro-

posed ConBO method compared to alternative approaches for con-

structing a population model for CHiLO. Particularly, our experi-

ments on the Branin and McCormick functions aimed to address

three key goals: comparing population models’ optimization perfor-

mance, understanding the benefits of incorporating a user-specific

model, and evaluating computational efficiency.

Our results show that ConBO outperforms other BNN-based

approaches even when the user-specific model is not included,

thanks to its regulated variance predictions and well-distributed

training data across the parameter space. This ensures that ConBO

avoids the pitfalls of overfitting or underfitting, providing consistent

performance across different users. When the user-specific model

is incorporated, ConBO demonstrates further improvements in

performance, particularly in later iterations, allowing for more

personalized and adaptive optimization.

In terms of computational efficiency, ConBO maintains a light-

weight computational profile, even as more data is accumulated.

This stands in contrast to other GP-based approaches, such as Single

GP and TAF, which experience significant computational growth as

the dataset scales, making them less suitable for continual learning

applications. Furthermore, ConBO (with memory replay) show-

cases a faster convergence when re-optimizing the previously seen
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Figure 7: Results of our simulated test when re-optimizing for the previously seen users (Test 3). All error bars represent one
standard deviation. (a) The performance for re-optimizing the 1st–5th synthetic users. (b) The performance for re-optimizing

the 6th–10th synthetic users.

synthetic users. This highlights its ability to address the potential

forgetting issue in CHiLO.

Overall, ConBO offers an effective balance between optimiza-

tion performance and computational efficiency, making it a strong

candidate for population model construction in CHiLO applications.

B ANALYSIS OF USER DIVERSITY

This section provides a detailed analysis of the diverse user char-

acteristics to illustrate how ConBO effectively adapts to varying

user performances. Specifically, we examine the optimal keyboard

design for each individual user and their corresponding typing

performance. Additionally, we show how the population model

evolves over the sequence of users.

B.1 Participants Characteristics

The details of all participants are provided in Table 2, showcasing

the diverse range of user characteristics in our user study. Note

that all the participants had normal eyesight or corrected eyesight

(glasses or contact lenses) during the study.

B.2 Optimal Keyboard Design for each User

Table 3 presents the optimal keyboard configuration and corre-

sponding typing performance for each user under the three adapta-

tion conditions Manual, Standard BO, and ConBO, according to

our text entry study. Particularly, both ConBO and Standard BO

identified a higher variety of optimal keyboard dimensions (from

32.5×11.37 to 88.12×30.84). However, Manual leads to less diverse

keyboard dimension setting.

Our analysis shows that Manual exhibits less variation in key-

board configuration (std. width: 6.69 cm, distance: 10.84 cm) com-

pared to Standard BO (std. width: 19.88 cm, distance: 12.87 cm)

and ConBO (std. width: 16.25 cm, distance: 14.85 cm), suggesting

that users tend to be more conservative with their manual key-

board setup. Moreover, ConBO demonstrates the ability to remain

adaptive to individual users with a growing user base.

B.3 Evolvement of the population model over

Participants

ConBO’s population model captures prior beliefs about expected

performance based on the observed performance of previous partic-

ipants. Table 4 shows the mean, minimum and maximum parameter

values for the optimal keyboard configurations over the first 3, 6, 9,

and 12 participants.

In Figure 8, we observe that the populationmodel’s predicted per-

formance evolves in alignment with the observed user performance.

Initially, after collecting data from the first three participants, the

population model lacks sufficient information, resulting in a rela-

tively uniform prior over the possible keyboard configurations. An

early pattern emerges, suggesting that larger keyboard sizes tend

to improve performance. After incorporating data from six partici-

pants, this pattern becomes more pronounced, with larger keyboard

sizes showing improved performance. At the same time, the popula-

tion model suggests that shorter distances between the user and the

keyboard can enhance typing performance. By the time data from

12 participants is added, the population model adjusts, recognizing

that some users perform better with the keyboard placed farther

away and that the ideal distance may vary from person to person,

while still generally favoring larger keyboard sizes.

This gradual learning process demonstrates the populationmodel’s

ability to refine its estimates as it continuously adapts to new partic-

ipant data, identifying performance patterns across previous users.

The population model’s improving prior belief about expected user

performance leads to increasingly smaller regret with growing

numbers of participants (see Figure 3).
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Participant ID Age Gender Height (cm) Hand Length (cm) Hand Breadth (cm) Arm Length (cm) Eyesight

1 26 Male 178 17.9 7.0 60 Corrected

2 38 Male 190 20.5 8 66 Normal

3 26 Male 186 19 7.5 60 Normal

4 30 Male 180 18.5 7.1 59 Corrected

5 27 Male 183 18.7 7.8 61 Normal

6 25 Female 160 16.5 6 47 Corrected

7 26 Male 192 20 8 70 Normal

8 28 Male 195 20.5 8.1 69 Normal

9 30 Male 169 17.2 6.3 54 Corrected

10 24 Male 185 17.9 6.9 65 Normal

11 25 Male 175 17 6.4 57 Corrected

12 28 Female 169 16.3 6.3 53 Corrected

Table 2: Participant characteristics.

Pariticipant ID Width, Height [cm] Distance [cm] Typing Speed [NetWPM]

MANUAL STANBO CONBO MANUAL STANBO CONBO MANUAL STANBO CONBO

1 40.00, 14.00 37.5, 13.12 32.50, 11.37 49.21 29.00 43.67 25.00 16.65 24.76

2 50.00, 17.50 88.12, 30.84 88.12, 30.84 28.16 64.00 36.00 19.75 15.87 16.42

3 40.00, 14.00 58.13, 20.34 86.25, 30.19 54.47 53.00 31.00 10.24 13.03 12.47

4 50.00, 17.50 78.75, 27.56 76.87, 26.91 49.21 50.00 31.00 18.99 19.96 19.18

5 50.00, 17.50 20.62, 7.22 88.12, 30.84 28.16 41.00 38.00 17.45 9.63 14.02

6 60.00, 21.00 71.25, 24.94 82.50, 28.88 61.84 64.00 25.00 16.51 16.77 22.94

7 50.00, 17.50 61.88, 21.66 88.12, 30.84 43.95 47.00 31.00 15.07 14.27 13.12

8 60.00, 21.00 54.38, 19.03 76.87, 26.91 38.68 44.00 64.00 13.42 15.13 14.94

9 50.00, 17.50 31.87, 11.16 88.12, 30.84 38.68 37.00 63.00 12.76 14.25 14.28

10 50.00, 17.50 75.00, 26.25 75.00, 26.25 59.74 26.00 64.00 20.88 20.38 22.72

11 60.00, 21.00 58.13, 20.34 86.25, 30.19 43.95 57.00 59.00 13.56 12.12 11.31

12 50.00, 17.50 61.88, 21.66 61.88, 21.66 49.21 61.00 53.00 9.56 17.47 16.24

Table 3: Summary of keyboard dimensions, distance, and typing speed for each user across MANUAL, STANBO, and CONBO.

Group Width [cm] (normalized) Height [cm] (normalized) Distance [cm] (normalized)

Mean Min Max Mean Min Max Mean Min Max

P 1-3 68.96 (0.71) 32.5 (0.23) 88.12 (0.97) 24.13 (0.71) 11.37 (0.23) 30.84 (0.97) 36.89 (0.29) 31.0 (0.15) 43.67 (0.46)

P 1-6 75.73 (0.80) 32.5 (0.23) 88.12 (0.97) 26.51 (0.80) 11.37 (0.23) 30.84 (0.97) 34.11 (0.22) 25.0 (0.00) 43.67 (0.46)

P 1-9 78.61 (0.84) 32.5 (0.23) 88.12 (0.97) 27.51 (0.84) 11.37 (0.23) 30.84 (0.97) 40.3 (0.38) 25.0 (0.00) 64.0 (0.97)

P 1-12 77.55 (0.83) 32.5 (0.23) 88.12 (0.97) 27.14 (0.83) 11.37 (0.23) 30.84 (0.97) 44.89 (0.50) 25.0 (0.00) 64.0 (0.98)

Table 4: Mean, minimum, and maximum of the optimal keyboard configurations for all participants and subgroups (normalized

values according to Figure 8).
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Figure 8: Estimated typing performance for different keyboard configurations according to the BNN population model with a

growing user base. Note that the design parameters are normalized to the range [0, 1], while predicted performance is normalized

to [−5, 5].


	Abstract
	1 Introduction
	2 Related Work
	2.1 Human-in-the-Loop Bayesian Optimization
	2.2 Transfer and Meta-Learning for Human-in-the-Loop Optimization
	2.3 Continual Learning and its Application to Optimization
	2.4 Input Personalization for AR/VR Interactions

	3 Continual Human-in-the-Loop Optimization
	3.1 Problem Statement
	3.2 Challenges and Design Principles of CHiLO

	4 Population-Informed Continual Bayesian Optimization (ConBO)
	4.1 Working Principles of ConBO
	4.2 Key Components of ConBO
	4.3 Workflow of ConBO
	4.4 Simulated Tests with Benchmark Functions

	5 User Study: Mid-Air Keyboard Personalization
	5.1 Optimization Task
	5.2 Experiment Setup
	5.3 Parameter Settings of Adaptive Keyboard Optimizers
	5.4 Results
	5.5 Findings and Discussion

	6 Discussion
	6.1 Limitations and Future Work

	7 Conclusion
	8 Open Science
	Acknowledgments
	References
	A Simulated Experiments Using Benchmark Functions
	A.1 Different Approaches for Achieving CHiLO
	A.2 Base Function for Simulations
	A.3 Generating a Group of Synthetic Users
	A.4 Branin (Test 1): Task and Settings
	A.5 Branin (Test 1): Results
	A.6 McCormick (Test 2): Task and Settings
	A.7 McCormick (Test 2): Results
	A.8 Revisiting Previously Seen Synthetic Users (Test 3)
	A.9 Findings and Conclusion

	B Analysis of User Diversity
	B.1 Participants Characteristics
	B.2 Optimal Keyboard Design for each User
	B.3 Evolvement of the population model over Participants


