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Figure 1: Our system passively records sensor and touch data during smartphone usage in the wild (1). From the recorded data,
we extracted two-dimensional heat maps (2) and developed a classification model that predicts users’ affective states (3).

ABSTRACT
Knowledge of users’ affective states can improve their interaction
with smartphones by providing more personalized experiences
(e.g., search results and news articles). We present an affective state
classification model based on data gathered on smartphones in
real-world environments. From touch events during keystrokes and
the signals from the inertial sensors, we extracted two-dimensional
heat maps as input into a convolutional neural network to pre-
dict the affective states of smartphone users. For evaluation, we
conducted a data collection in the wild with 82 participants over
10 weeks. Our model accurately predicts three levels (low, medium,
high) of valence (AUC up to 0.83), arousal (AUC up to 0.85), and
dominance (AUC up to 0.84). We also show that using the inertial
sensor data alone, our model achieves a similar performance (AUC
up to 0.83), making our approach less privacy-invasive. By person-
alizing our model to the user, we show that performance increases
by an additional 0.07 AUC.
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1 INTRODUCTION
Affective states are psycho-physiological constructs that are used to
describe the emotions (short-term) and moods (long-term) of a per-
son exposed to a stimulus [18, 40, 57]. Affective states are typically
measured along the valence (positive vs. negative emotions), arousal
(intensity of the emotion), and dominance (degree of control of the
emotion) dimensions [43]. Affective states can also be grouped into
basic emotions (i.e., anger, happiness, sadness, surprise, disgust,
and fear) [19]. Awareness of a user’s affective state can enhance the
quality of interactions, making systems more usable, enjoyable, and
effective. Such affect-aware systems are useful in domains such as
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education and health. For example, a learning application that de-
tects and reacts to frustration can increase motivation and learning
gain by adapting task difficulties [61]. Incorporating a user’s affec-
tive state can also improve personalized recommendations (e.g., for
music and news) [1, 44]. Similarly, recognizing a user’s affective
state can help treating mental health problems such as depression
(e.g., as part of a therapeutic chatbot) [52].

The ubiquitous use of smartphones for social interactions (e.g.,
chat applications and social networks), entertainment (e.g., music
and video platforms), and news consumption provides a distinct
opportunity for collecting information to recognize the affective
states of users. In addition, smartphone use is also highly diverse
in context and location (e.g., at home, on the train, or in school),
which enables capturing the variability in affective states that may
be used for prediction models in real-world environments.

In this paper, we propose a system that accurately predicts affec-
tive states in real-world environments. We focus on typing-based
applications (e.g., chat and browsing applications), as these are the
most used applications [2], as well as smartphone sensor data (i.e.,
gyroscope and accelerometer sensors). Using data from our in-the-
wild user study with 82 participants, we present a learning-based
model that accurately predicts three levels of valence, arousal, and
dominance from extracted heat maps. We also demonstrate that
our model achieves a similar performance when using merely the
signals from the inertial sensors on users’ phones. We conclude
that sensor data is a viable alternative to keyboard data for the
prediction of affective states due to the continuous availability of
data and the increased protection of privacy. The use of sensor data
makes our approach suitable for a large number of devices in the
wild and can increase user acceptance.

1.1 Contributions
The contributions of this work are threefold:

• A dataset of smartphone touch and sensor data from a user
study with 82 participants (including 30,083 self-reports that
captured participants’ affective states) conducted in the wild
over the course of 10 weeks.

• A deep convolutional affective state classification model that
is trained on two-dimensional heat maps of sensor data and
typing characteristics from the data we passively captured
from the smartphone’s on-screen keyboard during everyday
use. Due to its small size and low memory consumption, our
model can potentially be run on mobile devices, which could
improve user experience, accessibility, security, privacy, and
energy consumption in future applications.

• An evaluation of our model based on the collected dataset
and the self-reports including a comparison of our find-
ings to other work. We show that our model accurately
predicts valence (0.83 AUC), arousal (0.85 AUC), and dom-
inance (0.84 AUC) on three levels (low, medium, high). In
addition, we show that by processing the two-dimensional
heat maps extracted from inertial sensor data alone, our
model achieves a similar performance for valence (0.79 AUC),
arousal (0.83 AUC), and dominance (0.81 AUC).

2 RELATEDWORK
Large-scale labeled datasets are necessary to train and evaluate
models for predicting affective states. These datasets are typically
collected in laboratory [11, 53] or in-the-wild experiments [4, 59].
In laboratory experiments, emotional states are usually induced by
presenting videos [46], pictures [30, 42], or chat conversations [67]
with different affective characteristics. In contrast, in-the-wild ex-
periments rely on emotions that are manifested while the user
engages with a smartphone (e.g., browsing and chatting [53]) with-
out any explicit emotion induction. Typically, such in-the-wild
experiments last for several days [4], weeks [38], or months [24]
and include a larger number of participants [35].

To collect the labels during these experiments, researchers often
ask participants to complete binary or Likert scale self-reports at
specified times (e.g., several times a day) [4] or in response to an
event (e.g., user switching an application) [28]. Together with the
features extracted from smartphone data during the experiment, the
labeled data can then be used to design emotion recognition systems.
A comprehensive overview of different experimental designs, data
sources, and models is provided by Kołakowska et al. [35].

2.1 Touch Data
The touchscreen of a smartphone allows for the collection of key-
stroke dynamics and gestures (i.e., tapping, scrolling, and swiping).
Keystroke dynamics have been widely investigated for affective
state prediction on hardware keyboards [20, 34]. Keystroke pa-
rameters consist of timing characteristics such as flight time [12],
tap duration [12], and typing speed [67]. Frequency characteris-
tics of keystrokes (i.e., how often selected keys are touched) have
also proved to be good predictors of affective states [12, 65]. For
example, the usage of backspaces as a source of information on
mistakes made while typing has been found to correlate to emo-
tional states [38]. Similarly, Trojahn et al. [65] showed that negative
emotions are associated with decreased typing speed and increased
error rate. In contrast to hardware keyboards, smartphone key-
boards provide additional sources of data including the pressure
and size of touch, which can provide further information for pre-
dicting affective states [67].

Using such timing and frequency characteristics on smartphone
keyboards, Ghosh et al. [28] predicted two levels of happiness,
sadness, and stress by employing a personalized random forest
classifier. In a previous laboratory experiment, we predicted three
levels of valence, arousal, and dominance, and two levels of anger,
happiness, sadness, surprise, and stress [67]. Critically, we encoded
timing characteristics (i.e., flight time and typing speed) and touch
pressure in two-dimensional heat maps and used a semi-supervised
model consisting of an autoencoder and a fully connected clas-
sification layer. Similarly, Ghosh et al. [27] used an LSTM-based
encoder-decoder to learn a low-dimensional feature embedding of
time series of typing data (i.e., time and frequency characteristics).
These authors predicted happiness, sadness, relaxation, and stress
by using a classification network with the first layers shared among
users and a final personalized layer.
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2.2 Sensor Data
Accelerometers and gyroscopes are common sensors used for af-
fective state prediction on smartphones. For example, Mottelson
and Hornbæk [46] showed that positive emotions are accompanied
by bigger movements and fewer changes of the orientation of the
smartphone while Carneiro et al. [11] found a strong relationship
between stress and acceleration. Features from sensor data are cal-
culated either on the aggregated series (i.e., magnitude) or on the
three axes (i.e., x, y, and z) separately [30, 46] and belong to either
the time (e.g., mean, variance, and interquartile range) [30, 53] or
frequency domain [13, 30]. To extract frequency features, a fast
Fourier transform (FFT) is typically applied on the sensor data se-
ries and a specific number of FFT coefficients are used as feature
values [13, 30]. Other computed features from the FFT encompass
the peak magnitude, peak magnitude frequency, peak power, and
peak power frequency [24]. Finally, researchers have also used com-
puted features such as the deviation of the acceleration from the
user’s usual behavior [59], the device shaking measured as changes
in aggregated acceleration [46], and the activity type (e.g., still,
walking, and running) [4].

Using accelerometer data only, Olsen and Torresen [47] predicted
valence (using a support vector machine) and arousal (using a
multilayer perceptron) on three levels. Similarly, Hashmi et al. [30]
predicted the basic emotions using a support vector machine based
on timing and frequency features extracted from accelerometer
and gyroscope data. In contrast to our work, these previous efforts
collected data in a laboratory experiment with induced emotions
and used chest-mounted smartphones to track human motion.

2.3 Multimodal Data
One possibility for generalizing and improving performance is to
fuse different data modalities for building competent multimodal
affective state prediction systems [60]. Several techniques to fuse
data have been proposed such as feature-level fusion, decision-level
fusion, and data-level fusion [66]. Ruensuk et al. [53] developed a
personalized support vector machine model based on touch input,
accelerometer data, and gyroscope data. They predicted two lev-
els of valence and arousal during browsing activities and chatting.
Wang et al. [68] predicted five levels of valence and arousal. They
fused neural network and decision tree classifiers and based their
models on data from the accelerometer, gyroscope, GPS (i.e., en-
tropy), light sensor (i.e., indoor vs. outdoor), and network speed.
Here, the usage of the GPS signal adds an additional strain on pri-
vacy. Other researchers have successfully combined text data with
audio data (i.e., speech) [29] and video data [49] for the prediction
of emotions. Yang et al. [72] went one step further and combined
smartphone data (i.e., front camera, microphone, and keystrokes)
with biosensor data (i.e., skin conductance, skin temperature, and
blood volume pulse) using an attention-based LSTM system. An
extensive comparison of multimodal and unimodal affect classifiers
is provided by D’Mello and Kory [17]. While combining different
data modalities can improve performance, it can also increase the
invasion of privacy (e.g., tracking the user’s location or capturing
the user’s voice and face).

3 DATA COLLECTION
We conducted an experiment in the wild to collect a large-scale
dataset of smartphone touch and sensor data. The ethics board
of ETH Zurich approved the experiment. During the experiment,
we collected keyboard data, sensor data, and context data (e.g.,
foreground application) while participants used their smartphones
in everyday life for approximately 70 days.

3.1 Participants
We recruited 82 participants (43 female, 39male) between the ages of
18 and 43 (mean = 23.0 years, standard deviation SD = 3.64 years).
Eleven participants were left-handed and seventy-one participants
were right-handed. The majority of participants were students at
the bachelor (61 participants), master (13), and Ph.D. (3) levels from
ETH Zurich and the University of Zurich. We only considered
participants that were German native speakers (due to the key-
board layout) and used typing-based applications (e.g., browsers
and chat applications) daily on their smartphones. We recruited
only participants using Android devices (Android 7 to 10). The
participants used a variety of devices from different manufacturers:
Samsung (31 participants), Huawei (21), Xiaomi (7), OnePlus (7),
Sony (3), LG (3), Google (2), Nokia (2), Blackberry (1), Fairphone (1),
HTC (1), Lenovo (1), Oppo (1), and Wiko (1). Participants actively
engaged for an average of 72 days (SD = 2 days) in our experiment.

Compensation. We implemented an incremental reward system
and the chance to win an additional price via a lottery similar
to other works [32, 64, 69]. Participants were rewarded for their
participation depending on their level of contribution and received
between CHF 60 and CHF 120 for submitting an average of 3 and 6
self-reports per day, respectively. One participant was awarded an
additional CHF 1000 from a lottery draw. See supplemental material
for details about the reward system.

3.2 Apparatus
To collect a large-scale dataset in the wild, we developed an Android
application consisting of threemain components: 1) A user interface
providing the participant information, control, and statistics of the
experiment, 2) a data logging component for collecting sensor data,
context data, and usage logs in the background, and 3) a keyboard
that participants had to use during the experiment. In the following,
we detail the three components.

Graphical user interface. The main page of the app (Figure 2A)
provided information about the number of remaining days of partic-
ipation and the number of self-reports until the next level is reached.
Participants could manually start and pause the data recording. This
mechanism enabled privacy when they did not want their data to
be recorded. Participants were required to have recording enabled
for at least 90% of the time to be eligible for compensation. Fur-
thermore, the experimenter could send messages in the form of
notifications to specific or all participants (e.g., information about
the experiment or motivating messages). Participants could also
access help information (i.e., help text, tutorial videos, and the in-
formation sheet) and change the settings (e.g., the storage location
of the recorded data, finishing participation, and manual triggering
synchronization with the server). The statistics page (Figure 2B)
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A) Main page B) Statistics C) Leaderboard D) VAD E) Basic emotions

Figure 2: User interface of the Android application. A) Main page of the application. B) Statistics about self-reports and com-
pensation. C) Leaderboard showing badges (level), average number of self-reports per day, and the rank. Users were assigned
animal names to preserve anonymity. Self-reports captured valence, arousal, and dominance (D) and the basic emotions and
stress (E). Selected items are highlighted with a green background.

provided information about the number of self-reports, average
number of self-reports per day, percentage of enabled recording,
and information about compensation and lottery tickets. Finally, in
the leaderboard (Figure 2C), participants could track their rank in
relation to the other participants in terms of the average number
of self-reports per day. To maintain the privacy of the participants,
we assigned an animal name to each participant.

Data recording. When the phone was unlocked, the Android
application logged the following data in the background: sensor
data (i.e., accelerometer, gyroscope, magnetometer, proximity sen-
sor, light sensor, and step counter), device usage logs (e.g., fore-
ground application, charging state, screen orientation, ringer mode,
timezone changes, and audio mode), and activity predicted by the
activity recognition API of Google (i.e., still, in-vehicle, on a bi-
cycle, running, on foot, tilting, and walking). We did not use all
sources of data in this work. For example, we discarded activity
from our analysis because on some devices there was a substan-
tial lag in recognition of activities. The data was uploaded in the
background to a server several times during the day. The upload
was initiated only when the phone was connected to Wi-Fi and all
communication was encrypted.

Keyboard. Our application included a keyboard with a layout
similar to the default German Android keyboard (Figure 3). Partici-
pants were required to use our keyboard during the study. From
the keyboard, we recorded touch-related data (i.e., position and
timestamps). In the modeling stage, we mapped the touch positions
to the keys. Critically, data was not recorded when participants
typed passwords, phone numbers, names, postal addresses, and
e-mail addresses. The keyboard did not support auto-correction,
auto-completion, and swiping. A pre-experiment questionnaire re-
vealed that before the experiment, 79% of the participants had never

Figure 3: The keyboard included in our application. Two ad-
ditional buttons in the top bar for enabling private mode
(left button) and starting a self-report (right button). The left
keyboard has private mode disabled and a self-report avail-
able (yellow star) and the right keyboard has private mode
enabled (purple top bar) and no self-report available.

used swiping, 71% had never used auto-correction, and 75% had
never or only rarely used auto-completion.

We extended the keyboard layout by two additional buttons
at the top. The private mode button (left button in the top bar
in Figure 3) allowed participants to pause the recording of data
directly on the keyboard. By pressing the star button for 2 seconds
(right button in the top bar in Figure 3), participants could fill in
a self-report. Participants could also start a self-report using the
self-report button on the main page of the app (Figure 2). Ninety-
three percent of the submitted self-reports were started using the
star button on the keyboard.

3.3 Labels from Self-Reports
To gather labeled data for our model, we asked participants to
complete self-reports at regular intervals while using their smart-
phones. To quantify valence, arousal, and dominance, we adapted
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the Self-Assessment Manikin (SAM) [8] in terms of the dimensions
it represents and the number of levels. The SAM is not applicable on
smartphones due to its old-fashioned style and the space constraints
of smartphone screens. Based on the work by Hayashi et al. [31]
and feedback from participants in a pilot study (𝑛 = 17), we substi-
tuted the figures from the SAM with emojis and reduced the scale
to five items (i.e., very low, low, neutral, high, very high). Emojis
are commonly used in social networks and other communication
applications. We believe that this familiarity made the self-reports
more appealing and fostered a fast and accurate understanding of
the experimental procedure by the participants.

Figure 2D shows an illustration of the emoji-based self-reports.
For the valence dimension, we varied the emojis from a happy
face (most positive) to a sad face (most negative). In the arousal
dimension, the emojis varied from an awake emoji with large eyes
(highest arousal) to a sleepy emoji (lowest arousal). Finally, for
the dominance dimension, we increased the size of the emoji to
portray control, similar to the SAM. Participants were also asked to
select from a series of basic emotions (i.e., happiness, anger, sadness,
surprise, disgust, and fear) and stress represented by different emojis
(Figure 2E). To track complex emotions, participants were allowed
to select all possible combinations of the basic emotions and stress.
Participants could also select None of them if none of the provided
items applied (in that case no other items could be selected).

Following the guidelines by Schmidt et al. [58] and Ghosh
et al. [26], we used a combination of time-based and event-based
schedules to trigger self-reports. A self-report became available (i.e.,
the star button on the keyboard turned yellow and started blinking)
when four conditions were fulfilled. First, the participant typed at
least 80 characters on the keyboard in the current session (we define
a session as the period from unlocking the smartphone until it is
locked again). Second, the smartphone was unlocked for at least
30 seconds in the current session. Third, between 30 minutes and
60 minutes elapsed since the last self-report was completed. Fourth,
data recording was enabled (i.e., private mode on the keyboard was
disabled). Depending on the number of average self-reports per day,
the minimum amount of time between self-reports (third condition)
was set to 30 minutes, 45 minutes, or 60 minutes. This helped to bal-
ance the number of self-reports per day and prevented participants
from exaggerating submissions of self-reports. Once a self-report
became available, participants could start the self-report until the
smartphone was locked again (an additional margin of 10 seconds
was provided in case participants accidentally locked the phone).
We did not enforce a time limit for filling in the self-reports to avoid
adding additional pressure on the rating, which could introduce a
negative bias. All these parameters were decided based on results
from a pilot study (𝑛 = 17).

3.4 Procedure
Figure 4A provides an overview of the procedure used in the exper-
iment. After setting up the application (i.e., watching two tutorial
videos and granting device permissions), participants conducted a
typing test on their default keyboard used before the experiment
and on the application keyboard before setting the application key-
board as the new default keyboard. The typing test consisted of six

App Setup

Typing Test

Questionnaires

Smartphone Usage

Typing Test

Questionnaires

1

3

5

Valence Arousal Dominance

Sunday Monday TuesdaySaturday

A) Procedure B) Example self-assessment for four days

Figure 4: Overview of the different parts of the experiment.
A) Overall experimental procedure. B) Changes in valence,
arousal, and dominance of a selected participant during four
consecutive days.

sentences in random order including two well-known pangrams
(27–46 characters) [16, 48].

After the setup was completed, participants used their smart-
phones for 10 weeks in everyday life, filling in self-reports in regular
intervals. We collected a total of 30,083 self-reports covering a large
range of the valence-arousal-dominance space. Within the first
week, we asked participants to fill in an online questionnaire on
demographics and smartphone usage as well as the Patient Health
Questionnaire [36] and the Big Five Inventory 2 [15] as measures
of mental health and personality traits, respectively. At the end of
the experiment, participants again typed the six sentences in ran-
dom order on our keyboard and their default keyboard used before
the experiment. Participants also completed an exit questionnaire
on the self-reports regarding their level of understanding and the
truthfulness and frequency of their responses. The exit question-
naire also probed their perception of the application’s keyboard
and smartphone usage. Finally, participants were asked to complete
the Patient Health Questionnaire and the Big Five Inventory for a
second time. See the supplemental material for more details about
the experimental procedure.

Figure 4B depicts the changes in valence, arousal, and dominance
during four days of one selected participant. The figure shows that
valence and dominance were highest on Saturday and Sunday and
decreased on Monday and Tuesday. Arousal showed an opposite
pattern with lower values on Saturday and Sunday and higher
values on Monday and Tuesday.

3.5 Dataset Validation
Smartphone usage. Figure 5A shows the smartphone usage over

the hours of the day and each day of the week aggregated over all
participants. Smartphone usage was lowest during the night (1 a.m.
to 6 a.m.). During the day, smartphone usage was stable with a peak
around 10 p.m. On Saturdays, participants used their smartphones
least, whereas on Sundays usage was high throughout the day with
peaks in the late afternoon and evening.

We collected data from 13,071 hours of smartphone usage. On
average we recorded 3,533 sessions per user (SD = 1,624 sessions,
max = 8,861, min = 1,060). On average a session lasted for 183 s
(SD = 532 s) and we recorded an average of 47 keystrokes per
session (SD = 174 keystrokes). The mean break between sessions
was 11min (SD = 72min).
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Figure 5: The distribution of average smartphone usage for
the days of the week and the times of the day aggregated
over all participants.

Self-reports. We collected a total of 30,083 self-reports for va-
lence (669 very low, 2,767 low, 8,071 neutral, 14,642 high, 3,934
very high), arousal (1,643 very low, 5,260 low, 12,572 medium,
7,591 high, 3,017 very high), dominance (1,866 very controlled,
3,256 controlled, 12,823 neutral, 8,089 in-control, 4,049 very in-
control) and the basic emotions of anger (selected 1,208 times),
happiness (16,425), sadness (1,918), surprise (786), fear (1,628), dis-
gust (515), and stress (4,795). On average, a participant submitted
402 self-reports (SD = 154 self-reports, min = 44, max = 835)
totalling 5.64 self-reports per day on average (SD = 2.12 self-
reports). Participants also spent an average of 6.76 s (SD = 27.27 s)
filling in the self-reports. In addition, an average of 154 keystrokes
(SD = 177 keystrokes) and 40 s (SD = 266 s) passed since the start
of the session until a self-report was triggered.

We also performed a series of correlations to investigate the
relationship between the valence, arousal, and dominance ratings
and the basic emotions and stress. Table 1 presents the results for
each of these correlations. The effect sizes are largest for valence
and smallest for arousal. Notably, these results are a close match to
the correlations we found for data collected in a previous laboratory
experiment [67]. We found the same directions for the correlations
but smaller effects sizes.

Russell and Mehrabian [54] provide a correspondence between
valence, arousal, and dominance and the basic emotions based on
laboratory experiments. In Table 2, we compare these values to the
mean values obtained from the self-reports collected in our experi-
ment. In Russel and Mehrabian’s model, the affective dimensions
(i.e., valence, arousal, and dominance) spanned the interval [−1, 1].
Thus, we mapped the self-reports collected in our experiment to
the same interval to obtain a proper measure for comparison. The
self-reports collected in our experiment closely match the corre-
spondences found by Russel and Mehrabian. In contrast to Russel
and Mehrabian, the mean values for valence, arousal, and domi-
nance are smaller in our data. These differences may be related
to the fact that we performed the experiment in the wild without
using emotion-eliciting situations as stimuli. Notably, for anger,
surprise, and disgust, the mean dominance value shows a reversed
sign compared to Russel and Mehrabian’s model. For stress, the
mean values of all three dimensions (i.e., valence, arousal, and dom-
inance) are around zero. It is known that stress can be positive or
negative with different intensity levels [21, 22], thus potentially,
positive and negative ratings cancel each other out leading to a
mean close to zero.

Table 1: Effect sizes of the Pearson correlations between va-
lence, arousal, and dominance and the basic emotions and
stress. Asterisks denote correlations that survived Bonfer-
roni correction (p = 0.0024).

Anger Happiness Sadness Surprise Fear Disgust Stress

Valence −0.30∗ +0.55∗ −0.37∗ −0.006 −0.22∗ −0.14∗ −0.24∗
Arousal +0.05∗ +0.27∗ +0.01 +0.04∗ +0.02∗ −0.008 +0.004
Dominance −0.16∗ +0.17∗ −0.18∗ −0.04∗ −0.17∗ −0.10∗ −0.20∗

Table 2: Mean values for valence, arousal, and dominance
for the six basic emotions and stress. Results from our study
are compared to the correspondences derived byRussell and
Mehrabian [54]. All measurements are mapped to the inter-
val [−1, 1]. Values in brackets denote standard deviation.

Valence Arousal Dominance

Russel Ours Russel Ours Russel Ours

Anger −0.43 −0.36 (0.44) +0.67 +0.19 (0.52) +0.34 −0.24 (0.56)
Happiness +0.76 +0.54 (0.33) +0.48 +0.20 (0.50) +0.35 +0.24 (0.51)
Sadness −0.63 −0.34 (0.50) +0.27 +0.10 (0.54) −0.33 −0.21 (0.51)
Surprise +0.40 +0.29 (0.51) +0.67 +0.20 (0.54) −0.13 +0.04 (0.52)
Fear −0.64 −0.12 (0.51) +0.60 +0.12 (0.53) −0.43 −0.21 (0.53)
Disgust −0.60 −0.18 (0.52) +0.35 +0.04 (0.55) +0.11 −0.23 (0.57)
Stress – +0.05 (0.49) – +0.08 (0.51) – −0.08 (0.51)

Keyboard. We recorded an average of 7,669 keyboard sessions
per user (SD = 3,341 sessions, min = 2,255, max = 18,445). We
define a keyboard session as the time from opening to closing the
keyboard. The ten most used keys were the space bar (13.5%), delete
key (11.6%), E (8.3%), I (5.5%), A (5.1%), S (4.9%), N (4.7%), H (4.4%),
T (4.0%), and R (3.8%).

See supplemental material for further analysis of the smartphone
usage, self-reports, and keyboard usage. Having collected and val-
idated this corpus of 82 participants’ smartphone usage and self-
reports over 10 weeks, we now describe our method for affective
state prediction.

4 METHOD
Our model predicts affective states based on keyboard and iner-
tial sensor data collected during smartphone usage (Figure 6). We
encoded these data in two-dimensional heat maps and trained con-
volutional neural networks to automatically extract meaningful
features from the heat maps. For the classification of affective states,
we then added a fully connected classification layer. The paragraphs
below provide details on every step of our model.

4.1 Heat Maps
From the smartphone data collected in the wild, we extracted two
types of two-dimensional heat maps providing intuitive and com-
pact visualizations. First, we created keystroke heat maps that en-
coded typing characteristics of bigrams (i.e., key combinations) of
consecutive keystrokes on the smartphone keyboard. Second, we
created sensor heat maps encoding the distribution of the gyroscope
and linear acceleration measurements.
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Figure 6: Overview of the main steps of our model. A con-
volutional neural network (MobileNetV2 [56]) was trained
on heat maps created from smartphone keystroke and iner-
tial sensor data. For classification of the affective states, the
features learned byMobileNetV2 were used as input to fully
connected layers.

Keystroke heat maps. A keystroke 𝑘𝑖 = (𝑥,𝑦, 𝑡down, 𝑡up) is de-
fined by the coordinates (𝑥,𝑦) on the screen as well as 𝑡down and
𝑡up providing the timestamp in milliseconds of pressing (touch
down) and releasing (touch up) the key, respectively. A text 𝐾 =

[𝑘1, . . . , 𝑘𝑛] consists of 𝑛 keystrokes. Based on the raw input data
and motivated by commonly used typing characteristics from other
works [12, 67], we extracted three keystroke metrics. First, "up-
down" measures the time of moving from one key to the next key
(up-down = 𝑡𝑖+1,down − 𝑡𝑖,up). Second, "down-down" measures the
time of moving between keys as well as the hold time of the first
keystroke (down-down = 𝑡𝑖+1,down − 𝑡𝑖,down). Third, "down-up"
considers the time of moving between keys and the hold time of
the first and second keystroke (down-up = 𝑡𝑖+1,up − 𝑡𝑖,down). All
three keystroke metrics were normalized by the distance between
the keys.

To exclude breaks during typing, we chose a threshold of one
second between keystrokes. We motivate this threshold by the
longest median time per character (400 milliseconds) [10] and the
fact that median + 3 ∗ median absolute deviation = 0.9 s [39]. By
choosing a conservative threshold of one second, we retain delays
that are part of natural typing behavior.

Using a window of 80 keystrokes before the self-reports, we
aggregated the keystroke metrics into two-dimensional heat maps
covering all possible bigrams of characters (a–z including umlauts
ä, ö, and ü) and special keys (i.e., delete, space, symbol, shift, return,
period, comma, question mark, and exclamation point). In total, we
considered 38 keys. We encoded all possible key combinations in a
38×38 heat map𝐻 . The rows and columns encode all 38 keys taken
into consideration using a centralized alignment of the keys. More
frequently used keys in the English language [63] and German lan-
guage [5, 6] are placed in the middle of the heat map (the space bar
is considered to be the most frequent key and the exclamation point
and 𝑞 are the least frequent keys). The first and second keystroke
in a bigram is encoded in the row and column, respectively. For
example,𝐻 (𝑎, 𝑝) contains the keystroke metric (i.e., up-down speed,
down-down speed, or down-up speed) calculated from the keys 𝑎
(row) and 𝑝 (column) of the bigram 𝑎𝑝 . For multiple occurrences of
the same bigram, we averaged all the values of the corresponding
cell in the heat map 𝐻 . In addition, all heat maps were standardized
based on the mean heat map during a baseline typing period.

Figure 7A shows an example of an extracted heat map encoding
up-down speed. The colors in the heat maps are for visualization
purposes only. In our model, we used only one value per pixel.
It is visible that the highest up-down speed is concentrated in
the bigrams (space bar, D), (E, N ), and (space bar, shift key). See
supplemental material for examples of heat maps encoding down-
down speed and down-up speed.

Sensor heat maps. For creating two-dimensional sensor heat
maps, we extracted the rate of rotation and linear acceleration
of smartphones from the inertial sensors. As a preprocessing step,
we temporarily aligned the signals and converted the sampling rate
to 100 Hz (i.e., downsampling or upsampling), which provided a
noise reduction as a positive side effect. We also clipped linear ac-
celeration to 4 g = 39.2m s−2 as 98% of the sensor data were below
4 g. We clipped the gyroscope measurements at 5 rad s−1 because
99% of the measurements were below this threshold. In addition, we
only considered linear acceleration and gyroscope measurements
greater than 0.02m s−2 and greater than 0.003 rad s−1, respectively.
We chose these thresholds because in a pilot study 95% of the sensor
measurements were below these thresholds when the smartphones
were lying flat on a table. Thus, we excluded noise inherent to the
sensors.

We encoded the three axes combinations into separate heat maps:
linear acceleration along the x-axis & rate of rotation around the
z-axis, linear acceleration along the y-axis & rate of rotation around
the x-axis, and linear acceleration along the z-axis & rate of rotation
around the y-axis. We chose these axes combinations because they
reflect typical motion sequences. Using a window of 30 seconds
before the filled in self-reports, we binned the absolute sensor values
into logarithmically spaced bins and counted the number of values
in each bin. We chose a logarithmic scale because the absolute
sensor measurements are exponentially distributed. Thus, when
taking the logarithm, the measurements become approximately
normally distributed. Moreover, we believe that the distinction of
smaller values is more important than larger values so that also
micromotions can be adequately exploited [41]. For the heat maps,
we used a resolution of 96 × 96 (i.e., 96 bins in each dimension),
because it is divisible by a multiple of two, which is advantageous
for the spatial downsampling in a convolutional neural network
and it provides a sufficiently high resolution. We standardized all
heat maps based on the mean heat map during a baseline period.

Figure 7B shows an example of an extracted heat map for linear
acceleration along the x-axis and the rate of rotation around the
z-axis (the colors are for visualization purposes only). See supple-
mental material for examples of heat maps encoding the other axes
combinations.

4.2 MobileNetV2
For the keystroke and sensor heat maps, we stacked the three types
of heat maps into three channels. To extract meaningful features
from the keystroke (38×38×3) and sensor heat maps (96×96×3), we
employed a particular type of convolutional neural network called
MobileNetV2 [56]. Affective labels are typically sparse and labeled
datasets are relatively small for training a network for predicting
affective states, making it prone to overfitting. Using a smaller
but expressive network such as MobileNetV2 counters this effect.
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A) Keystroke heat map B) Sensor heat map

Figure 7: Example of a keystroke heat map extracted from 80 keystrokes (A) and a sensor heat map extracted from 30 seconds
of the gyroscope and linear accelerationmeasurements (B). Abbreviations: exclamation point (EP), questionmark (QM), ü (Ue),
ö (Oe), and ä (Ae). Color saturation indicates the average up-down speed between consecutive keystrokes (A) and the number
of sensor measurements for the combinations of linear acceleration along the x-axis and the rate of rotation around the z-axis
(B). The colors are for visualization purposes only.

MobileNetV2 is a network optimized for low memory consumption
and high execution speed and is parameterized to meet the resource
constraints of mobile devices [55, 71].

The basic building block of MobileNetV2 is the bottleneck depth-
separable convolution with residuals which consist of three opera-
tions [56]. First, a 1 × 1 convolution layer expands the number of
feature maps. Second, the depthwise convolution applies a single
filter to each feature map. Finally, a pointwise convolution with a
kernel size of 1 × 1 is used to combine the outputs of the depth-
wise convolutions (i.e., linear combinations of the feature maps)
reducing the number of feature maps, and thus the amount of data
flowing through the network. The factorization of the convolution
into depthwise and pointwise convolutions reduces the computa-
tional cost and model size. In addition, the input and output to
the basic building block are connected with a residual connection
which enables faster training and better accuracy [56].

MobileNetV2 was developed for images with a resolution of
224× 224× 3 and consists of five downsampling layers (i.e., a stride
of two). For the keystroke heatmaps (38×38×3), we disabled the first
three downsampling layers (i.e., setting the stride to one). For the
sensor heat maps (96 × 96 × 3), we disabled the first downsampling
layer. This modification of the network was successfully used on
the CIFAR10 dataset (containing images with a resolution of 32 ×
32 × 3) [3]. Input data is commonly scaled before training. We used
Min-Max scaling of the heat maps to the range [−1, 1].

4.3 Classification
To remove noise and foster balanced classes, we simplified
the valence, arousal, and dominance measures to three classes

(low ∈ [1, 2], medium ∈ [3, 3], and high ∈ [4, 5]) of valence
(3,436, 8,071, and 18,576 self-reports), arousal (6,903, 12,572, 10,608),
and dominance (4,870, 12,066, 11,221).

We took advantage of the learned features from the convolutional
neural network by adding a classification network. The final output
of the convolutional neural network was passed through a global
average pooling layer and a fully connected layer with softmax
activation. We aggregated the keystroke and sensor heat maps by
stacking the output of the global average pooling layer of the pre-
trained networks of the individual heat maps. For the combination
of the sensor and keystroke heat maps, we used a fully connected
layer with 2048 units between the global average pooling and the
softmax layer to foster the learning of mixtures of the extracted
features from the heat maps. Due to the prevalent class imbalance,
we used balanced class weights to give smaller classes more weight.
We trained the whole network on the labeled data (heat maps and
corresponding affective states) using backpropagation minimizing
the cross-entropy loss using 80 epochs and a batch size of 128. We
optimized the networks using stochastic gradient descent with a
momentum of 0.9 and a cyclical learning rate using an exponential
decay (𝛾 = 0.99994) with a minimum and maximum learning rate
of 10−5 and 10−2, respectively [62]. We implemented all networks
using the Keras framework with TensorFlowTM back-end.

5 RESULTS
We used the data from our data collection to evaluate our model.
We evaluated the performance of our model in terms of accuracy
(chance level is 0.33 for three classes and 0.5 for two classes),
micro-averaged AUC (chance level is 0.5), and macro-averaged



Affective State Prediction from Smartphone Touch and Sensor Data in the Wild CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Table 3: Performance for the prediction of three classes
(low, medium, high) of valence, arousal, and dominance.
AUCmicro andAUCmacro representmicro-averagedAUCand
macro-averagedAUC, respectively. The chance level of accu-
racy and AUC is 0.33 and 0.5, respectively.

Dimension Heat Map AUCmicro AUCmacro Accuracy

Valence Keystrokes 0.82 0.76 66%
Sensors 0.79 0.73 63%
Combination 0.83 0.78 70%

Arousal Keystrokes 0.81 0.80 63%
Sensors 0.83 0.82 64%
Combination 0.85 0.84 65%

Dominance Keystrokes 0.82 0.79 67%
Sensors 0.81 0.79 63%
Combination 0.84 0.82 68%

AUC (chance level is 0.5). Micro-averaged AUC aggregates the con-
tributions of all classes by considering each element in the label
indicator matrix as a label. To account for class imbalance, the
macro-averaged AUC averages the class-wise AUCs. We evaluated
our model using leave-one-user-out cross-validation to ensure that
data of a user in the test set is not used for training. On the training
data, we used all available heat maps to compute the baseline heat
map. For heat map 𝑛 of a user in the test set, we used the 𝑛 − 1 heat
maps to compute the baseline heat map (i.e., the baseline gradually
improves the more the user types).

5.1 Affective State Prediction
Table 3 reveals the performance of our model. See supplemental
material for additional metrics.

Classification performance. Using the combination of keystroke
and sensor heat maps, for valence, arousal, and dominance, the
values for micro-averaged AUC (0.83, 0.85, 0.84) are slightly higher
than for macro-averaged AUC (0.78, 0.84, 0.82). When considering
the percentage of themost frequent class as baseline (valence= 62%,
arousal = 42%, and dominance = 40%), the accuracy is above the
baseline for valence (70%), arousal (65%), and dominance (68%).
Figure 8 shows the confusion matrices for valence, arousal, and
dominance evaluated on the combination of the keystroke and sen-
sor heat maps. Often neighboring classes are confused with each
other. For all three dimensions, the high class was most often con-
fused with the medium class and vice versa. For arousal (Figure 8B)
and dominance (Figure 8C), the low class was often mispredicted as
the medium class. In contrast, for valence (Figure 8A) the low class
was more often confused as the high class, which may be attributed
to the class imbalance.

Heat map comparison. The keystroke heat maps perform slightly
better than the sensor heat maps for valence (+0.03 AUC) and
dominance (+0.01 AUC). In contrast, for arousal, the sensor heat
maps outperform marginally the keystroke heat maps (+0.02 AUC).
The combination of the two types of heat maps provides only a
marginal improvement in performance (up to 0.04 AUC).

Table 4: F1-scores for complex emotions formed from two
basic emotions and stress. We treat the presence of the
complex emotion as the positive class. The number of self-
reports for each complex emotion is given in brackets.

Anger Happiness Sadness Surprise Fear Disgust Stress

Anger – 0.76 (153) 0.30 (384) 0.24 (101) 0.28 (222) 0.19 (126) 0.46 (429)
Happiness 0.76 (153) – 0.78 (402) 0.76 (394) 0.77 (518) 0.76 (104) 0.80 (1,563)
Sadness 0.30 (384) 0.78 (402) – 0.31 (89) 0.37 (418) 0.31 (119) 0.49 (561)
Surprise 0.24 (101) 0.76 (394) 0.31 (89) – 0.31 (98) 0.23 (53) 0.48 (203)
Fear 0.28 (222) 0.77 (518) 0.37 (418) 0.31 (98) – 0.28 (105) 0.47 (966)
Disgust 0.19 (126) 0.76 (104) 0.31 (119) 0.23 (53) 0.28 (105) – 0.46 (214)
Stress 0.46 (429) 0.80 (1,563) 0.49 (561) 0.48 (203) 0.47 (966) 0.46 (214) –

5.2 Basic Emotion and Stress Prediction
Our model achieved a performance of 90% (0.77 AUC) for anger,
75% (0.81 AUC) for happiness, 93% (0.82 AUC) for sadness, 95%
(0.86 AUC) for surprise, 93% (0.85 AUC) for fear, 97% (0.86 AUC) for
disgust, and 82% (0.83 AUC) for stress. The differences betweenAUC
and accuracy are due to class imbalance. The basic emotions can
also be blended to form complex emotions (e.g., the combination of
happiness and sadness results in melancholy) [60]. Table 4 presents
the F1-scores and the number of self-reports (in brackets) for the
first-order complex emotions. We evaluated the performance by
combining the predictions of the individual models pertaining to the
respective basic emotions. Complex emotions formed by happiness
were recognized well. Interestingly, the combination of stress and
happiness (i.e., positive stress) occurred most often (1,563 times)
and was recognized accurately (F1-score of 0.80). Altogether, we
can conclude that our model is also predictive for basic emotions
and stress and may even be predictive for complex emotions.

5.3 Window Size Analysis
The results presented in Table 3 are based on keystroke heat maps
extracted from 80 characters and sensor heat maps extracted from
30 seconds (i.e., 3,000 sensor values). On average participants typed
74 characters (SD = 43 characters) in the 30-second window be-
fore filling in the self-report. Thus, the two types of windows for
extracting the keystroke and sensor heat maps are a close match.
Nevertheless, considering longer periods can be beneficial for the
classification performance, because the model has more data avail-
able. As such, we evaluated our model on heat maps extracted
on larger windows ranging from 2 minutes to 30 minutes (the
minimum time between self-reports was 30 minutes). To analyze
different window sizes, we relaxed the constraint of a fixed number
of characters (i.e., 80 characters) and sensor measurements (i.e.,
3,000 samples). Thus, the heat maps contained a different number
of characters and sensor measurements depending on the number
and the duration of sessions in the corresponding window. Fig-
ure 9A shows the macro-averaged AUC for valence, arousal, and
dominance for the different window sizes. Peak performance is
reached with a window size of 5 minutes for valence (0.80 AUC),
arousal (0.86 AUC), and dominance (0.83 AUC). Further increasing
window sizes leads to a substantial drop in the performance for
all three dimensions. Overall, performance improvements are only
marginal for all three dimensions (up to 0.02 AUC).
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A) Valence B) Arousal C) Dominance

Figure 8: Confusion matrices for classifying three levels (low, medium, high) of A) valence, B) arousal, and C) dominance.
Confusion matrices were calculated from predicted self-reports using the combination of keystroke and sensor heat maps.

5.4 Personalization
Affective states can be individual and can reflect idiosyncrasies
in users. While there may be similar typing and sensor patterns
between users characterizing similar affective states, leveraging
user-specific data can improve the performance of the model. To
investigate the extent of performance gain for a participant with
𝑁 filled in self-reports, we used the first 𝑛 self-reports to fine-tune
the whole model using five epochs and predicted then the 𝑁 − 𝑛
remaining self-reports. Figure 9B reveals the macro-averaged AUC
in terms of 𝑛 (i.e., the number of self-reports used to fine-tune
the model). Fine-tuning on only 10 self-reports provides already
a slight performance improvement (up to 0.02 AUC). The perfor-
mance improvement plateaus at around 40 to 60 self-reports used
for fine-tuning. The performance improvement is large for valence
(+0.07AUC), reaching a performance of 0.85 AUC. The performance
improvements for arousal (+0.05 AUC) and dominance (+0.04 AUC)
are slightly smaller, leading to a performance of 0.89 AUC and
0.86 AUC, respectively.

5.5 Ablation Study
A model can only be as good as the data that supports it. If the
data (i.e., the heat maps) show clear patterns, we can achieve a
well-performing model with only a little amount of data. On the
other hand, if the data is noisy, a much larger dataset is needed
to achieve the same performance. In our experiment, we collected
a homogeneous dataset consisting of mostly bachelor and master
students around the age of 23. Thus, we hypothesize that typing
and smartphone usage behavior were similar among participants
and less training data is needed to achieve a good performance
for the classification of affective states. To test our hypothesis, we
conducted an ablation study by training the model on data from a
subset of the participants. To accomplish this, we selected a percent-
age of participants at random in each of the 82 training sets of the
leave-one-user-out cross-validation. Figure 9C shows the macro-
averaged AUC for different percentages of users in the training
data. Performance plateaus at around 60% (49) of participants for
valence (0.77 AUC) and around 80% (66) of participants for arousal
(0.83 AUC) and dominance (0.81 AUC). Thus, a subset of the users

(i.e., between 60% and 80%) is enough to achieve a performance
close to the performance reached when using data from all the
users. By linear extrapolation, we can roughly predict that with the
double amount of participants (i.e., 164 participants), we could come
close to a performance of around 0.83 AUC for valence, 0.89 AUC
for arousal, and 0.87 AUC for dominance.

5.6 Runtime Analysis
We conducted a runtime analysis of the different parts of our model.
Our computing environment consisted of an Intel® Xeon® CPU
E5-2630 v4 @ 2.20GHz and an NVIDIA GeForce® GTX 1080 Ti. The
prediction of a new data point consisted of extracting keystroke
heat maps (mean = 0.84 s, SD = 0.03 s) and sensor heat maps
(mean = 0.23 s, SD = 0.18 s), followed by the convolutional neural
network and the fully connected layer for the classification of the
affective states (mean = 0.0036 s, SD = 0.004 s). Summing up these
values leads to a prediction time of 1.07 seconds if considering both
types of heat maps. If only the keystroke heat maps and sensor
heat maps are used, the prediction time amounts to 0.84 seconds
and 0.23 seconds, respectively. The higher runtime for creating the
keystroke heat maps compared to the sensor heat maps is due to
the preprocessing (i.e., mapping touch positions to keys, calculating
the metrics between the key pairs, and sanity checks).

6 DISCUSSION
We presented a model that can be used on mobile devices for pre-
dicting valence, arousal, and dominance, the basic emotions, and
stress. We believe that the ability to run our model on smartphones
can improve user experience, provide ubiquitous access to affective
state predictions, and can be beneficial for security and privacy. To
that end, we used the MobileNetV2 network that can also counter
possible overfitting effects due to its smaller size. More complex
networks (e.g., VGG or ResNet) could increase the model perfor-
mance on a PC but might not run on mobile devices due to the
increased memory footprint [7].

Heat maps. The predictions of our model were based on heat
maps extracted from keystroke data and sensor data collected dur-
ing smartphone usage in real-world environments. We found that
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Valence Arousal Dominance

A) Window size B) Fine-tuning per user C) Ablation study

Figure 9: Macro-averaged AUC for the classification of three levels (low, medium, high) of valence, arousal, and dominance
using A) different window sizes for the heat map extraction, B) fine-tuning the network per user on varying number of self-
reports, and C) different number of users in the training set. The dashed lines represent the baseline performance (Table 3).

both types of heat maps are capable of accurately predicting valence,
arousal, and dominance. In particular, the sensor heat maps showed
the best performance for predicting arousal (0.83 AUC), while the
keystroke heat maps were most predictive for valence (0.82 AUC)
and dominance (0.82 AUC). These results are in line with the find-
ings by Olsen and Torresen [47], reporting that accelerometer data
is more predictive for arousal than valence.

The keystroke heat maps provide an intuitive and compact visu-
alization of typing patterns compared to the heat maps presented
in our previous work [67]. From the keystroke heat maps, typed
text can be partially recovered. Nevertheless, we only encoded in-
formation about consecutive keystrokes but ignored time-series
information. Thus, a full reconstruction of the typed text from the
heat map alone is difficult, especially when considering a sequence
of words with multiple occurrences of the same bigrams. On the
other hand, the recording of sensor data is less privacy-invasive.
Sensor data is also less prone to bias than typing data (i.e., users
might be more aware of their typing behavior than of their smart-
phone holding behavior). In addition, the runtime to extract sensor
heat maps is substantially lower than that of keystroke heat maps.
In conclusion, we suggest the sensor heat maps as most appropriate
for the prediction of affective states in real-world applications.

We also found that typing speed significantly differs depending
on the location of the key pairs on the keyboard (i.e., key com-
binations typed with both thumbs were significantly faster). By
subtracting the baseline heat map per participant, we correct for
these differences in typing speed. In addition, the convolutional neu-
ral network is capable of learning potential keyboard layout-based
bias in typing speed.

Window size. We used 80 characters and 30 seconds of accelerom-
eter and gyroscope data to extract the keystroke and sensor heat
maps, respectively. In practice, 30 seconds of sensor data can be
stored continuously in the background of the smartphone until the
user has typed 80 characters. If only sensor data is used for the
prediction, the restriction does not apply anymore and predictions
are possible more often (i.e., also when users did not type). For
larger window sizes it takes longer until a prediction is possible.
We showed that peak performance is reached with a window size

of 5 minutes (+0.02 AUC). A potential explanation for the perfor-
mance improvement is that with larger window sizes the model
can implicitly gauge the total time spent on the smartphone from
the sparseness of the heat maps (i.e., a sparser heat map implies a
less active user). On the other hand, if the window size becomes too
large, the heat maps become too dense and noisy which degrades
the performance.

Personalization of the model. We also showed that fine-tuning
our model per participant can substantially improve the perfor-
mance for valence (+0.07 AUC), arousal (+0.05 AUC), and domi-
nance (+0.04 AUC). Peak performance for personalizing the model
was reached using the first 40 to 60 self-reports of the participants.
After the start of the experiment, it took some time until the partici-
pants got used to filling in the self-reports (i.e., the variance tended
to be larger for the first self-reports). Thus, 40 to 60 self-reports
were necessary for fine-tuning the model to learn the stable self-
report pattern of the participants and reaching peak performance.
A reason for this performance improvement is that the network
can learn keystroke and sensor patterns typical for a specific partic-
ipant. Moreover, for participants that reported one class (e.g., high
valence) more often than other classes, the model can shift towards
predicting this class with a higher probability. Other researchers
reported performance improvements for personalized models of
up to 6.3% for predicting valence [14] and 17.6% for predicting
arousal [25].

Comparison with prior work. A direct comparison of the per-
formance of our model is difficult due to differences in the mea-
surement of affective states and experimental setups. Olsen and
Torresen [47] reported slightly higher accuracy for the prediction
of arousal (+10%) but lower accuracy for valence (−19%). In contrast
to our work, they captured accelerometer data during sequences
of walking from only 10 participants. In comparison to Ruensuk
et al. [53], our model performed similarly for valence (+1%) and
arousal (−7%), although these authors predicted only two levels of
valence and arousal.

In comparison to our previous work [67], the performance of our
model in terms of macro-averaged AUC was superior for arousal
(+0.04 AUC) and dominance (+0.02 AUC) but inferior for valence
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(−0.05 AUC). The inferior performance for valence may be attrib-
uted to class imbalance (11% low, 27%medium, 62% high) or the data
collection in the wild. With regard to the basic emotions, our model
performed better for surprise (+0.1 AUC) and stress (+0.03 AUC)
but was inferior for anger (−0.07 AUC), happiness (−0.07 AUC),
and sadness (−0.05 AUC). In our previous work, we used data from
a laboratory experiment and three minutes of data to extract heat
maps. In contrast, in this work, we used only 30 seconds of data.
Laboratory experiments provide more control while in the wild
experiments provide more ecological validity (i.e., less control) and
offer the possibility of collecting larger datasets. In addition to most
other works, we also considered dominance, which we believe is
an important dimension of affective states.

6.1 Implications and Potential Applications
The ability to predict affective states has a broad range of applica-
tions. In the following, we detail two applications that could take
advantage of affective state predictions from our model.

Mental health. Affective states are connected to physiological
and mental health [9]. As such, recognizing a person’s affective
state can assist with the treatment of health problems by either
calling a psychologist or by the intervention of the system with the
user itself [52]. For example, Woebot [70] is a smartphone-based
therapeutic chatbot and tracks the mood of the user from chat
conversations with the user. The chatbot then tries to increase
the mood of the user by adapting the conversation based on the
inferred mood. On the other hand, MoodPrism [51] presents a
colorful summary of emotional health based on daily self-reports
capturing the mood of the users. The feedback from MoodPrism
can help users identify patterns in their feelings, which in turn can
improve wellbeing [50]. Similarly, MoodMeter [45] is a smartphone
application helping to identify moods throughout the day using
self-reports. These apps can benefit from affective state predictions
from our model to help improve emotion recognition accuracy and
replacing self-reports.

Personalized recommendations. Personalized recommendations
have become ubiquitous on smartphones providing users a personal-
ized experience that can increase motivation and commitment [44].
Personalized recommendations can be explicit (e.g., music and video
recommendations) or implicit (e.g., personalized search results and
news article recommendations). Considering the affective states
of users for personalized recommendations can improve the rec-
ommendations qualitatively for different application domains. For
example, Mizgajski et al. [44] developed personalized news arti-
cle recommendations based on self-reported emotions of the users
during news browsing and reading activities. In particular, they
showed that incorporating pleasant emotions improved the recom-
mendation quality substantially. A similar system was proposed for
music recommendations on Spotify tailored to the emotion of the
user [1]. Both systems can benefit from emotion predictions from
our model, eliminating the need for user interaction to gauge the
emotional state.

6.2 Limitations
We acknowledge potential limitations of the approach presented in
this paper. We analyzed the runtime of our model on a computer.
On a mobile device, the runtime of extracting the heat maps and
the inference time of the network might be slightly higher. To keep
runtime low, the model could be deployed on a server. Another
limitation is the number of data required until a prediction can
be made. In our experiment, we ensured that we have enough
sensor and keystroke data available by unlocking a self-report
when the user typed at least 80 characters and used the smartphone
for at least 30 seconds. In practice, using only the sensor heat
maps for the prediction of affective states relaxes the constraint
of typing 80 characters while providing a similar performance. In
addition, by allowing the participants to fill in self-reports only
every 30 minutes, we could have missed finer-grained changes
in affective states. Furthermore, due to the requirement of having
typed at least 80 characters for unlocking a self-report, the windows
used for creating the sensor heat maps always contained keystrokes.
As such, predicting affective states using sensor heat maps during
periods with no keyboard input (e.g., watching videos on YouTube)
requires further research. Finally, the study was restricted to a
population consisting of German-speaking bachelor and master
students, and future studies are required for a proper generalization
of our model to the wider population.

6.3 Future work
Future work could improve the model by leveraging time-series
information of the self-reports and the collected data using an
LSTM architecture. Although such an approach showed promis-
ing results for predicting mood [33], our initial experiments did
not improve the performance of our model. Furthermore, context
data (e.g., ambient light, application type, daytime, and weekday)
could be exploited to improve the model. Models relying on con-
text data showed to be promising for affective state prediction [35]
but at the cost of an increased invasion of privacy. Here again,
our first results did not reveal performance improvements when
enriching our model with context data. To improve the input rep-
resentation of our model, the heat maps could be expanded to the
three-dimensional space to capture movement in space. Similarly,
typical smartphone moving patterns can be analyzed based on the
gyroscope and accelerometer readings and then used to improve our
heat maps. Finally, we also captured the personality traits and levels
of depression of the participants in the study. In a next step, we will
build a predictive model for personality traits and depression level
based on our collected smartphone data. Recently, personality was
successfully predicted based on touchscreen-based interactions [37]
and smartphone accelerometer data [23].

7 CONCLUSION
In this paper, we presented amodel for predicting affective states (up
to 0.85 AUC), basic emotions (up to 0.86 AUC), and stress (0.83 AUC)
based on two-dimensional heat maps extracted from users’ touch
events on smartphone keyboards and the signals from the inertial
sensors. We evaluated our model with data collected in the wild
from 82 participants over 10 weeks. By fine-tuning the network per
participant, we achieved substantial performance improvements
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(up to +0.07 AUC). We also showed that we achieve a similar per-
formance using sensor heat maps alone without any keystroke
heat maps, which is beneficial for privacy and runtime efficiency
(0.23 seconds vs. 0.84 seconds).

The novelty of our contribution consists of our model that pro-
cesses heat maps of touch and sensor data to provide accurate
assessments of affective states on different types of mobile devices.
The keystroke heat maps extracted from touch events, provide an
intuitive and compact visualization of the typing characteristics.
In addition, the keystroke heat maps allowed us to investigate the
distribution of keystroke pairs in relation to the measured affective
states (e.g., more frequent occurrence of keystroke pairs with a
backspace when experiencing negative emotions). By extracting
heat maps from sensor signals instead of directly processing raw
sensor data, our approach takes into account the relationship be-
tween acceleration and rotation and provides a less privacy-invasive
way for affective state prediction compared to keystroke heat maps.
The findings of our work are important because they demonstrate
the applicability of affective state prediction beyond laboratory
settings with a minimal amount of privacy invasion.
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