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ABSTRACT 
Recent mobile phones integrate fingerprint scanners to 
authenticate users biometrically and replace passwords, 
making authentication more convenient for users. However, 
due to their cost, capacitive fingerprint scanners have been 
limited to top-of-the-line phones, a result of the required 
resolution and quality of the sensor. We present Bodyprint, 
a biometric authentication system that detects users’ bio-
metric features using the same type of capacitive sensing, 
but uses the touchscreen as the image sensor instead. While 
the input resolution of a touchscreen is ~6 dpi, the surface 
area is larger, allowing the touch sensor to scan users’ body 
parts, such as ears, fingers, fists, and palms by pressing 
them against the display. Bodyprint compensates for the 
low input resolution with an increased false rejection rate, 
but does not compromise on authentication precision: In our 
evaluation with 12 participants, Bodyprint classified body 
parts with 99.98% accuracy and identifies users with 
99.52% accuracy with a false rejection rate of 26.82% to 
prevent false positives, thereby bringing reliable biometric 
user authentication to a vast number of commodity devices. 

INTRODUCTION 
Mobile phones now store a manifold of sensitive user data, 
such as photos, emails as well as login credentials to access 
personal data on the web, including finances and shopping 
portals. To protect such data from theft and unauthorized 
access, mobile devices implement lock screens to verify the 
user’s identity and authenticate their use of the device. 
Lock screens commonly ask the user to enter a PIN to un-
lock [4,8]. Unfortunately, only a small percentage of mobile 
phone users actually protect their device using a PIN [13]. 
A commonly cited reason is that PIN codes impede conven-
ience and ease of access [3]. Graphical passwords ease the 
memorization and entry of PIN codes, but are subject to 
eavesdropping and find only limited acceptance [8]. 
Researchers have thus sought to replace PIN codes to pro-
tect mobile devices, such as to identify users from behav-
ioral biometrics [5] or analyzing the characteristics of ges-

tures users perform with the device [12]. Alternative ap-
proaches leverage the front-facing cameras in mobile de-
vices to implement face [1] or iris recognition [7].  
To balance reliable and strong authentication with the con-
venience of use, some recent phones have started to inte-
grate capacitive fingerprint scanners as part of the enclosure 
(e.g., iPhone 5S and up, Samsung Galaxy S5). However, 
capturing fingerprints requires high-quality sensors, which 
incurs considerable cost in the manufacturing process. Fin-
gerprint scanners have thus been reserved for top-of-the line 
mobile devices only. Several research prototypes have 
further explored touch-based authentication by identifying 
users during contact with the touchscreen itself [9,10,11]. 
In this note, we present Bodyprint, a biometric authentica-
tion system that uses the capacitive sensor of commodity 
touchscreens to detect users’ biometric features—the same 
type of sensing that fingerprint scanners use. Whereas fin-
gerprint scanners exist only in a small number of devices, 
all current smartphones feature capacitive touchscreens, 
ready to run Bodyprint for authenticating user access. 

 
Figure 1: Bodyprint brings biometric authentication to com-
modity mobile devices using the capacitive touchscreen as a 

low-resolution, but large-area image sensor to reliably identify 
users based on their ears, fists, or grips when pressed against 

the touchscreen. (left) To accept an incoming call, the user 
places the touchscreen onto his ear. (right) Bodyprint extracts 

features from the raw capacitive image to identify the user. 

BODYPRINT: SENSING BIOMETRICS WITH THE SCREEN 
Figure 1 shows the use of Bodyprint to accept an incoming 
call. (a) The user touches the phone to his ear and 
(b) Bodyprint captures the raw capacitive image from the 
touch sensor, extracts features and matches them against a 
user database, and identifies the user to authenticate access.  
Bodyprint replaces password entry on mobile devices with 
biometric authentication. Since the input resolution of 
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commodity touchscreens at ~6 dpi is two orders of magni-
tude lower than that of fingerprint scanners, Bodyprint 
scans body parts with proportionally bigger structural fea-
tures as shown in Figure 2: ears, fists, phalanges, fingers 
and palms. Bodyprint appropriates the capacitive touch-
screen as an image sensor and thus has the potential to run 
on most if not all currently available touch-based phones. 

 
Figure 2: Bodyprint identifies users through these body 
parts and characteristic poses when touching the screen. 

A key benefit of Bodyprint is the usage of the flat touch-
screen surface to capture an image of the body part, which 
conveniently solves the challenge of projection for match-
ing images. When pressed against the screen, a body part 
has a 1–1 mapping to the screen’s sensor cells. This map-
ping remains constant over time, such that scanned parts 
will always exhibit the same dimensions on the device. 
Using the contact surface for scanning also frees Bodyprint 
from accommodating image captures from various angles, 
as is a requirement when using camera-based scanning [1]. 

CONTRIBUTION 
Our main contribution is technical: We demonstrate the 
feasibility and reliability of the touchscreen as an image 
sensor with sufficient resolution to capture users’ biometric 
features that are adequate for robust user identification. We 
require no additional hardware or dedicated sensors, just the 
capacitive touchscreen, which is the largest component in 
smartphones today. Our identification algorithm is designed 
to identify users with high precision and robustness using 
low-resolution images as input, running in real-time on 
commodity phones to authenticate access, which brings 
biometric user identification as a replacement for passwords 
from high-end devices to all current smartphones. 

BODYPRINT’S ALGORITHM AND IMPLEMENTATION 
We implemented Bodyprint on an LG Nexus 5 phone, 
which features a Synaptics ClearPad 3350 touch sensor. 
Through rooting the Android phone and modifying the 
touchscreen module in the kernel source, we activated Syn-
aptics debug mode and now obtain the capacitive values 
from the sensor: a 27×15px 8-bit image across a 4.95″ sur-
face (6.24 dpi) at 30fps. Figure 2 visualizes the raw data 
from the sensor as a “depth” image that captures the prox-
imity of skin to the surface with limited depth resolution. 

Bodyprint robustly identifies users despite the low resolu-
tion of the input sensor. We accomplish this by processing 
the sequence of consecutive raw images that result from a 
trial, gathering images between activating the debug mode 
and detecting touches. Our algorithm has three steps: pre-
processing, body part classification, and user identification. 
Figure 3 shows an overview over our implementation. 

Step 1: Preprocessing (raw values to 3×4 key frames) 
For each raw image in a trial, Bodyprint first generates 
three representations using logarithmic, linear and exponen-
tial tone mapping. Each mapping accentuates contours and 
gradients at different intensity levels, enhancing the infor-
mation in the low-resolution images from the touch sensor. 
Depending on the average pixel intensity of an image, the 
image is sorted into one of five brightness buckets. The 
purpose of the five buckets is to collect sensor images de-
pending on the body part’s proximity to the touchscreen 
during a trial (i.e., low-intensity images correspond to hov-
ering body parts, high intensities to body parts in contact). 
We then merge all frames within each bucket into a single 
image, stretch intensities to the full range, discard the low-
est-intensity bucket and scale the remaining four images 16 
times using cubic interpolation. This results in 3 tone map-
pings × 4 buckets = 12 images. Finally, we derive the 
SURF descriptors [2] of the features resulting from Hessian 
corner detection, arriving at a set of 12 key frames per trial. 
During training, Bodyprint inserts each of the 12 key 
frames into two databases. The user database stores each 
key frame along with the user’s name, body part, and tri-
al ID. The body part database contains 12 groups of fea-
tures for each body part, corresponding to each of the 12 
key frames, thereby combining all features across all trials. 

 
Figure 3: Overview over Bodyprint’s algorithm. 

Step 2: Body-part classification 
The purpose of body part classification is to reduce the 
search space of the ensuing identification. Although trials 
may be misclassified as wrong body parts at this stage, we 
discard false positive matches during user identification. 
To classify the body part of a query trial, Bodyprint assigns 
a body part from the database to each query key frame by 
comparing it to the respective key frame group in the data-
base. For each body part, we search the database for a best-
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matching feature fj of a SURF feature fi in the query key 
frame, then search the query key frame for a best match of fj 
using L2 distance, and obtain fi'. If the two searches produce 
the same result, i.e., if fi = fi', we add (fi, fj) to the set of 
matched features for that key frame. If more than half of the 
features in a query key frame match, we derive the average 
L2 distance of the matches of that body part. Otherwise, we 
reject the key frame from voting for that body part. After 
repeating this procedure for all body parts and key frames, 
we assign the body part with the lowest L2 distance to each 
key frame, resulting in a 3×4 set of voted-on body parts. 
Each of the 12 key frames now votes for one body part in 
the database. Bodyprint classifies the query trial as the body 
part with the highest number of votes if the ratio of votes 
and number to all voting key frames is above the threshold 
“body part vote percentage.” Otherwise, Bodyprint discards 
the entire trial and stops the subsequent user identification. 

Step 3: User identification using classified body parts 
To identify a user, Bodyprint implements a multi-step vot-
ing procedure. Each key frame in the query trial can vote 
for multiple users in the database (similar to Bootstrap-
per [14]). We additionally check the transformation be-
tween the query trial and database trials to reject false posi-
tive matches. We repeat this process for each key frame kl 
in the database where tuple l = (user, body part, trial ID), 
but limit body part to the body part determined in Step 2. 
First, we compare each query key frame to each key frame 
kl. For each feature fj in a query key frame, we determine 
the two features fj1 and fj2 in kl with the lowest and the se-
cond-lowest L2 distance. If the distance between (fi, fj1) is 
smaller than 70% of the distance between (fi, fj2), we add fi 
to the set of good matches [2]. If this results in less than 10 
good matches, we prevent this query key frame from voting 
for the currently-tested combination of (user, trial ID). 
Next, we calculate the best rigid 2D transformation to rotate 
the good matches in the query key frame onto the respective 
features in the database key frame, but exclude other trans-
formations, such as scaling and shearing. If the average 
error of the transformation is less than the “rotational error 
threshold,” we count a vote for that user. 
By iterating across all (user, trial ID) combinations in the 
database, each key frame can vote as many times for a user 
as there are trials for that user’s body part. We thus normal-
ize each user’s votes by the number of those trials. Finally, 
we sum the votes per user across all key frames. If the vote 
winner receives less than a fraction of all votes (“user vote 
percentage threshold”), we reject the query trial. This is 
how Bodyprint robustly rejects false positive matches.  
The use of the previous three thresholds allows us to bal-
ance between two extremes: high security of the system, 
resulting in a higher false rejection rate, and low false rejec-
tion rate, which always produces a match after each trial, 
but risks lower authentication precision. If a trial is rejected, 
Bodyprint prompts the user to retry. Upon repeated rejec-
tion, Bodyprint resorts to regular password entry. 

APPLICATIONS 
We implemented two applications that use Bodyprint, 
which we demonstrate in our video figure. Figure 1 shows 
our first application, which authenticates the user by their 
ear for an incoming call. Once the user touches their ear 
onto the screen, Bodyprint identifies the user, confirms or 
rejects them for the call, and plays auditory confirmation. 
Our second application extends Bodyprint to two people 
and implements the four-eye principle for locking sensitive 
documents; accessing them then requires the presence of 
both people. To lock a document, a user pushes the ‘lock’ 
button for an open document. Bodyprint requests that all 
parties shake the phone, which provides the touchscreen 
with their palm prints. Bodyprint identifies each user and 
locks the document using their identities. To unlock a doc-
ument later, a user needs to provide their palm print to the 
touchscreen again and Bodyprint will prompt for the other 
user to also be authenticated to reveal the document.  

TECHNICAL EVALUATION 
We evaluated Bodyprint’s performance for each of the 5 
body parts shown in Figure 2. We recruited 12 participants 
(ages 24–53, 4 female) and demonstrated each of the 5 
poses to them once. During the evaluation, participants held 
the Nexus 5 phone as demonstrated and performed 12 trial 
repetitions. Between trials, participants put the phone down 
on a table. We did not verify the correctness of performed 
poses or ask for retries. Overall, we collected 864 trials. 

Evaluation methodology  
We tested the performance of our algorithm with 12-fold 
cross validation, which evaluated two aspects:  identifying a 
known user and rejecting an unknown user who is trying to 
authenticate. In each fold, all of one participant’s trials were 
withheld from the training data set, such that Bodyprint’s 
body part and user database contained 11 trials for each of 
the remaining 11 participants. We then tested the trained 
system with the 11 withheld trials from participants in the 
databases as well as all 12 trials of the withheld participant. 
Bodyprint then attempted to correctly identify the user of 
the system or reject the user when it determined the trial to 
represent an unknown user. We repeated the full 12-fold 
cross validation varying the three tunable thresholds ex-
plained above in unison linearly through each one’s range. 

Results 
Figure 4 plots Bodyprint’s false rejection rate against au-
thentication precision. The false rejection rate represents the 
likelihood of a user to be prompted to retry. Precision is the 
probability of a known user being correctly identified and 
unknown users being rejected. The ROC-like curves illus-
trate the tradeoff for all threshold settings: A precision of 
99.5% leads to a false rejection rate of 26.8% using any of 
the five body parts. Or, for a false rejection rate of 0.2%, 
Bodyprint achieves 86.1% precision. Limiting the body 
parts to the ear only boosts the precision of our algorithm to 
99.8% with a false rejection rate of only 7.8%. 



 

 Figure 4: ROC-like curves 
of Bodyprint’s precision for varied thresholds. 
For a high authentication precision of 99.5%, 
Bodyprint has a false rejection rate of 26.8% 

when all body parts are being used, but a false 
rejection rate of only 7.8% for just “ear” at the 

same high level of authentication precision. 
“Ear” performed best across all body parts, which 

is due to the high density of structural features. 

Battery consumption of the touchscreen debug mode 
We repeatedly measured the time to fully discharge the 
Nexus 5 running Bodyprint fulltime with and without 
Synaptics’ debug mode enabled. In both cases, the phone 
was in airplane mode and a wake lock kept the screen on. In 
debug mode, the phone turned off after ~15 hours on aver-
age compared to ~18 hours on average in regular mode. 

Discussion and limitations 
The results from our evaluation demonstrate that Bodyprint 
can be tuned for very high identification precision (99.6%) 
for applications that require secure authentication, such as 
accessing sensitive data. In this case, Bodyprint achieves 
this high precision by strictly rejecting potential false posi-
tives, which naturally leads to increased false rejection rate 
for known users. Alternatively, Bodyprint’s thresholds can 
be set to facilitate quick unlocking, such that each trial will 
be matched (low false rejection rate), albeit at reduced 
precision (86.1%). To achieve the results shown in Fig-
ure 4, applications that have ~10 known users require a 
minimum of 11 training samples per user and body part.  
When run fulltime, Bodyprint accounts for a 17% overhead 
on the battery of the device. In reality, however, Bodyprint 
activates the touch sensor’s debug mode only when a user is 
authenticating, which takes only a few seconds. 

CONCLUSIONS 
We presented Bodyprint, a password replacement for com-
modity mobile devices to identify users biometrically from 
the features of their body, thus possibly increasing the con-
venience of logging in and authenticating. Users thereby 
press a body part against the large touchscreen of the de-
vice, from which Bodyprint obtains the raw capacitive 
image, extracts features, and identifies body parts and users.  
Bodyprint appropriates the capacitive touchscreen of mo-
bile devices as an image sensor and accommodates their 
low input resolutions through an increased false rejection 
rate, but not reduced precision or increased false positives. 
Bodyprint identified users with 99.5% precision in an eval-
uation with 12 participants with a false rejection rate of 
26.8% across all body parts, but as low as 7.8% for ear-only 
matching, which is explained through the increased pres-
ence of structural features in the human ear [6]. 

Since all current touchscreens use capacitive sensing, 
Bodyprint brings reliable biometric authentication to a vast 
number of commodity devices. In the case that future 
touchscreens support higher input resolutions, up to a point 
where they may detect the fine structure of fingerprints, 
Bodyprint will readily incorporate the higher level of detail 
of sensor data, which will not only extend our approach to 
further body parts, but likely reduce false rejection rates at 
the same high levels of authentication precision. 
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