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Abstract—SSVEP-based BCIs are amongst the most promising
BClIs in terms of speed and accuracy. However, despite significant
effort from the community in order to make them more practical
and user friendly, they remain particularly annoying to use. In
this paper, we investigate the effect of the size and contrast
of the SSVEP visual stimulations on both of the classification
accuracy and the annoyance of the interface, with the global aim
to find a trade-off between performance and user-friendliness.
We conducted a user study on twelve (12) participants in order
to evaluate the joint effect of different stimulation sizes and
contrasts on the SSVEP classification accuracy in a Virtual
Reality context. The results of this experiment suggest that the
size of the stimulation has a significant impact on both of the
classification accuracy, below a certain threshold, and on the
perceived annoyance. No effect of the contrast was however
found neither on the classification accuracy nor on the perceived
annoyance, suggesting that it is still possible to accurately operate
SSVEP-based BClIs using lower contrast stimulation.
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I. INTRODUCTION

Brain-Computer Interfaces (BCIs) are systems that exploit
brain activity to enable users to interact with computer sys-
tems. As they do not rely, and often do not require, any muscle
activity [1] they are a very promising set of interfaces for
people with muscular disabilities [2] who are still able to
modulate their brain activity.

Depending on the type of mental state that they monitor,
and depending on how these mental states are elicited, BCIs
are classified into two main categories [3]: Active BCIs and
Passive BCIs. In passive BClIs, the brain activity of the
users is passively monitored in order to infer their general
mental state, while in active paradigms, users voluntarily
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modulate their brain activity in order to send a command to a
computer system. In active BCIs, users either spontaneously
modulate their brain activity to send a command (e.g. Motor
Imagery based BCIs [4]), or focus their attention on sensory
stimulations provided by the interface in order to send the
desired command (i.e. evoked potentials [5]). The nature of
the stimulation (single stimulus, periodic stimuli, or random
stimuli) as well as the modality of the stimulation (visual,
auditory, or somatosensory) determines the neurophysiological
property that the BCI exploits for the interaction. In this paper,
we focus on active BCIs based on visual stimulations, namely
the Steady State Visual Evoked Potentials (SSVEP), with the
aim to design a BCI for interaction in Virtual Reality (VR)
devices.

When subjects focus their attention on a periodic visual
stimulation such as a light flickering at a given frequency f
greater than 6 Hz [6], their brain responds with an increase
of the signal power at the same frequency of stimulation f,
around the occipital area. Thanks to this property, known as the
Steady-State Visually Evoked Potentials, it is possible to dis-
play multiple visual stimuli flickering at different frequencies,
and determine the one on which users focus their attention by
identifying the dominant frequency in the EEG signal recorded
by the occipital electrodes.

SSVEPs present a number of advantages that have made
them very popular for achieving Brain-Computer Interaction.
Given the very specific reaction of the brain as a response to
a flickering visual stimulus, SSVEPs are rather easy to detect.
Their location is essentially in the occipital area and their
spectral components are known a priori from the frequencies



used as stimulations. They are also relatively robust to muscle
artifacts which can be generated from ocular activity, and
they typically require less or even no calibration [7] data to
be detected in the EEG signals. Additionally, given the large
number visual stimulations that can be displayed to the users
at once, and the relatively fast detection rate of the SSVEPs
from EEG signals, SSVEP enables to achieve high information
transfer rates (ITR) [8].

However, despite these advantages, the major drawback of
the SSVEP paradigm is the important eye-strain and visual
fatigue it provokes on its users. The prolonged focus on
blinking objects tends to rapidly induce symptoms of visual
fatigue, rendering the practical and frequent use of SSVEP
rather difficult. Thus, an important line of research consists
in investigating the possibility to increase the SSVEP user
friendliness while maintaining satisfactory detection accuracy.

In this paper, we investigate the joint effect of size and con-
trast of the visual stimulations on both of the user-friendliness
and the classification accuracy of SSVEP responses. We hy-
pothesize that while reducing the contrast of the stimulation
reduces the visual fatigue of the users over time and also
reduces the intensity of the response, it would still be possible
to compensate this decrease of intensity by simultaneously
increasing the size of the visual stimulations.

The remainder of this paper is organized as follows: Section
II presents previous research on the effect of several properties
of the visual stimulations on the SSVEP responses. Then,
Section III describes the user study which we conducted on
the joint effect of size and contrast, presenting the detailed
experimental protocol as well as the apparatus. Section IV
presents the results of the user study, both in terms of classi-
fication accuracy of the SSVEP responses and the subjective
user preference. Finally, Section V discusses the results with
respect to the initial hypotheses and Section VI concludes the

paper.
II. RELATED WORK

SSVEPs have been widely exploited to design BCI-based
systems. The applications of these systems ranges from the
control of prosthetic arms [9] and the steering of electrical
wheelchairs [10], [11] to SSVEP spellers [8] and interactive
Virtual/Augmented Reality environments [12]. In addition to
these applications, the contributions in the field of SSVEPs
have been mainly focusing on improving the accuracy and
ITR of SSVEP by designing new signal processing and
classification methods [7], [13], [14]. Only few efforts have
been put on reducing the discomfort and the eye strain from
the use of SSVEPs, which is a major drawback and a limitation
to enable a larger public to use SSVEPs.

Zhu et al. [15] proposed a survey of the different stimulation
methods that have been used to elicit SSVEP responses,
displaying the diversity of the configurations used to elicit
SSVEPs. The nature of the stimulation was found to play an
important role on the classification accuracy of SSVEP re-
sponses, but a few studies reported the effect of the stimulation
type on the user friendliness.

For example, increasing the frequency range of the stimu-
lations (above 30Hz) has been found to significantly reduce
the eye strain, as the flickering itself becomes transparent
to the user, but at the expense of a significant drop in the
classification accuracy [15].

More recently, Ladouce et al. [16] investigated the effect of
reducing the contrast (the maximum depth amplitude) of the
SSVEP stimulation on both the classification accuracy and
the user experience. Their results confirm that increasing the
frequency range of the stimulations significantly reduces the
eye strain and improves the overall user experience, but at the
expense of significantly reducing the classification accuracy,
rendering the design of practical SSVEP interfaces using high
frequencies still difficult. On the other hand, their results were
encouraging concerning the effect of reducing the contrast
of the SSVEP stimulations on the user experience and the
classification accuracy. The reported classification accuracy on
stimulations with a depth of 40% of the maximum amplitude
did not significantly differ from the classification accuracy of
the maximum depth amplitude stimulations.

Despite these promising results, a trade-off has yet to be
found between performance (in terms of elicited SSVEPs and
their intensity) and usability (in terms of user-friendliness) as
most of the times, manipulating the visual stimulation proper-
ties to increase the intensity of the SSVEP response comes at
the expense of severely impairing the user-friendliness of the
SSVEP interfaces.

In this paper we investigate the joint effect of size and con-
trast on the user-friendliness and the classification, instead of
investigating each dimension separately. We hypothesize that
even if significantly reducing the contrast of the stimulations
reduces the classification accuracy, the increase of size can
compensate while keeping satisfactory user-friendliness.

III. MATERIALS AND METHODS
A. Experimental protocol

In order to evaluate the joint effect of size and contrast on
classification accuracy and user friendliness, We conducted a
user experiment where participants were asked to perform a
series of SSVEP selections by focusing their attention on one
of the three (3) targets displayed in a VR headset (Fig. 1) and
flickering at 10 Hz, 12 Hz and 15 Hz.

Twelve participants (mean age: 39 years, std: 14 years) took
part in the experiment. All were right handed and all had
normal or corrected to normal visual acuity. Eight participants
were BCI naive, and three did not have any previous experi-
ence with VR.

The SSVEP targets consisted in white circles, with different
level of brightness and size (depending on the experimental
condition) displayed on a black background. In this user study,
three modalities of SSVEP targets size: Small, Medium and
Large, corresponding to 2°, 6°and 10° of visual angle respec-
tively, and four levels of contrast: 25%, 50%, 75% and 100%
of the maximum brightness. These modalities result in a total
of twelve experimental conditions labelled X25, X50, X75
and X100, where *X’ represents the targets size (S for small,



Fig. 1: Tllustration of the different configurations of the stim-
ulations. (Top) The three sizes: 2°, 6° and 10° of visual angle.
(Bottom) The four level of contrasts: 25%, 50%, 75% and
100%.
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Fig. 2: Time structure of a trial. The target to focus on is
designated with a red arrow before the flickering starts, and
the trial ends with a coloured feedback.

M for Medium and L for Large) and the associated number
represents the level of brightness. The distance between the
targets in all conditions were fixed a 10° of visual angle.

All participants underwent the twelve experimental condi-
tions in a random order, so that to minimize any learning or
visual fatigue effect. Each experimental condition consisted
of twenty-four trials (SSVEP selections), each target being
selected eight times. Each trial began with a red arrow
(displayed for 2 sec) pointing and designating the target on
which subjects had to focus their attention. Following that, all
the targets began flickering for 4 sec, after what a feedback
was provided for 2 sec. The feedback consisted in turning
the supposedly detected target into green. However, as no
online analysis of the EEG signal was performed, we used a
Sham feedback, consisting in turning green the correct target
(which was designed in the beginning of the trial) with an 80%
chance, and turning a either of the remaining wrong targets
green with 20% chance. This method enabled to keep the
subjects engaged in the experiment. After the feedback and
a 2 sec break, the next trial started. The overall trial structure
is presented in Fig. 2.

Each experimental condition lasted 4 minutes, resulting in
forty-eight minutes of EEG recording. After each experimental
condition, participants were asked to rate on a Likert scale the
level of annoyance generated by the condition, following what,
they were allowed to have as much break as they needed in
order to rest their eyes. The overall duration of the experiment
was around 90 minutes including breaks and equipment time.

(b)

Fig. 3: Illustration of the experiment apparatus. (a) The HTC
Vive VR headset, with a refresh rate of 90 Hz. (b) The
Smarting mBrainTrain EEG headset with a sampling rate of
500 Hz.
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Fig. 4: True brightness level generated by the VR headset with
respect to the level of alpha parameter.

B. Apparatus and settings

All the visual stimulations in this user study was displayed on
a HTC Vive Pro VR display (Fig. 3a) providing a refresh rate
of 90 Hz, and were implemented on the Unity game engine.

In order to display different levels of contrast on the targets,
we displayed different levels of alpha transparency in the
RGBA color representation. However, prior to the experiment,
we compared the level of brightness obtained with the alpha
parameter, with the true level of brightness generated by
the display, as measured with photo-diodes. Interestingly, we
observed that the evolution of the true brightness level from
0% (transparent) to 100% (fully white) was not linear, and
that an alpha level of 50%, did not correspond to half of
the maximum brightness of the headset (Fig. 4). Given this
observation, we decided to correct the levels of contrast to
match the true levels of brightness generated by the display.
As such, the 25%, 50%, 75% and 100% contrast levels
corresponded to alpha values of 65%, 72%, 87% and 100%
respectively.

The flickering frequencies were generated by adapting the
sinusoidal stimulation method presented in [17] using the
following equation :
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Fig. 5: Tllustration of the processing pipeline of the Canonical
Correlation Analysis method. X represents the EEG sam-
ple, Y; represents the template signal (Fourier series) and s
represents the recognized class through maximization of the
canonical correlation.
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f(i) = (B *cos(2nfi/R) + B)/2 (1)

where B represents the maximum level of brightness for the
condition, ¢ represents the frame number, f represents the
flickering frequency and R represents the frame rate of the
display.

EEG signals were acquired using an mBrainTrain Smarting
wet electrodes system (Fig. 3b) with a sampling rate of
500 Hz. Five (5) occipital channels were recorded during the
experiment (O1, 02, POz, Pz and CPz) which were grounded
at AFz and referenced at Cz. The signals were acquired
and labelled using the Openvibe software [18]. Overall, the
participants wore both of the EEG and the VR headsets at
the same time during each block. They could remove the VR
headsets during the breaks in between the blocks, in order to
reduce the long term fatigue effect.

C. Signal processing

In order to estimate the effect of the size and contrast of the
SSVEP targets on the SSVEP response, we chose to evaluate
the classification accuracy EEG trials. Before classification,
the EEG signals were band-pass filtered using a 4'" order
Butterworth filter, with cutoff frequencies of 5 Hz and 40 Hz.
Each trial (4 sec of SSVEP stimulation) was classified using
the Canonical Correlation Analysis (CCA) method (Fig. 5)
to determine on which target the user was focused on. For
each stimulation frequency, the template signal for the CCA
corresponded to the Fourier series at the given frequency with
two harmonics.

A trial was deemed as correctly classified if the recognized
detected stimulation frequency using CCA, was the frequency
on which the user was asked to focus for this trial. Three
classes corresponding to the three frequencies of stimulation.

IV. RESULTS

A. Classification accuracy

Among all the subjects, three (S1, S6 and S12) did not perform
significantly better than chance level [19] (95% confidence

TABLE I: Average classification accuracies per subject across
all conditions. 95% confidence chance level was set to 45%.

Subject  Avg. Accuracy
1% 37%
2 55%
3 59%
4 89%
5 56%
6* 34%
7 74%
8 56%
9 55%
10 51%
11 78%

12% 43%

TABLE II: Recognition Accuracies per class after synchronous
CCA analysis.

Condition ~ Avg. Accuracy  Avg. Annoyance
L100 77% 4.89
L75 66% 5.11
L50 75% 4.89
L25 64% 4.55
M100 60% 433
M75 66% 433
M50 66% 4
M25 71% 4.22
S100 58% 3.66
S75 49% 3.44
S50 53% 3.55
S25 60% 3.66

chance level set at 45%), which is coherent with the literature
regarding BCI illiteracy [20], [21]. The data from these sub-
jects were not included in the analyses. The mean classification
accuracy across all conditions and all the remaining subjects
was 63.66%. Three subjects even had classification accuracy
above 70% across all conditions. The detailed results are
presented in Table 1.

Regarding the inter-condition results, The mean classifica-
tion accuracy for the Large, Medium and Small conditions
across all brightness conditions were 70.5%, 65.75% and
55% respectively. Whilst the mean classification accuracy for
brightness conditions of 100%, 75%, 50% and 25% across all
size conditions were 65%, 60.33%, 64.66% and 65% (Fig. 6).
The detailed results per condition are presented in Table II.

B. Questionnaire results

In order to evaluate the effect of size and contrast on the sub-
jective preference of the users, all the participants were asked
to rate the level of annoyance elicited by each experimental
condition, on a Likert scale for 1 to 7 (1 being not annoying
at all and 7 being extremely annoying). As expected from
the literature, the Large condition was deemed as the most
annoying with an average rating of 4.86/7, followed by the
Medium and Small conditions with averages of 4.22/7 and
3.58/2 respectively.

In terms of contrast, the perceived annoyance did not differ
much between the different levels, with the average annoyance
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(a) Average classification accuracy per size across all participants and
contrasts.
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(b) Average classification accuracy per contrast level across all
participants and sizes.

Fig. 6: Average classification accuracy for each modality.

evaluated at 4.29/7, 4.29/7, 4.14 and 4.14 for 100%, 75%, 50%
and 25% respectively.

C. Statistical analyses

We performed a 2-way ANOVA on repeated measures to eval-
uate the effect of both size and brightness on the classification
accuracy (Accuracy ~ Size x Brightness). Inline with our
hypothesis and the literature, the results of this user study
suggests a significant impact of the stimuations’ size of the
classification accuracy (p = 0.002 < 0.005). However, no
significant effect of the contrast (p — val = 0.75) nor any
interaction effect was found (p — val = 0.49), which suggests
that it is still possible to employ low contrast stimulations to
interact using the SSVEP paradigm.

We also performed a 2-way ANOVA on repeated measures
to evaluate the effect of size and brightness on the subjective
perception of annoyance from the visual stimulations. The
results showed a significant effect of size on the perceived
annoyance (p = 0.00009) which was expected from the liter-
ature. However, no significant effect of brightness (p = 0.93)
nor any interaction effect of size and brightness (p = 0.97)
were found on the perceived annoyance. Suggesting that
reducing the contrast was not sufficient to increase the user
friendliness of the SSVEP interface.

V. DISCUSSION

The first result from our user study was the confirmation
of the strong effect of the stimulations’ size on both of the
classification accuracy (p — value = xxx) and the annoyance
(p —value = xxx). Small targets elicited significantly weaker
SSVEP responses and were deemed as less annoying. Medium
and Large targets did not significantly differ in terms of
accuracy or annoyance, which suggest that a size threshold
above which the SSVEP responses are easily detected.
Secondly, contrarily to what was expected, the contrast did
not seem to have a significant impact on the classification
accuracy nor on the level of annoyance. In Ladouce et al.
[16], the depth amplitude, which we refer to as contrast, was

found to significantly lower the classification accuracy and
the annoyance, below 40% of the maximum amplitude. This
difference in result could be explained by the fact that the level
of contrast was not corrected to the true level of generated
brightness, by the difference in the background color or the
difference in the hardware. Nonetheless, it remains interesting
to highlight that SSVEP interfaces can still be accurate enough
to be operated through reduced contrast settings. It also
suggests that SSVEP interfaces require more in-depth changes
and adaptation in order to truly increase their user friendliness
than working on the contrast.

Finally, although the study was performed on a small
number of participants which prevents us from establishing
clear-cut certainties, we believe that these results can help
pave the way to future studies, as the question of the user
friendliness of SSVEP interfaces remains crucial. For example,
future work may investigate the possibility to replace the
nature of the flickering targets by moving shapes (Steady-State
Motion Evoked Potentials (SSMVEP) [22]), or even design
bio-inspired stimulation which could be better integrated in a
more global interaction scheme.

VI. CONCLUSION

In this paper, we have investigated the joint effect of Size
and Contrast of the SSVEP stimulations, on the classification
accuracy and the perceived annoyance. Although no interac-
tion effect was found between the two modalities, the size of
the targets was found to significantly impact the classification
accuracy and the annoyance, but only below a certain threshold
(6° of visual angle in our study). The contrast on the other
hand, did not seem to significantly impact the accuracy nor the
level of annoyance, suggesting that more in-depth adaptation
of the stimulation properties may be necessary to increase the
user-friendliness on the SSVEP interfaces.
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